Search results for: reduced order macro models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22885

Search results for: reduced order macro models

17995 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 141
17994 Microfluidic Plasmonic Device for the Sensitive Dual LSPR-Thermal Detection of the Cardiac Troponin Biomarker in Laminal Flow

Authors: Andreea Campu, Ilinica Muresan, Simona Cainap, Simion Astilean, Monica Focsan

Abstract:

Acute myocardial infarction (AMI) is the most severe cardiovascular disease, which has threatened human lives for decades, thus a continuous interest is directed towards the detection of cardiac biomarkers such as cardiac troponin I (cTnI) in order to predict risk and, implicitly, fulfill the early diagnosis requirements in AMI settings. Microfluidics is a major technology involved in the development of efficient sensing devices with real-time fast responses and on-site applicability. Microfluidic devices have gathered a lot of attention recently due to their advantageous features such as high sensitivity and specificity, miniaturization and portability, ease-of-use, low-cost, facile fabrication, and reduced sample manipulation. The integration of gold nanoparticles into the structure of microfluidic sensors has led to the development of highly effective detection systems, considering the unique properties of the metallic nanostructures, specifically the Localized Surface Plasmon Resonance (LSPR), which makes them highly sensitive to their microenvironment. In this scientific context, herein, we propose the implementation of a novel detection device, which successfully combines the efficiency of gold bipyramids (AuBPs) as signal transducers and thermal generators with the sample-driven advantages of the microfluidic channels into a miniaturized, portable, low-cost, specific, and sensitive test for the dual LSPR-thermographic cTnI detection. Specifically, AuBPs with longitudinal LSPR response at 830 nm were chemically synthesized using the seed-mediated growth approach and characterized in terms of optical and morphological properties. Further, the colloidal AuBPs were deposited onto pre-treated silanized glass substrates thus, a uniform nanoparticle coverage of the substrate was obtained and confirmed by extinction measurements showing a 43 nm blue-shift of the LSPR response as a consequence of the refractive index change. The as-obtained plasmonic substrate was then integrated into a microfluidic “Y”-shaped polydimethylsiloxane (PDMS) channel, fabricated using a Laser Cutter system. Both plasmonic and microfluidic elements were plasma treated in order to achieve a permanent bond. The as-developed microfluidic plasmonic chip was further coupled to an automated syringe pump system. The proposed biosensing protocol implicates the successive injection inside the microfluidic channel as follows: p-aminothiophenol and glutaraldehyde, to achieve a covalent bond between the metallic surface and cTnI antibody, anti-cTnI, as a recognition element, and target cTnI biomarker. The successful functionalization and capture of cTnI was monitored by LSPR detection thus, after each step, a red-shift of the optical response was recorded. Furthermore, as an innovative detection technique, thermal determinations were made after each injection by exposing the microfluidic plasmonic chip to 785 nm laser excitation, considering that the AuBPs exhibit high light-to-heat conversion performances. By the analysis of the thermographic images, thermal curves were obtained, showing a decrease in the thermal efficiency after the anti-cTnI-cTnI reaction was realized. Thus, we developed a microfluidic plasmonic chip able to operate as both LSPR and thermal sensor for the detection of the cardiac troponin I biomarker, leading thus to the progress of diagnostic devices.

Keywords: gold nanobipyramids, microfluidic device, localized surface plasmon resonance detection, thermographic detection

Procedia PDF Downloads 136
17993 Progress of Research on Community Canteens and Reflections on Planning in China

Authors: Xi Zuo

Abstract:

Against the background of the aging population and changing family structure in China, community canteens have become an important vehicle for community-based home care services and a new space for social interaction. In this paper, we review past studies and the actual construction situation in China, firstly sort out the social interaction of the elderly and the types of places, and on this basis, we find that there is an obvious disconnection between the current construction and the academic research, and the contradiction between social benefit and cost-effectiveness, and therefore we put forward the relevant construction planning and thinking, in order to provide a disciplinary basis and academic support for the construction of community canteens and the construction of elderly-friendly cities. In order to provide disciplinary basis and academic support for the construction of community canteens and the construction of senior-friendly cities.

Keywords: urban and rural planning, community canteens, elderly people, senior-friendly

Procedia PDF Downloads 64
17992 3D Design of Orthotic Braces and Casts in Medical Applications Using Microsoft Kinect Sensor

Authors: Sanjana S. Mallya, Roshan Arvind Sivakumar

Abstract:

Orthotics is the branch of medicine that deals with the provision and use of artificial casts or braces to alter the biomechanical structure of the limb and provide support for the limb. Custom-made orthoses provide more comfort and can correct issues better than those available over-the-counter. However, they are expensive and require intricate modelling of the limb. Traditional methods of modelling involve creating a plaster of Paris mould of the limb. Lately, CAD/CAM and 3D printing processes have improved the accuracy and reduced the production time. Ordinarily, digital cameras are used to capture the features of the limb from different views to create a 3D model. We propose a system to model the limb using Microsoft Kinect2 sensor. The Kinect can capture RGB and depth frames simultaneously up to 30 fps with sufficient accuracy. The region of interest is captured from three views, each shifted by 90 degrees. The RGB and depth data are fused into a single RGB-D frame. The resolution of the RGB frame is 1920px x 1080px while the resolution of the Depth frame is 512px x 424px. As the resolution of the frames is not equal, RGB pixels are mapped onto the Depth pixels to make sure data is not lost even if the resolution is lower. The resulting RGB-D frames are collected and using the depth coordinates, a three dimensional point cloud is generated for each view of the Kinect sensor. A common reference system was developed to merge the individual point clouds from the Kinect sensors. The reference system consisted of 8 coloured cubes, connected by rods to form a skeleton-cube with the coloured cubes at the corners. For each Kinect, the region of interest is the square formed by the centres of the four cubes facing the Kinect. The point clouds are merged by considering one of the cubes as the origin of a reference system. Depending on the relative distance from each cube, the three dimensional coordinate points from each point cloud is aligned to the reference frame to give a complete point cloud. The RGB data is used to correct for any errors in depth data for the point cloud. A triangular mesh is generated from the point cloud by applying Delaunay triangulation which generates the rough surface of the limb. This technique forms an approximation of the surface of the limb. The mesh is smoothened to obtain a smooth outer layer to give an accurate model of the limb. The model of the limb is used as a base for designing the custom orthotic brace or cast. It is transferred to a CAD/CAM design file to design of the brace above the surface of the limb. The proposed system would be more cost effective than current systems that use MRI or CT scans for generating 3D models and would be quicker than using traditional plaster of Paris cast modelling and the overall setup time is also low. Preliminary results indicate that the accuracy of the Kinect2 is satisfactory to perform modelling.

Keywords: 3d scanning, mesh generation, Microsoft kinect, orthotics, registration

Procedia PDF Downloads 191
17991 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City

Authors: Emejeamara Francis

Abstract:

The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.

Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content

Procedia PDF Downloads 279
17990 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 457
17989 Latest Advances in the Management of Liver Diseases

Authors: Rabab Makki, Deputy Chief Dietitian

Abstract:

Malnutrition is commonly seen in Liver Disease patients. Prevalence of malnutrition in cirrhosis, is as high as 65-90%. Protein depletion and reduced muscle function are common. There are many mechanisms of malnutrition in liver cirrhosis e.g. insulin resistance, low respiratory quotient, increased glucogenesis etc. Nutrition support improves outcome in patients unable to maintain an intake of 35-40 Kcal/kg and 1.2-1.5 gm/kg/day. Simple methods of assessment such as subjective global assessment, calorie counting, MMC are useful. The value of BCAAs remains uncertain despite a considerable number of studies. Normal protein diets have been given safely to patients with hepatic encephalopathy. Restriction of protein not more than 48 hours pre- and pro-biotic, glutamine, fish oil etc are all part of the latest advanced techniques used.

Keywords: liver cirrhosis, omega 3 for liver disease, nutrition management, malnutrition

Procedia PDF Downloads 260
17988 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 98
17987 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application

Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui

Abstract:

Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.

Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling

Procedia PDF Downloads 285
17986 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 162
17985 Hydrogen: Contention-Aware Hybrid Memory Management for Heterogeneous CPU-GPU Architectures

Authors: Yiwei Li, Mingyu Gao

Abstract:

Integrating hybrid memories with heterogeneous processors could leverage heterogeneity in both compute and memory domains for better system efficiency. To ensure performance isolation, we introduce Hydrogen, a hardware architecture to optimize the allocation of hybrid memory resources to heterogeneous CPU-GPU systems. Hydrogen supports efficient capacity and bandwidth partitioning between CPUs and GPUs in both memory tiers. We propose decoupled memory channel mapping and token-based data migration throttling to enable flexible partitioning. We also support epoch-based online search for optimized configurations and lightweight reconfiguration with reduced data movements. Hydrogen significantly outperforms existing designs by 1.21x on average and up to 1.31x.

Keywords: hybrid memory, heterogeneous systems, dram cache, graphics processing units

Procedia PDF Downloads 109
17984 Accountant Strategists Challenge the Dominant Business Model: A Strategy-as-Practice Perspective

Authors: Lindie Grebe

Abstract:

This paper reports on a study that explored the strategizing practices of professional accountants in the mining industry, based on Jarratt and Stiles’ dominant strategizing practice models framework. Drawing on a strategy-as-practice perspective, the paper recognises qualified professional accountants in strategic management such as Chief Executive Officers, as strategy practitioners that perform their strategizing practices and praxis within a specific context. The main findings of this paper were produced through semi-structured individual interviews with accountants that perform strategy on a business level in the South African mining industry. Qualitative data were analysed through conversation analysis over two coding-cycles. Findings describe accountant strategists as practitioners who challenge the dominant business model when a disconnect seems to exist between international corporate level strategy and business level strategy in the South African mining industry. Accountant strategy practitioners described their dominant strategizing practice model as incremental change during strategic planning and as a lived experience during strategy implementation. Findings portrayed these strategists as taking initiative as strategy leaders in a dynamic and volatile environment to combine their accounting background with strategic management and challenge the dominant business model. Understanding how accountant strategists perform strategizing offers insight into the social practice of strategic management. This understanding contributes to the body of knowledge on strategizing in the South African mining industry. In addition, knowledge on the transformation of accountants as strategists could provide valuable practice relevant insights for accounting educators and the accounting profession alike.

Keywords: accountant strategists, dominant strategizing practice models framework, mining industry, strategy-as-practice

Procedia PDF Downloads 179
17983 Evaluation of Virtual Reality for the Rehabilitation of Athlete Lower Limb Musculoskeletal Injury: A Method for Obtaining Practitioner’s Viewpoints through Observation and Interview

Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes

Abstract:

Based on a theoretical assessment of current literature, virtual reality (VR) could help to treat sporting injuries in a number of ways. However, it is important to obtain rehabilitation specialists’ perspectives in order to design, develop and validate suitable content for a VR application focused on treatment. Subsequently, a one-day observation and interview study focused on the use of VR for the treatment of lower limb musculoskeletal conditions in athletes was conducted at St George’s Park England National Football Centre with rehabilitation specialists. The current paper established the methods suitable for obtaining practitioner’s viewpoints through observation and interview in this context. Particular detail was provided regarding the method of qualitatively processing interview results using the qualitative data analysis software tool NVivo, in order to produce a narrative of overarching themes. The observations and overarching themes identified could be used as a framework and success criteria of a VR application developed in future research. In conclusion, this work explained the methods deemed suitable for obtaining practitioner’s viewpoints through observation and interview. This was required in order to highlight characteristics and features of a VR application designed to treat lower limb musculoskeletal injury of athletes and could be built upon to direct future work.

Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality

Procedia PDF Downloads 262
17982 Speedup Breadth-First Search by Graph Ordering

Authors: Qiuyi Lyu, Bin Gong

Abstract:

Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Keywords: breadth-first search, BFS, graph ordering, graph algorithm

Procedia PDF Downloads 141
17981 Role of Water Supply in the Functioning of the MLDB Systems

Authors: Ramanpreet Kaur, Upasana Sharma

Abstract:

The purpose of this paper is to address the challenges faced by MLDB system at the piston foundry plant due to interruption in supply of water. For the MLDB system to work in Model, two sub-units must be connected to the robotic main unit. The system cannot function without robotics and water supply by the fan (WSF). Insufficient water supply is the cause of system failure. The system operates at top performance using two sub-units. If one sub-unit fails, the system capacity is reduced. Priority of repair is given to the main unit i.e. Robotic and WSF. To solve the problem, semi-Markov process and regenerative point technique are used. Relevant graphs are also included to particular case.

Keywords: MLDB system, robotic, semi-Markov process, regenerative point technique

Procedia PDF Downloads 82
17980 Rapid Formation of Ortho-Boronoimines and Derivatives for Reversible and Dynamic Bioconjugation Under Physiological Conditions

Authors: Nicholas C. Rose, Christopher D. Spicer

Abstract:

The regeneration of damaged or diseased tissues would provide an invaluable therapeutic tool in biological research and medicine. Cells must be provided with a number of different biochemical signals in order to form mature tissue through complex signaling networks that are difficult to recreate in synthetic materials. The ability to attach and detach bioactive proteins from material in an iterative and dynamic manner would therefore present a powerful way to mimic natural biochemical signaling cascades for tissue growth. We propose to reversibly attach these bioactive proteins using ortho-boronoimine (oBI) linkages and related derivatives formed by the reaction of an ortho-boronobenzaldehyde with a nucleophilic amine derivative. To enable the use of oBIs for biomaterial modification, we have studied binding and cleavage processes with precise detail in the context of small molecule models. A panel of oBI complexes has been synthesized and screened using a novel Förster resonance energy transfer (FRET) assay, using a cyanine dye FRET pair (Cy3 and Cy5), to identify the most reactive boron-aldehyde/amine nucleophile pairs. Upon conjugation of the dyes, FRET occurs under Cy3 excitation and the resultant ratio of Cy3:Cy5 emission directly correlates to conversion. Reaction kinetics and equilibria can be accurately quantified for reactive pairs, with dissociation constants of oBI derivatives in water (KD) found to span 9-orders of magnitude (10⁻²-10⁻¹¹ M). These studies have provided us with a better understanding of oBI linkages that we hope to exploit to reversibly attach bioconjugates to materials. The long-term aim of the project is to develop a modular biomaterial platform that can be used to help combat chronic diseases such as osteoarthritis, heart disease, and chronic wounds by providing cells with potent biological stimuli for tissue engineering.

Keywords: dynamic, bioconjugation, bornoimine, rapid, physiological

Procedia PDF Downloads 103
17979 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc

Procedia PDF Downloads 430
17978 Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue

Authors: M. Rezki, A. Belaidi

Abstract:

This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking.

Keywords: EMG, health platform, conductor’s tram, muscle fatigue

Procedia PDF Downloads 319
17977 A Theoretical Approach of Tesla Pump

Authors: Cristian Sirbu-Dragomir, Stefan-Mihai Sofian, Adrian Predescu

Abstract:

This paper aims to study Tesla pumps for circulating biofluids. It is desired to make a small pump for the circulation of biofluids. This type of pump will be studied because it has the following characteristics: It doesn’t have blades which results in very small frictions; Reduced friction forces; Low production cost; Increased adaptability to different types of fluids; Low cavitation (towards 0); Low shocks due to lack of blades; Rare maintenance due to low cavity; Very small turbulences in the fluid; It has a low number of changes in the direction of the fluid (compared to rotors with blades); Increased efficiency at low powers.; Fast acceleration; The need for a low torque; Lack of shocks in blades at sudden starts and stops. All these elements are necessary to be able to make a small pump that could be inserted into the thoracic cavity. The pump will be designed to combat myocardial infarction. Because the pump must be inserted in the thoracic cavity, elements such as Low friction forces, shocks as low as possible, low cavitation and as little maintenance as possible are very important. The operation should be performed once, without having to change the rotor after a certain time. Given the very small size of the pump, the blades of a classic rotor would be very thin and sudden starts and stops could cause considerable damage or require a very expensive material. At the same time, being a medical procedure, the low cost is important in order to be easily accessible to the population. The lack of turbulence or vortices caused by a classic rotor is again a key element because when it comes to blood circulation, the flow must be laminar and not turbulent. The turbulent flow can even cause a heart attack. Due to these aspects, Tesla's model could be ideal for this work. Usually, the pump is considered to reach an efficiency of 40% being used for very high powers. However, the author of this type of pump claimed that the maximum efficiency that the pump can achieve is 98%. The key element that could help to achieve this efficiency or one as close as possible is the fact that the pump will be used for low volumes and pressures. The key elements to obtain the best efficiency for this model are the number of rotors placed in parallel and the distance between them. The distance between them must be small, which helps to obtain a pump as small as possible. The principle of operation of such a rotor is to place in several parallel discs cut inside. Thus the space between the discs creates the vacuum effect by pulling the liquid through the holes in the rotor and throwing it outwards. Also, a very important element is the viscosity of the liquid. It dictates the distance between the disks to achieve a lossless power flow.

Keywords: lubrication, temperature, tesla-pump, viscosity

Procedia PDF Downloads 181
17976 Entrepreneur Competencies: An Exploratory Study Applied to Educational Social Enterprise in South East Asia

Authors: D. Songpol, K. Taweesak, T. Sookyuen

Abstract:

A social enterprise is an organization that operates commercial business as a source of income with the aim of addressing social and environmental issues. Though it is clear that this kind of organization will benefit society and environment but in practice, it is found that most of social enterprises’ goals cannot be achieved. The most success factors of social enterprises usually rely on individual characteristics of entrepreneurs, especially in educational business. This study aims to find out the magnitude of influence from the components of entrepreneur competencies to social enterprises in education. There are developmental models of research demonstrating that knowledge, skills and attributes affect the success of social enterprises in term of sustainability, social opportunities and innovation leadership. The 5-scale questionnaire was used to collect data from the social entrepreneurs in education who operates in the South East Asian region of 135 samples and then processed by the methods of structural equation models. The results show that the competency of entrepreneurs in attributes has the greatest impact on the success of social enterprises while the skills and knowledge have respectively impact on the social enterprises’ success as well. The reason why attributes of entrepreneurs have the greatest impact on social enterprise success is because, social enterprise is an organization that does not motivate or provide attractive financial incentives to the entrepreneur. Entrepreneurs, who succeed in developing their organizations, therefore need attribute factor higher than normal entrepreneurs, especially those in education sector that have somewhat few human resources to operate their businesses. More importantly, attribute’s traits such as entrepreneurial passion, self-efficacy, entrepreneurial identity and, innovativeness and perseverance will significantly affect the ideology and tolerance of the entrepreneurs once facing the problem in doing business. In conclusion, the education social enterprise would be successful depending on the performance of the entrepreneurs which derives from higher attributes competency.

Keywords: education, entrepreneur competencies, social enterprise, South East Asia

Procedia PDF Downloads 158
17975 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory

Procedia PDF Downloads 122
17974 Effect of MPPT and THD in Grid-Connected Photovoltaic System

Authors: Sajjad Yahaghifar

Abstract:

From the end of the last century, the importance and use of renewable energy sources have gained prominence, due not only by the fossil fuels dependence reduction, but mainly by environmental reasons related to climate change and the effects to the humanity. Consequently, solar energy has been arousing interest in several countries for being a technology considered clean, with reduced environmental impact. The output power of photo voltaic (PV) arrays is always changing with weather conditions,i.e., solar irradiation and atmospheric temperature. Therefore, maximum power point tracking (MPPT) control to extract maximum power from the PV arrays at real time becomes indispensable in PV generation system. This paper Study MPPT and total harmonic distortion (THD) in the city of Tabriz, Iran with the grid-connected PV system as distributed generation.

Keywords: MPPT, THD, grid-connected, PV system

Procedia PDF Downloads 399
17973 Effect of Discharge Pressure Conditions on Flow Characteristics in Axial Piston Pump

Authors: Jonghyuk Yoon, Jongil Yoon, Seong-Gyo Chung

Abstract:

In many kinds of industries which usually need a large amount of power, an axial piston pump has been widely used as a main power source of a hydraulic system. The axial piston pump is a type of positive displacement pump that has several pistons in a circular array within a cylinder block. As the cylinder block and pistons start to rotate, since the exposed ends of the pistons are constrained to follow the surface of the swashed plate, the pistons are driven to reciprocate axially and then a hydraulic power is produced. In the present study, a numerical simulation which has three dimensional full model of the axial piston pump was carried out using a commercial CFD code (Ansys CFX 14.5). In order to take into consideration motion of compression and extension by the reciprocating pistons, the moving boundary conditions were applied as a function of the rotation angle to that region. In addition, this pump using hydraulic oil as working fluid is intentionally designed as a small amount of oil leaks out in order to lubricate moving parts. Since leakage could directly affect the pump efficiency, evaluation of effect of oil-leakage is very important. In order to predict the effect of the oil leakage on the pump efficiency, we considered the leakage between piston-shoe and swash-plate by modeling cylindrical shaped-feature at the end of the cylinder. In order to validate the numerical method used in this study, the numerical results of the flow rate at the discharge port are compared with the experimental data, and good agreement between them was shown. Using the validated numerical method, the effect of the discharge pressure was also investigated. The result of the present study can be useful information of small axial piston pump used in many different manufacturing industries. Acknowledgement: This research was financially supported by the “Next-generation construction machinery component specialization complex development program” through the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT).

Keywords: axial piston pump, CFD, discharge pressure, hydraulic system, moving boundary condition, oil leaks

Procedia PDF Downloads 251
17972 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 303
17971 Identifying Game Variables from Students’ Surveys for Prototyping Games for Learning

Authors: N. Ismail, O. Thammajinda, U. Thongpanya

Abstract:

Games-based learning (GBL) has become increasingly important in teaching and learning. This paper explains the first two phases (analysis and design) of a GBL development project, ending up with a prototype design based on students’ and teachers’ perceptions. The two phases are part of a full cycle GBL project aiming to help secondary school students in Thailand in their study of Comprehensive Sex Education (CSE). In the course of the study, we invited 1,152 students to complete questionnaires and interviewed 12 secondary school teachers in focus groups. This paper found that GBL can serve students in their learning about CSE, enabling them to gain understanding of their sexuality, develop skills, including critical thinking skills and interact with others (peers, teachers, etc.) in a safe environment. The objectives of this paper are to outline the development of GBL variables from the research question(s) into the developers’ flow chart, to be responsive to the GBL beneficiaries’ preferences and expectations, and to help in answering the research questions. This paper details the steps applied to generate GBL variables that can feed into a game flow chart to develop a GBL prototype. In our approach, we detailed two models: (1) Game Elements Model (GEM) and (2) Game Object Model (GOM). There are three outcomes of this research – first, to achieve the objectives and benefits of GBL in learning, game design has to start with the research question(s) and the challenges to be resolved as research outcomes. Second, aligning the educational aims with engaging GBL end users (students) within the data collection phase to inform the game prototype with the game variables is essential to address the answer/solution to the research question(s). Third, for efficient GBL to bridge the gap between pedagogy and technology and in order to answer the research questions via technology (i.e. GBL) and to minimise the isolation between the pedagogists “P” and technologist “T”, several meetings and discussions need to take place within the team.

Keywords: games-based learning, engagement, pedagogy, preferences, prototype

Procedia PDF Downloads 171
17970 Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate

Authors: Salah Aguib, Noureddine Chikh, Abdelmalek Khabli, Abdelkader Nour, Toufik Djedid, Lallia Kobzili

Abstract:

This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering.

Keywords: hybrid smart sandwich plate, vibratory behavior, FEM, Ritz approach, MRE

Procedia PDF Downloads 70
17969 Quantifying Individual Performance of Pakistani Cricket Players

Authors: Kasif Khan, Azlan Allahwala, Moiz Ali, Hasan Lodhi, Umer Amjad

Abstract:

The number of runs scored by batsmen and wickets taken by bowlers serves as a natural way of quantifying the performance of a cricketer. Traditionally the batsmen and bowlers are rated on their batting or bowling average respectively. However, in a game like Cricket, it is not sufficient to evaluate performance on the basis of average. The biasness in selecting batsman and bowler on the basis of their past performance. The objective is to predict the best player and comparing their performance on the basis of venue, opponent, weather, and particular position. On the basis of predictions and analysis, and comparison the best team is selected for next upcoming series of Pakistan. The system is based and will be built to aid analyst in finding best possible team combination of Pakistan for a particular match and by providing them with advisories so that they can select the best possible team combination. This will also help the team management in identifying a perfect batting order and the bowling order for each match.

Keywords: data analysis, Pakistan cricket players, quantifying individual performance, cricket

Procedia PDF Downloads 300
17968 Project Progress Prediction in Software Devlopment Integrating Time Prediction Algorithms and Large Language Modeling

Authors: Dong Wu, Michael Grenn

Abstract:

Managing software projects effectively is crucial for meeting deadlines, ensuring quality, and managing resources well. Traditional methods often struggle with predicting project timelines accurately due to uncertain schedules and complex data. This study addresses these challenges by combining time prediction algorithms with Large Language Models (LLMs). It makes use of real-world software project data to construct and validate a model. The model takes detailed project progress data such as task completion dynamic, team Interaction and development metrics as its input and outputs predictions of project timelines. To evaluate the effectiveness of this model, a comprehensive methodology is employed, involving simulations and practical applications in a variety of real-world software project scenarios. This multifaceted evaluation strategy is designed to validate the model's significant role in enhancing forecast accuracy and elevating overall management efficiency, particularly in complex software project environments. The results indicate that the integration of time prediction algorithms with LLMs has the potential to optimize software project progress management. These quantitative results suggest the effectiveness of the method in practical applications. In conclusion, this study demonstrates that integrating time prediction algorithms with LLMs can significantly improve the predictive accuracy and efficiency of software project management. This offers an advanced project management tool for the industry, with the potential to improve operational efficiency, optimize resource allocation, and ensure timely project completion.

Keywords: software project management, time prediction algorithms, large language models (LLMS), forecast accuracy, project progress prediction

Procedia PDF Downloads 84
17967 Weak Instability in Direct Integration Methods for Structural Dynamics

Authors: Shuenn-Yih Chang, Chiu-Li Huang

Abstract:

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

Keywords: dynamic analysis, high frequency, integration method, overshoot, weak instability

Procedia PDF Downloads 227
17966 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 259