Search results for: gender specific data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31819

Search results for: gender specific data

26929 A Functional Analysis of a Political Leader in Terms of Marketing

Authors: Aşina Gülerarslan, M. Faik Özdengül

Abstract:

The new economic, social and political world order has led to the emergence of a wide range of persuasion strategies and practices based on an ever expanding marketing axis that involves organizations, ideas and persons as well as products and services. It is seen that since the 1990's, a wide variety of competitive marketing ideas have been offered systematically to target audiences in the field of politics as in other fields. When the components of marketing are taken into consideration, all kinds of communication efforts involving “political leaders”, who are conceptualized as products in terms of political marketing, serve a process of social persuasion, which cannot be restricted to election periods only, and a manageable “image”. In this context, image, which is concerned with how the political product is perceived, involves not only the political discourses shared with the public but also all kinds of biographical information about the leader, the leader’s specific way of living and routines and his/her attitudes and behaviors in their private lives, and all these are regarded as components of the “product image”. While on the one hand the leader’s verbal or supra-verbal references serve the way the “spirit of the product” is perceived –just as in brand positioning- they also show their self-esteem levels, in other words how they perceive themselves on the other hand. Indeed, their self-esteem levels are evaluated in three fundamental categories in the “Functional Analysis”, namely parent, child and adult, and it is revealed that the words, tone of voice and body language a person uses makes it easy to understand at what self-esteem level that person is. In this context, words, tone of voice and body language, which provide important clues as to the “self” of the person, are also an indication of how political leaders evaluate both “themselves” and “the mass/audience” in the communication they establish with their audiences. When the matter is taken from the perspective of Turkey, the levels of self-esteem in the relationships that the political leaders establish with the masses are also important in revealing how our society is seen from the perspective of a specific leader. Since the leader is a part of the marketing strategy of a political party as a product, this evaluation is significant in terms of the forms of relationships between political institutions in our country with the society. In this study, the self-esteem level in the documentary entitled “Master’s Story”, where Recep Tayyip Erdoğan’s life history is told, is analyzed in the context of words, tone of voice and body language. Within the scope of the study, at what level of self-esteem Recep Tayyip Erdoğan was in the “Master’s Story”, a documentary broadcast on Beyaz TV, was investigated using the content analysis method. First, based on the Functional Analysis Literature, a transactional approach scale was created regarding parent, adult and child self-esteem levels. On the basis of this scale, the prime minister’s self-esteem level was determined in three basic groups, namely “tone of voice”, “the words he used” and “body language”. Descriptive analyses were made to the data within the framework of these criteria and at what self-esteem level the prime minister spoke throughout the documentary was revealed.

Keywords: political marketing, leader image, level of self-esteem, transactional approach

Procedia PDF Downloads 342
26928 Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions

Authors: Djeffal Asma, Zemmouri Noureddine

Abstract:

In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects.

Keywords: life cycle assessment, buildings, sustainability, elementary schools, environmental impacts

Procedia PDF Downloads 552
26927 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 177
26926 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery

Authors: Jan-Peter Mund, Christian Kind

Abstract:

In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.

Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data

Procedia PDF Downloads 94
26925 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling

Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal

Abstract:

It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.

Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability

Procedia PDF Downloads 301
26924 Thermal Proprieties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical, and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit high tensile strength values compared to the other residue. On the other hand, the low value of the bulk density of Petiole and Fibrillium leads to a high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 299
26923 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago

Authors: Tyler Gill, Sophia Daniels

Abstract:

The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.

Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis

Procedia PDF Downloads 249
26922 Active Learning in Engineering Courses Using Excel Spreadsheet

Authors: Promothes Saha

Abstract:

Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.

Keywords: civil, engineering, active learning, transportation

Procedia PDF Downloads 140
26921 Understanding Cruise Passengers’ On-board Experience throughout the Customer Decision Journey

Authors: Sabina Akter, Osiris Valdez Banda, Pentti Kujala, Jani Romanoff

Abstract:

This paper examines the relationship between on-board environmental factors and customer overall satisfaction in the context of the cruise on-board experience. The on-board environmental factors considered are ambient, layout/design, social, product/service and on-board enjoyment factors. The study presents a data-driven framework and model for the on-board cruise experience. The data are collected from 893 respondents in an application of a self-administered online questionnaire of their cruise experience. This study reveals the cruise passengers’ on-board experience through the customer decision journey based on the publicly available data. Pearson correlation and regression analysis have been applied, and the results show a positive and a significant relationship between the environmental factors and on-board experience. These data help understand the cruise passengers’ on-board experience, which will be used for the ultimate decision-making process in cruise ship design.

Keywords: cruise behavior, customer activities, on-board environmental factors, on-board experience, user or customer satisfaction

Procedia PDF Downloads 173
26920 Holistic Risk Assessment Based on Continuous Data from the User’s Behavior and Environment

Authors: Cinzia Carrodano, Dimitri Konstantas

Abstract:

Risk is part of our lives. In today’s society risk is connected to our safety and safety has become a major priority in our life. Each person lives his/her life based on the evaluation of the risk he/she is ready to accept and sustain, and the level of safety he/she wishes to reach, based on highly personal criteria. The assessment of risk a person takes in a complex environment and the impact of actions of other people’actions and events on our perception of risk are alements to be considered. The concept of Holistic Risk Assessment (HRA) aims in developing a methodology and a model that will allow us to take into account elements outside the direct influence of the individual, and provide a personalized risk assessment. The concept is based on the fact that in the near future, we will be able to gather and process extremely large amounts of data about an individual and his/her environment in real time. The interaction and correlation of these data is the key element of the holistic risk assessment. In this paper, we present the HRA concept and describe the most important elements and considerations.

Keywords: continuous data, dynamic risk, holistic risk assessment, risk concept

Procedia PDF Downloads 131
26919 Integrated Performance Management System a Conceptual Design for PT. XYZ

Authors: Henrie Yunianto, Dermawan Wibisono

Abstract:

PT. XYZ is a family business (private company) in Indonesia that provide an educational program and consultation services. Since its establishment in 2011, the company has run without any strategic management system implemented. Though the company could survive until now. The management of PT. XYZ sees the business opportunity for such product is huge, even though the targeted market is very specific (niche), the volume is large (due to large population of Indonesia) and numbers of competitors are low (now). It can be said if the product life cycle is in between ‘Introduction stage’ and ‘growth’ stage. It is observed that nowadays the new entrants (competitors) are increasing, thus PT. XYZ consider reacting in facing the intense business rivalry by conducting the business in an appropriate manner. A Performance Management System is important to be implemented in accordance with the business sustainability and growth. The framework of Performance Management System chosen is Integrated Performance Management System (IPMS). IPMS framework has the advantages of its simplicity, linkage between its business variables and indicators where the company can see the connections between all factors measured. IPMS framework consists of perspectives: (1) Business Result, (2) Internal Processes, (3) Resource Availability. Variables and indicators were examined through deep analysis of the business external and internal environments, Strength-Weakness-Opportunity-Threat (SWOT) analysis, Porter’s five forces analysis. Analytical Hierarchy Process (AHP) analysis was then used to quantify the weight of each variable/indicators. AHP is needed since in this study, PT. XYZ, the data of existing performance indicator was not available. Later, where the IPMS is implemented, the real data measured can be examined to determine the weight factor of each indicators using correlation analysis (or other methods). In this study of IPMS design for PT. XYZ, the analysis shows that with current company goals, along with the AHP methodology, the critical indicators for each perspective are: (1) Business results: Customer satisfaction and Employee satisfaction, (2) Internal process: Marketing performance, Supplier quality, Production quality, Continues improvement; (3) Resources Availability: Leadership and company culture & value, Personal Competences, Productivity. Company and/or organization require performance management system to help them in achieving their vision and mission. Company strategy will be effectively defined and addressed by using performance management system. Integrated Performance Management System (IPMS) framework and AHP analysis help us in quantifying the factors which influence the business output expected.

Keywords: analytical hierarchy process, business strategy, differentiation strategy, integrated performance management system

Procedia PDF Downloads 311
26918 Unlocking Retention: Nurturing Ownership and Shared Values to Overcome Work-Family Conflict Among Chinese Social Workers

Authors: Zurong Liang

Abstract:

Chinese social work has experienced a sharp rise in staff turnover. Work-family conflict is a key risk factor for employees’ turnover intention. While the relationship between work-family conflict and turnover intention has been widely documented, little is known about its mediating and moderating mechanisms, especially among social workers in China. This study explored the mediating role of job-based and collective psychological ownership and the moderating role of person-organization value congruence. The study drew on data from the China Social Work Longitudinal Study 2019, a nationally representative sample of 1,421 Chinese social workers (79.73% female; mean age = 28.9 years old). We performed a moderated mediation analysis combining a simple slope test and the Johnson-Neyman technique. Both job-based psychological ownership and collective psychological ownership were found to mediate the association between work-family conflict and turnover intention. Person-organization value congruence moderated the indirect relationship between work-family conflict and turnover intention via collective psychological ownership. This study enhances understanding of the impact of the psychological mechanisms of work-family conflict on Chinese social workers’ turnover intention. Specific strategies should be adopted to establish a work environment that supports psychological ownership, enhances social workers’ identification with and attachment to their organizations, and thus reduces their turnover intention.

Keywords: turnover, work-family conflict, ownership, social worker, China

Procedia PDF Downloads 65
26917 Bank Competition: On the Relationship with Revenue Diversification and Funding Strategy from Selected ASEAN Countries

Authors: Oktofa Y. Sudrajad, Didier V. Caillie

Abstract:

Association of Southeast Asian Countries Nations (ASEAN) is moving forward to the next level of regional integration by the initiation of ASEAN Economic Community (AEC) which is already started in 2015, 8 years after its declaration for the creation of AEC in 2007. This commitment imposes financial integration in the region is one of the main agenda which will be achieved until 2025. Therefore, the commitment to financial integration including banking integration will bring new landscape in the competition and business model in this region. This study investigates the effect of competition on bank business model using a sample of 324 banks from seven members of Association of Southeast Asian Nations (ASEAN) countries (Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). We use market power approach and Boone indicator as competition measures, while income diversification and bank funding strategies are employed as bank business model representation. Moreover, we also evaluate bank business model based by grouping the banks based on the main banking characteristics. We use unbalanced bank-specific annual panel data over the period of 2003 – 2015. Our empirical analysis shows that the banking industries in ASEAN countries adapt their business model by increasing non-interest income proportion due to the level of competition increase in the sector.

Keywords: bank business model, banking competition, Boone indicator, market power

Procedia PDF Downloads 231
26916 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance

Authors: Abdullah Al Farwan, Ya Zhang

Abstract:

In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.

Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance

Procedia PDF Downloads 171
26915 The Impact of the Cross Race Effect on Eyewitness Identification

Authors: Leah Wilck

Abstract:

Eyewitness identification is arguably one of the most utilized practices within our legal system; however, exoneration cases indicate that this practice may lead to accuracy and conviction errors. The purpose of this study was to examine the effects of the cross-race effect, the phenomena in which people are able to more easily and accurately identify faces from within their racial category, on the accuracy of eyewitness identification. Participants watched three separate videos of a perpetrator trying to steal a bicycle. In each video, the perpetrator was of a different race and gender. Participants watched a video where the perpetrator was a Black male, a White male, and a White female. Following the completion of watching each video, participants were asked to recall everything they could about the perpetrator they witnessed. The initial results of the study did not find the expected cross-race effect impacted the eyewitness identification accuracy. These surprising results are discussed in terms of cross-race bias and recognition theory as well as applied implications.

Keywords: cross race effect, eyewitness identification, own-race bias, racial profiling

Procedia PDF Downloads 166
26914 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases

Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou

Abstract:

A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.

Keywords: ontologies, relational databases, SPARQL, web interface

Procedia PDF Downloads 275
26913 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 74
26912 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 45
26911 Community-Based Palliative Care for Patients with Cerebral Palsy and Developmental Disabilities

Authors: Elizabeth Grier, Meg Gemmill, Mary Martin, Leora Reiter, Herman Tang, Alexandra Donaldson, Isis Lunsky, Mia Wu

Abstract:

Background: Individuals with Cerebral Palsy (CP) and/or IDD face numerous physical and mental health challenges, including difficulty accessing effective palliative care. The aim of this study is to assess the knowledge and comfort of healthcare providers in providing community-based palliative care for patients with Cerebral Palsy (CP) and severe to profound Intellectual and Developmental Disabilities (IDD). Methods: This study includes a mixed methods approach obtaining both quantitative and qualitative data. Quantitative data from palliative care practitioners was obtained through an online survey assessing comfort in symptom management, grief assessment, and goals of care discussion. This survey was distributed to physicians and allied health practitioners across Canada through the College of Family Physicians of Canada Member Interest Groups for Palliative Care and for IDD. Survey results guided the development of a semi-structured interview template, which was used to conduct a focus group on the same topic. Participants were four palliative care providers (3 physicians and one spiritual care practitioner). The focus group transcript is currently undergoing thematic analysis using NVivo 12 software. Results: 57 palliative care practitioners completed the survey. 87% of participants indicated they have provided palliative care services for persons with CP and/or IDD. Findings suggest practitioners are somewhat confident in identifying specific physical symptoms (dyspnea, pressure ulcers) but less confident in identifying physical/emotional pain, addressing grief, and prognosticating life expectancy in this population. 54% of responses indicated they had little/no training on palliating those with CP or IDD, and 45% somewhat or strongly disagree members of their profession can manage symptoms for this population. Focus group analysis is underway, and results will be available at the time of the poster presentation. Conclusion: Persons with CP and IDD are more likely to experience severe health inequities when accessing palliative care. Results of this study suggest further education is needed for palliative care professionals to address the barriers and challenges in providing palliative care to this patient population.

Keywords: palliative care, symptom management, health equity, community healthcare, intellectual and developmental disabilities

Procedia PDF Downloads 149
26910 Investing the Employees Higher Quitting Intention at the Call Centers of Pakistan: A Reality or a Myth: A Case Study of Pakistan Telecommunication Sector

Authors: Naheed Malik, Marisa Smith

Abstract:

This study has been undertaken as an attempt to explore the underlying reasons that cause higher employee turnover rates at the call centers of Pakistan. This research also aimed to examine the relationship among the job related variables such as job satisfaction, organizational commitment, supervisor support, self-esteem, organizational stressors (work overload, role ambiguity and work family conflict) and quitting inclination. A total of 340 call centers respondents filled the survey questionnaire. The data was analyzed through SPSS 19.0. Results reveal the significant relationship among the study variables and stress level contributing more towards employee penchant to leave the job. A significant amount of call centers employee have proclivity to quit from their jobs as soon as they would be able to find some other jobs with attractive compensation. The majority of the respondents were found to be unhappy and dissatisfied due to hectic schedule and imbalance between family and work. This research also highlighted the specific areas in which call centre management needs to emphasize deliberately that affect more sharply on employee leaving aptitude. This study also suggests some useful strategies for the well being of employees that can minimize their tendency of quitting and retention in the long run.

Keywords: call centers, stress, job satisfaction, organizational commitment, supervisor’s support, self esteem, employee turnover, employees’ intention to quit, customer service representative (CSRs)

Procedia PDF Downloads 284
26909 Analyzing the Relationship between the Spatial Characteristics of Cultural Structure, Activities, and the Tourism Demand

Authors: Deniz Karagöz

Abstract:

This study is attempt to comprehend the relationship between the spatial characteristics of cultural structure, activities and the tourism demand in Turkey. The analysis divided into four parts. The first part consisted of a cultural structure and cultural activity (CSCA) index provided by principal component analysis. The analysis determined four distinct dimensions, namely, cultural activity/structure, accessing culture, consumption, and cultural management. The exploratory spatial data analysis employed to determine the spatial models of cultural structure and cultural activities in 81 provinces in Turkey. Global Moran I indices is used to ascertain the cultural activities and the structural clusters. Finally, the relationship between the cultural activities/cultural structure and tourism demand was analyzed. The raw/original data of the study official databases. The data on the cultural structure and activities gathered from the Turkish Statistical Institute and the data related to the tourism demand was provided by the Republic of Turkey Ministry of Culture and Tourism.

Keywords: cultural activities, cultural structure, spatial characteristics, tourism demand, Turkey

Procedia PDF Downloads 565
26908 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts

Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman

Abstract:

Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.

Keywords: artificial intelligence, blockchain, data integrity, smart contracts

Procedia PDF Downloads 65
26907 Comparison of Nutritional Status of Asthmatic vs Non-asthmatic Adults

Authors: Ayesha Mushtaq

Abstract:

Asthma is a pulmonary disease in which blockade of the airway takes place due to inflammation as a response to certain allergens. Breathing troubles, cough, and dyspnea are one of the few symptoms. Several studies have indicated a significant effect on asthma due to changes in dietary routines. Certain food items, such as oily foods and other materials, are known to cause an increase in the symptoms of asthma. Low dietary intake of fruits and vegetables may be important in relation to asthma prevalence. The objective of this study is to assess and compare the nutritional status of asthmatic and non-asthmatic patients. The significance of this study lies in the factor that it will help nutritionists to arrange a feasible dietary routine for asthmatic patients. This research was conducted at the Pulmonology Department of the Pakistan Institute of Medical Science Islamabad. About thirty hundred thirty-four million people are affected by asthma worldwide. Pakistan is on the verge of being an uplifted urban population and asthma cases are increasingly high these days. Several studies suggest an increase in the Asthmatic patient population due to improper diet. Other studies conducted at different institutions have conducted research on similar topics. These studies have suggested that there is a substantial alteration in the nutritional status of asthmatic and non-Asthmatic patients. This is a cross-sectional study aimed at assessing the nutritious standing of Asthmatic and non-asthmatic patients. This research took place at the Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan. The research included asthmatic and non-asthmatic patients coming to the pulmonology department clinic at the Pakistan Institute of Medical Sciences (PIMS). These patients were aged between 20-60 years. A questionnaire was developed for these patients to estimate their dietary plans in these patients. The methodology included four sections. The first section was the Socio-Demographic profile, which included age, gender, monthly income and occupation. The next section was anthropometric measurements which included the weight, height and body mass index (BMI) of the individual. The next section, section three, was about the biochemical attributes, such as for biochemical profiling, pulmonary function testing (PFT) was performed. In the next section, Dietary habits, which were assessed by using a food frequency questionnaire (FFQ) through food habits and consumption pattern, was assessed. The next section life style data, in which the person's level of physical activity, sleep and smoking habits were assessed. The next section was statistical analysis. All the data obtained from the study were statistically analyzed and assessed. Most of the asthma Patients were females, with weight more than normal or even obese. Body Mass Index (BMI) was higher in asthma Patients than those in non-Asthmatic ones. When the nutritional Values were assessed, we came to know that these patients were low on certain nutrients and their diet included more junk and oily food than healthy vegetables and fruits. Beverages intake was also included in the same assessment. It is evident from this study that nutritional status has a contributory effect on asthma. So, patients on the verge of developing asthma or those who have developed asthma should focus on their diet, maintain good eating habits and take healthy diets, including fruits and vegetables rather than oily foods. Proper sleep may also contribute to the control of asthma.

Keywords: NUTRI, BMI, asthma, food

Procedia PDF Downloads 76
26906 Time-Series Load Data Analysis for User Power Profiling

Authors: Mahdi Daghmhehci Firoozjaei, Minchang Kim, Dima Alhadidi

Abstract:

In this paper, we present a power profiling model for smart grid consumers based on real time load data acquired smart meters. It profiles consumers’ power consumption behaviour using the dynamic time warping (DTW) clustering algorithm. Due to the invariability of signal warping of this algorithm, time-disordered load data can be profiled and consumption features be extracted. Two load types are defined and the related load patterns are extracted for classifying consumption behaviour by DTW. The classification methodology is discussed in detail. To evaluate the performance of the method, we analyze the time-series load data measured by a smart meter in a real case. The results verify the effectiveness of the proposed profiling method with 90.91% true positive rate for load type clustering in the best case.

Keywords: power profiling, user privacy, dynamic time warping, smart grid

Procedia PDF Downloads 160
26905 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle

Authors: Ryan Messina, Mehedi Hasan

Abstract:

This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.

Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking

Procedia PDF Downloads 212
26904 Wreathed Hornbill (Rhyticeros undulatus) on Mount Ungaran: Are their Habitat Threatened?

Authors: Margareta Rahayuningsih, Nugroho Edi K., Siti Alimah

Abstract:

Wreathed Hornbill (Rhyticeros undulatus) is the one of hornbill species (Family: Bucerotidae) that found on Mount Ungaran. In the preservation or planning in situ conservation of Wreathed Hornbill require the habitat condition data. The objective of the research was to determine the land cover change on Mount Ungaran using satellite image data and GIS. Based on the land cover data on 1999-2009 the research showed that the primer forest on Mount Ungaran was decreased almost 50%, while the seconder forest, tea and coffee plantation, and the settlement were increased.

Keywords: GIS, Mount Ungaran, threatened habitat, Wreathed Hornbill (Rhyticeros undulatus)

Procedia PDF Downloads 364
26903 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: classification, data mining, spam filtering, naive bayes, decision tree

Procedia PDF Downloads 416
26902 Mapping of Electrical Energy Consumption Yogyakarta Province in 2014-2025

Authors: Alfi Al Fahreizy

Abstract:

Yogyakarta is one of the provinces in Indonesia that often get a power outage because of high load electrical consumption. The authors mapped the electrical energy consumption [GWh] for the province of Yogyakarta in 2014-2025 using LEAP (Long-range Energy Alternatives Planning system) software. This paper use BAU (Business As Usual) scenario. BAU scenario in which the projection is based on the assumption that growth in electricity consumption will run as normally as before. The goal is to be able to see the electrical energy consumption in the household sector, industry , business, social, government office building, and street lighting. The data is the data projected statistical population and consumption data electricity [GWh] 2010, 2011, 2012 in Yogyakarta province.

Keywords: LEAP, energy consumption, Yogyakarta, BAU

Procedia PDF Downloads 601
26901 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 280
26900 Music Training as an Innovative Approach to the Treatment of Language Disabilities

Authors: Jonathan Bolduc

Abstract:

Studies have demonstrated the effectiveness of music training approaches to help children with language disabilities. Because music is closely associated with a number of cognitive functions, including language, it has been hypothesized that musical skills transfer to other domains. Research suggests that music training strengthens basic auditory processing skills in dyslexic children and may ameliorate phonological deficits. Furthermore, music instruction has the particular advantage of being non-literacy-based, thus removing the frustrations that can be associated with reading and writing activities among children with specific learning disabilities. In this study, we assessed the effect of implementing an intensive music program on the development of language skills (phonological and reading) in 4- to 9-year-old children. Seventeen children (N=17) participated in the study. The experiment took place over 6 weeks in a controlled environment. Eighteen lessons of 40 minutes were offered during this period by two music specialists. The Dalcroze, Orff, and Kodaly approaches were used. A series of qualitative measures were implemented to document the contribution of music training to this population. Currently, the data is being analyzed. The first results show that learning music seems to significantly improve verbal memory. We already know that language disabilities are considered one of the main causes of school dropout as well as later professional and social failure. We aim to corroborate that an integrated music education program can provide children with language disabilities with the same opportunities to develop and succeed in school as their classmates. Scientifically, the results will contribute to advance the knowledge by identifying the more effective music education strategies to improve the overall development of children worldwide.

Keywords: music education, music, art education, language diasabilities

Procedia PDF Downloads 238