Search results for: conventional therapy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5297

Search results for: conventional therapy

407 Disaggregating Communities and the Making of Factional States: Evidence from Joint Forest Management in Sundarban, India

Authors: Amrita Sen

Abstract:

In the face of a growing insurgent movement and the perceived failure of the state and the market towards sustainable resource management, a range of decentralized forest management policies was formulated in the last two decades, which recognized the need for community representations within the statutory methods of forest management. The recognition conceded on the virtues of ecological sustainability and traditional environmental knowledge, which were considered to be the principal repositories of the forest dependent communities. The present study, in the light of empirical insights, reflects on the contemporary disjunctions between the preconceived communitarian ethic in environmentalism and the lived reality of forest based life-worlds. Many of the popular as well as dominant ideologies, which have historically shaped the conceptual and theoretical understanding of sociology, needs further perusal in the context of the emerging contours of empirical knowledge, which lends opportunities for substantive reworking and analysis. The image of the community appears to be one of those concepts, an identity which has for long defined perspectives and processes associated with people living together harmoniously in small physical spaces. Through an ethnographic account of the implementation of Joint Forest Management (JFM) in a forest fringe village in Sundarban, the study explores the ways in which the idea of ‘community’ gets transformed through the process of state-making, rendering the necessity of its departure from the standard, conventional definition of homogeneity and internal equity. The study necessitates an attention towards the anthropology of micro-politics, disaggregating an essentially constructivist anthropology of ‘collective identities’, which can render the visibility of political mobilizations plausible within the seemingly culturalist production of communities. The two critical questions that the paper seeks to ask in this context are: how the ‘local’ is constituted within community based conservation practices? Within the efforts of collaborative forest management, how accurately does the depiction of ‘indigenous environmental knowledge’, subscribe to its role of sustainable conservation practices? Reflecting on the execution of JFM in Sundarban, the study critically explores the ways in which the state ceases to be ‘trans-national’ and interacts with the rural life-worlds through its local factions. Simultaneously, the study attempts to articulate the scope of constructing a competing representation of community, shaped by increasing political negotiations and bureaucratic alignments which strains against the usual preoccupations with tradition primordiality and non material culture as well as the amorous construction of indigeneity.

Keywords: community, environmentalism, JFM, state-making, identities, indigenous

Procedia PDF Downloads 181
406 CD97 and Its Role in Glioblastoma Stem Cell Self-Renewal

Authors: Niklas Ravn-Boess, Nainita Bhowmick, Takamitsu Hattori, Shohei Koide, Christopher Park, Dimitris Placantonakis

Abstract:

Background: Glioblastoma (GBM) is the most common and deadly primary brain malignancy in adults. Tumor propagation, brain invasion, and resistance to therapy critically depend on GBM stem-like cells (GSCs); however, the mechanisms that regulate GSC self-renewal are incompletely understood. Given the aggressiveness and poor prognosis of GBM, it is imperative to find biomarkers that could also translate into novel drug targets. Along these lines, we have identified a cell surface antigen, CD97 (ADGRE5), an adhesion G protein-coupled receptor (GPCR), that is expressed on GBM cells but is absent from non-neoplastic brain tissue. CD97 has been shown to promote invasiveness, angiogenesis, and migration in several human cancers, but its frequency of expression and functional role in regulating GBM growth and survival, and its potential as a therapeutic target has not been investigated. Design: We assessed CD97 mRNA and protein expression in patient derived GBM samples and cell lines using publicly available RNA-sequencing datasets and flow cytometry, respectively. To assess CD97 function, we generated shRNA lentiviral constructs that target a sequence in the CD97 extracellular domain (ECD). A scrambled shRNA (scr) with no predicted targets in the genome was used as a control. We evaluated CD97 shRNA lentivirally transduced GBM cells for Ki67, Annexin V, and DAPI. We also tested CD97 KD cells for their ability to self-renew using clonogenic tumorsphere formation assays. Further, we utilized synthetic Abs (sAbs) generated against the ECD of CD97 to test for potential antitumor effects using patient-derived GBM cell lines. Results: CD97 mRNA expression was expressed at high levels in all GBM samples available in the TCGA cohort. We found high levels of surface CD97 protein expression in 6/6 patient-derived GBM cell cultures, but not human neural stem cells. Flow cytometry confirmed downregulation of CD97 in CD97 shRNA lentivirally transduced cells. CD97 KD induced a significant reduction in cell growth in 3 independent GBM cell lines representing mesenchymal and proneural subtypes, which was accompanied by reduced (~20%) Ki67 staining and increased (~30%) apoptosis. Incubation of GBM cells with sAbs (20 ug/ ml) against the ECD of CD97 for 3 days induced GSC differentiation, as determined by the expression of GFAP and Tubulin. Using three unique GBM patient derived cultures, we found that CD97 KD attenuated the ability of GBM cells to initiate sphere formation by over 300 fold, consistent with an impairment in GSC self-renewal. Conclusion: Loss of CD97 expression in patient-derived GBM cells markedly decreases proliferation, induces cell death, and reduces tumorsphere formation. sAbs against the ECD of CD97 reduce tumorsphere formation, recapitulating the phenotype of CD97 KD, suggesting that sAbs that inhibit CD97 function exhibit anti-tumor activity. Collectively, these findings indicate that CD97 is necessary for the proliferation and survival of human GBM cells and identify CD97 as a promising therapeutically targetable vulnerability in GBM.

Keywords: adhesion GPCR, CD97, GBM stem cell, glioblastoma

Procedia PDF Downloads 113
405 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 277
404 The Effectiveness of Multiphase Flow in Well- Control Operations

Authors: Ahmed Borg, Elsa Aristodemou, Attia Attia

Abstract:

Well control involves managing the circulating drilling fluid within the wells and avoiding kicks and blowouts as these can lead to losses in human life and drilling facilities. Current practices for good control incorporate predictions of pressure losses through computational models. Developing a realistic hydraulic model for a good control problem is a very complicated process due to the existence of a complex multiphase region, which usually contains a non-Newtonian drilling fluid and the miscibility of formation gas in drilling fluid. The current approaches assume an inaccurate flow fluid model within the well, which leads to incorrect pressure loss calculations. To overcome this problem, researchers have been considering the more complex two-phase fluid flow models. However, even these more sophisticated two-phase models are unsuitable for applications where pressure dynamics are important, such as in managed pressure drilling. This study aims to develop and implement new fluid flow models that take into consideration the miscibility of fluids as well as their non-Newtonian properties for enabling realistic kick treatment. furthermore, a corresponding numerical solution method is built with an enriched data bank. The research work considers and implements models that take into consideration the effect of two phases in kick treatment for well control in conventional drilling. In this work, a corresponding numerical solution method is built with an enriched data bank. Software STARCCM+ for the computational studies to study the important parameters to describe wellbore multiphase flow, the mass flow rate, volumetric fraction, and velocity of each phase. Results showed that based on the analysis of these simulation studies, a coarser full-scale model of the wellbore, including chemical modeling established. The focus of the investigations was put on the near drill bit section. This inflow area shows certain characteristics that are dominated by the inflow conditions of the gas as well as by the configuration of the mud stream entering the annulus. Without considering the gas solubility effect, the bottom hole pressure could be underestimated by 4.2%, while the bottom hole temperature is overestimated by 3.2%. and without considering the heat transfer effect, the bottom hole pressure could be overestimated by 11.4% under steady flow conditions. Besides, larger reservoir pressure leads to a larger gas fraction in the wellbore. However, reservoir pressure has a minor effect on the steady wellbore temperature. Also as choke pressure increases, less gas will exist in the annulus in the form of free gas.

Keywords: multiphase flow, well- control, STARCCM+, petroleum engineering and gas technology, computational fluid dynamic

Procedia PDF Downloads 100
403 Co-pyrolysis of Sludge and Kaolin/Zeolite to Stabilize Heavy Metals

Authors: Qian Li, Zhaoping Zhong

Abstract:

Sewage sludge, a typical solid waste, has inevitably been produced in enormous quantities in China. Still worse, the amount of sewage sludge produced has been increasing due to rapid economic development and urbanization. Compared to the conventional method to treat sewage sludge, pyrolysis has been considered an economic and ecological technology because it can significantly reduce the sludge volume, completely kill pathogens, and produce valuable solid, gas, and liquid products. However, the large-scale utilization of sludge biochar has been limited due to the considerable risk posed by heavy metals in the sludge. Heavy metals enriched in pyrolytic biochar could be divided into exchangeable, reducible, oxidizable, and residual forms. The residual form of heavy metals is the most stable and cannot be used by organisms. Kaolin and zeolite are environmentally friendly inorganic minerals with a high surface area and heat resistance characteristics. So, they exhibit the enormous potential to immobilize heavy metals. In order to reduce the risk of leaching heavy metals in the pyrolysis biochar, this study pyrolyzed sewage sludge mixed with kaolin/zeolite in a small rotary kiln. The influences of additives and pyrolysis temperature on the leaching concentration and morphological transformation of heavy metals in pyrolysis biochar were investigated. The potential mechanism of stabilizing heavy metals in the co-pyrolysis of sludge blended with kaolin/zeolite was explained by scanning electron microscopy, X-ray diffraction, and specific surface area and porosity analysis. The European Community Bureau of Reference sequential extraction procedure has been applied to analyze the forms of heavy metals in sludge and pyrolysis biochar. All the concentrations of heavy metals were examined by flame atomic absorption spectrophotometry. Compared with the proportions of heavy metals associated with the F4 fraction in pyrolytic carbon prepared without additional agents, those in carbon obtained by co-pyrolysis of sludge and kaolin/zeolite increased. Increasing the additive dosage could improve the proportions of the stable fraction of various heavy metals in biochar. Kaolin exhibited a better effect on stabilizing heavy metals than zeolite. Aluminosilicate additives with excellent adsorption performance could capture more released heavy metals during sludge pyrolysis. Then heavy metal ions would react with the oxygen ions of additives to form silicate and aluminate, causing the conversion of heavy metals from unstable fractions (sulfate, chloride, etc.) to stable fractions (silicate, aluminate, etc.). This study reveals that the efficiency of stabilizing heavy metals depends on the formation of stable mineral compounds containing heavy metals in pyrolysis biochar.

Keywords: co-pyrolysis, heavy metals, immobilization mechanism, sewage sludge

Procedia PDF Downloads 55
402 Specific Earthquake Ground Motion Levels That Would Affect Medium-To-High Rise Buildings

Authors: Rhommel Grutas, Ishmael Narag, Harley Lacbawan

Abstract:

Construction of high-rise buildings is a means to address the increasing population in Metro Manila, Philippines. The existence of the Valley Fault System within the metropolis and other nearby active faults poses threats to a densely populated city. The distant, shallow and large magnitude earthquakes have the potential to generate slow and long-period vibrations that would affect medium-to-high rise buildings. Heavy damage and building collapse are consequences of prolonged shaking of the structure. If the ground and the building have almost the same period, there would be a resonance effect which would cause the prolonged shaking of the building. Microzoning the long-period ground response would aid in the seismic design of medium to high-rise structures. The shear-wave velocity structure of the subsurface is an important parameter in order to evaluate ground response. Borehole drilling is one of the conventional methods of determining shear-wave velocity structure however, it is an expensive approach. As an alternative geophysical exploration, microtremor array measurements can be used to infer the structure of the subsurface. Microtremor array measurement system was used to survey fifty sites around Metro Manila including some municipalities of Rizal and Cavite. Measurements were carried out during the day under good weather conditions. The team was composed of six persons for the deployment and simultaneous recording of the microtremor array sensors. The instruments were laid down on the ground away from sewage systems and leveled using the adjustment legs and bubble level. A total of four sensors were deployed for each site, three at the vertices of an equilateral triangle with one sensor at the centre. The circular arrays were set up with a maximum side length of approximately four kilometers and the shortest side length for the smallest array is approximately at 700 meters. Each recording lasted twenty to sixty minutes. From the recorded data, f-k analysis was applied to obtain phase velocity curves. Inversion technique is applied to construct the shear-wave velocity structure. This project provided a microzonation map of the metropolis and a profile showing the long-period response of the deep sedimentary basin underlying Metro Manila which would be suitable for local administrators in their land use planning and earthquake resistant design of medium to high-rise buildings.

Keywords: earthquake, ground motion, microtremor, seismic microzonation

Procedia PDF Downloads 454
401 Preparation and Characterization of Anti-Acne Dermal Products Based on Erythromycin β-Cyclodextrin Lactide Complex

Authors: Lacramioara Ochiuz, Manuela Hortolomei, Aurelia Vasile, Iulian Stoleriu, Marcel Popa, Cristian Peptu

Abstract:

Local antibiotherapy is one of the most effective acne therapies. Erythromycin (ER) is a macrolide antibiotic topically administered for over 30 years in the form of gel, ointment or hydroalcoholic solution for the acne therapy. The use of ER as a base for topical dosage forms raises some technological challenges due to the physicochemical properties of this substance. The main disadvantage of ER is the poor water solubility (2 mg/mL) that limits both formulation using hydrophilic bases and skin permeability. Cyclodextrins (CDs) are biocompatible cyclic oligomers of glucose, with hydrophobic core and hydrophilic exterior. CDs are used to improve the bioavailability of drugs by increasing their solubility and/or their rate of dissolution after including the poorly water soluble substances (such as ER) in the hydrophobic cavity of CDs. Adding CDs leads to the increase of solubility and improved stability of the drug substance, increased permeability of substances of low water solubility, decreased toxicity and even to active dose reduction as a result of increased bioavailability. CDs increase skin tolerability by reducing the irritant effect of certain substances. We have included ER to lactide modified β-cyclodextrin, in order to improve the therapeutic effect of topically administered ER. The aims of the present study were to synthesise and describe a new complex with prolonged release of ER with lactide modified β-cyclodextrin (CD-LA_E), to investigate the CD-LA_E complex by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), to analyse the effect of semisolid base on the in vitro and ex vivo release characteristics of ER in the CD-LA_E complex by assessing the permeability coefficient and the release kinetics by fitting on mathematical models. SEM showed that, by complexation, ER changes its crystal structure and enters the amorphous phase. FTIR analysis has shown that certain specific bands of some groups in the ER structure move during the incapsulation process. The structure of the CD-LA_E complex has a molar ratio of 2.12 to 1 between lactide modified β-cyclodextrin and ER. The three semisolid bases (2% Carbopol, 13% Lutrol 127 and organogel based on Lutrol and isopropyl myristate) show a good capacity for incorporating the CD-LA_E complex, having a content of active ingredient ranging from 98.3% to 101.5% as compared to the declared value of 2% ER. The results of the in vitro dissolution test showed that the ER solubility was significantly increased by CDs incapsulation. The amount of ER released from the CD-LA_E gels was in the range of 76.23% to 89.01%, whereas gels based on ER released a maximum percentage of 26.01% ER. The ex vivo dissolution test confirms the increased ER solubility achieved by complexation, and supports the assumption that the use of this process might increase ER permeability. The highest permeability coefficient was obtained in ER released from gel based on 2% Carbopol: in vitro 33.33 μg/cm2/h, and ex vivo 26.82 μg/cm2/h, respectively. The release kinetics of complexed ER is performed by Fickian diffusion, according to the results obtained by fitting the data in the Korsmeyer-Peppas model.

Keywords: erythromycin, acne, lactide, cyclodextrin

Procedia PDF Downloads 245
400 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical

Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva

Abstract:

Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.

Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements

Procedia PDF Downloads 178
399 Analysis and Quantification of Historical Drought for Basin Wide Drought Preparedness

Authors: Joo-Heon Lee, Ho-Won Jang, Hyung-Won Cho, Tae-Woong Kim

Abstract:

Drought is a recurrent climatic feature that occurs in virtually every climatic zone around the world. Korea experiences the drought almost every year at the regional scale mainly during in the winter and spring seasons. Moreover, extremely severe droughts at a national scale also occurred at a frequency of six to seven years. Various drought indices had developed as tools to quantitatively monitor different types of droughts and are utilized in the field of drought analysis. Since drought is closely related with climatological and topographic characteristics of the drought prone areas, the basins where droughts are frequently occurred need separate drought preparedness and contingency plans. In this study, an analysis using statistical methods was carried out for the historical droughts occurred in the five major river basins in Korea so that drought characteristics can be quantitatively investigated. It was also aimed to provide information with which differentiated and customized drought preparedness plans can be established based on the basin level analysis results. Conventional methods which quantifies drought execute an evaluation by applying a various drought indices. However, the evaluation results for same drought event are different according to different analysis technique. Especially, evaluation of drought event differs depend on how we view the severity or duration of drought in the evaluation process. Therefore, it was intended to draw a drought history for the most severely affected five major river basins of Korea by investigating a magnitude of drought that can simultaneously consider severity, duration, and the damaged areas by applying drought run theory with the use of SPI (Standardized Precipitation Index) that can efficiently quantifies meteorological drought. Further, quantitative analysis for the historical extreme drought at various viewpoints such as average severity, duration, and magnitude of drought was attempted. At the same time, it was intended to quantitatively analyze the historical drought events by estimating the return period by derived SDF (severity-duration-frequency) curve for the five major river basins through parametric regional drought frequency analysis. Analysis results showed that the extremely severe drought years were in the years of 1962, 1988, 1994, and 2014 in the Han River basin. While, the extreme droughts were occurred in 1982 and 1988 in the Nakdong river basin, 1994 in the Geumg basin, 1988 and 1994 in Youngsan river basin, 1988, 1994, 1995, and 2000 in the Seomjin river basin. While, the extremely severe drought years at national level in the Korean Peninsula were occurred in 1988 and 1994. The most damaged drought were in 1981~1982 and 1994~1995 which lasted for longer than two years. The return period of the most severe drought at each river basin was turned out to be at a frequency of 50~100 years.

Keywords: drought magnitude, regional frequency analysis, SPI, SDF(severity-duration-frequency) curve

Procedia PDF Downloads 382
398 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 82
397 Towards the Development of Uncertainties Resilient Business Model for Driving the Solar Panel Industry in Nigeria Power Sector

Authors: Balarabe Z. Ahmad, Anne-Lorène Vernay

Abstract:

The emergence of electricity in Nigeria was dated back to 1896. The power plants have the potential to generate 12,522 MW of electric power. Whereas current dispatch is about 4,000 MW, access to electrification is about 60%, with consumption at 0.14 MWh/capita. The government embarked on energy reforms to mitigate energy poverty. The reform targeted the provision of electricity access to 75% of the population by 2020 and 90% by 2030. Growth of total electricity demand by a factor of 5 by 2035 had been projected. This means that Nigeria will require almost 530 TWh of electricity which can be delivered through generators with a capacity of 65 GW. Analogously, the geographical location of Nigeria has placed it in an advantageous position as the source of solar energy; the availability of a high sunshine belt is obvious in the country. The implication is that the far North, where energy poverty is high, equally has about twice the solar radiation as against southern Nigeria. Hence, the chance of generating solar electricity is 66% possible at 11850 x 103 GWh per year, which is one hundred times the current electricity consumption rate in the country. Harvesting these huge potentials may be a mirage if the entrepreneurs in the solar panel business are left with the conventional business models that are not uncertainty resilient. Currently, business entities in RE in Nigeria are uncertain of; accessing the national grid, purchasing potentials of cooperating organizations, currency fluctuation and interest rate increases. Uncertainties such as the security of projects and government policy are issues entrepreneurs must navigate to remain sustainable in the solar panel industry in Nigeria. The aim of this paper is to identify how entrepreneurial firms consider uncertainties in developing workable business models for commercializing solar energy projects in Nigeria. In an attempt to develop a novel business model, the paper investigated how entrepreneurial firms assess and navigate uncertainties. The roles of key stakeholders in helping entrepreneurs to manage uncertainties in the Nigeria RE sector were probed in the ongoing study. The study explored empirical uncertainties that are peculiar to RE entrepreneurs in Nigeria. A mixed-mode of research was embraced using qualitative data from face-to-face interviews conducted on the Solar Energy Entrepreneurs and the experts drawn from key stakeholders. Content analysis of the interview was done using Atlas. It is a nine qualitative tool. The result suggested that all stakeholders are required to synergize in developing an uncertainty resilient business model. It was opined that the RE entrepreneurs need modifications in the business recommendations encapsulated in the energy policy in Nigeria to strengthen their capability in delivering solar energy solutions to the yawning Nigerians.

Keywords: uncertainties, entrepreneurial, business model, solar-panel

Procedia PDF Downloads 130
396 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 278
395 A New Approach for Preparation of Super Absorbent Polymers: In-Situ Surface Cross-Linking

Authors: Reyhan Özdoğan, Mithat Çelebi, Özgür Ceylan, Mehmet Arif Kaya

Abstract:

Super absorbent polymers (SAPs) are defined as materials that can absorb huge amount of water or aqueous solution in comparison to their own mass and retain in their lightly cross-linked structure. SAPs were produced from water soluble monomers via polymerization subsequently controlled crosslinking. SAPs are generally used for water absorbing applications such as baby diapers, patient or elder pads and other hygienic product industries. Crosslinking density (CD) of SAP structure is an essential factor for water absortion capacity (WAC). Low internal CD leads to high WAC values and vice versa. However, SAPs have low CD and high swelling capacities and tend to disintegrate when pressure is applied upon them, so SAPs under load cannot absorb liquids effectively. In order to prevent this undesired situation and to obtain suitable SAP structures having high swelling capacity and ability to work under load, surface crosslinking can be the answer. In industry, these superabsorbent gels are mostly produced via solution polymerization and then they need to be dried, grinded, sized, post polymerized and finally surface croslinked (involves spraying of a crosslinking solution onto dried and grinded SAP particles, and then curing by heat). It can easily be seen that these steps are time consuming and should be handled carefully for the desired final product. If we could synthesize desired final SAPs using less processes it will help reducing time and production costs which are very important for any industries. In this study, synthesis of SAPs were achieved successfully by inverse suspension (Pickering type) polymerization and subsequently in-situ surface cross-linking via using proper surfactants in high boiling point solvents. Our one-pot synthesis of surface cross-linked SAPs invovles only one-step for preparation, thus it can be said that this technique exhibits more preferable characteristic for the industry in comparison to conventional methods due to its one-step easy process. Effects of different surface crosslinking agents onto properties of poly(acrylic acid-co-sodium acrylate) based SAPs are investigated. Surface crosslink degrees are evaluated by swelling under load (SUL) test. It was determined water absorption capacities of obtained SAPs decrease with the increasing surface crosslink density while their mechanic properties are improved.

Keywords: inverse suspension polymerization, polyacrylic acid, super absorbent polymers (SAPs), surface crosslinking, sodium polyacrylate

Procedia PDF Downloads 308
394 Active Learning through a Game Format: Implementation of a Nutrition Board Game in Diabetes Training for Healthcare Professionals

Authors: Li Jiuen Ong, Magdalin Cheong, Sri Rahayu, Lek Alexander, Pei Ting Tan

Abstract:

Background: Previous programme evaluations from the diabetes training programme conducted in Changi General Hospital revealed that healthcare professionals (HCPs) are keen to receive advance diabetes training and education, specifically in medical, nutritional therapy. HCPs also expressed a preference for interactive activities over didactic teaching methods to enhance their learning. Since the War on Diabetes was initiated by MOH in 2016, HCPs are challenged to be actively involved in continuous education to be better equipped to reduce the growing burden of diabetes. Hence, streamlining training to incorporate an element of fun is of utmost importance. Aim: The nutrition programme incorporates game play using an interactive board game that aims to provide a more conducive and less stressful environment for learning. The board game could be adapted for training of community HCPs, health ambassadors or caregivers to cope with the increasing demand of diabetes care in the hospital and community setting. Methodology: Stages for game’s conception (Jaffe, 2001) were adopted in the development of the interactive board game ‘Sweet Score™ ’ Nutrition concepts and topics in diabetes self-management are embedded into the game elements of varying levels of difficulty (‘Easy,’ ‘Medium,’ ‘Hard’) including activities such as a) Drawing/ sculpting (Pictionary-like) b)Facts/ Knowledge (MCQs/ True or False) Word definition) c) Performing/ Charades To study the effects of game play on knowledge acquisition and perceived experiences, participants were randomised into two groups, i.e., lecture group (control) and game group (intervention), to test the difference. Results: Participants in both groups (control group, n= 14; intervention group, n= 13) attempted a pre and post workshop quiz to assess the effectiveness of knowledge acquisition. The scores were analysed using paired T-test. There was an improvement of quiz scores after attending the game play (mean difference: 4.3, SD: 2.0, P<0.001) and the lecture (mean difference: 3.4, SD: 2.1, P<0.001). However, there was no significance difference in the improvement of quiz scores between gameplay and lecture (mean difference: 0.9, 95%CI: -0.8 to 2.5, P=0.280). This suggests that gameplay may be as effective as a lecture in terms of knowledge transfer. All the13 HCPs who participated in the game rated 4 out of 5 on the likert scale for the favourable learning experience and relevance of learning to their job, whereas only 8 out of 14 HCPs in the lecture reported a high rating in both aspects. 16. Conclusion: There is no known board game currently designed for diabetes training for HCPs.Evaluative data from future training can provide insights and direction to improve the game format and cover other aspects of diabetes management such as self-care, exercise, medications and insulin management. Further testing of the board game to ensure learning objectives are met is important and can assist in the development of awell-designed digital game as an alternative training approach during the COVID-19 pandemic. Learning through gameplay increases opportunities for HCPs to bond, interact and learn through games in a relaxed social setting and potentially brings more joy to the workplace.

Keywords: active learning, game, diabetes, nutrition

Procedia PDF Downloads 160
393 Selective Extraction of Lithium from Native Geothermal Brines Using Lithium-ion Sieves

Authors: Misagh Ghobadi, Rich Crane, Karen Hudson-Edwards, Clemens Vinzenz Ullmann

Abstract:

Lithium is recognized as the critical energy metal of the 21st century, comparable in importance to coal in the 19th century and oil in the 20th century, often termed 'white gold'. Current global demand for lithium, estimated at 0.95-0.98 million metric tons (Mt) of lithium carbonate equivalent (LCE) annually in 2024, is projected to rise to 1.87 Mt by 2027 and 3.06 Mt by 2030. Despite anticipated short-term stability in supply and demand, meeting the forecasted 2030 demand will require the lithium industry to develop an additional capacity of 1.42 Mt of LCE annually, exceeding current planned and ongoing efforts. Brine resources constitute nearly 65% of global lithium reserves, underscoring the importance of exploring lithium recovery from underutilized sources, especially geothermal brines. However, conventional lithium extraction from brine deposits faces challenges due to its time-intensive process, low efficiency (30-50% lithium recovery), unsuitability for low lithium concentrations (<300 mg/l), and notable environmental impacts. Addressing these challenges, direct lithium extraction (DLE) methods have emerged as promising technologies capable of economically extracting lithium even from low-concentration brines (>50 mg/l) with high recovery rates (75-98%). However, most studies (70%) have predominantly focused on synthetic brines instead of native (natural/real), with limited application of these approaches in real-world case studies or industrial settings. This study aims to bridge this gap by investigating a geothermal brine sample collected from a real case study site in the UK. A Mn-based lithium-ion sieve (LIS) adsorbent was synthesized and employed to selectively extract lithium from the sample brine. Adsorbents with a Li:Mn molar ratio of 1:1 demonstrated superior lithium selectivity and adsorption capacity. Furthermore, the pristine Mn-based adsorbent was modified through transition metals doping, resulting in enhanced lithium selectivity and adsorption capacity. The modified adsorbent exhibited a higher separation factor for lithium over major co-existing cations such as Ca, Mg, Na, and K, with separation factors exceeding 200. The adsorption behaviour was well-described by the Langmuir model, indicating monolayer adsorption, and the kinetics followed a pseudo-second-order mechanism, suggesting chemisorption at the solid surface. Thermodynamically, negative ΔG° values and positive ΔH° and ΔS° values were observed, indicating the spontaneity and endothermic nature of the adsorption process.

Keywords: adsorption, critical minerals, DLE, geothermal brines, geochemistry, lithium, lithium-ion sieves

Procedia PDF Downloads 16
392 Muscle and Cerebral Regional Oxygenation in Preterm Infants with Shock Using Near-Infrared Spectroscopy

Authors: Virany Diana, Martono Tri Utomo, Risa Etika

Abstract:

Background: Shock is one severe condition that can be a major cause of morbidity and mortality in the Neonatal Intensive Care Unit. Preterm infants are very susceptible to shock caused by many complications such as asphyxia, patent ductus arteriosus, intra ventricle haemorrhage, necrotizing enterocolitis, persistent pulmonal hypertension of the newborn, and septicaemia. Limited hemodynamic monitoring for early detection of shock causes delayed intervention and comprises the outcomes. Clinical parameters still used in neonatal shock detection, such as Capillary Refill Time, heart rate, cold extremity, and urine production. Blood pressure is most frequently used to evaluate preterm's circulation, but hypotension indicates uncompensated shock. Near-infrared spectroscopy (NIRS) is known as a noninvasive tool for monitoring and detecting the state of inadequate tissue perfusion. Muscle oxygen saturation shows decreased cardiac output earlier than systemic parameters of tissue oxygenation when cerebral regional oxygen saturation is still stabilized by autoregulation. However, to our best knowledge, until now, no study has analyzed the decrease of muscle oxygen regional saturation (mRSO₂) and the ratio of muscle and cerebral oxygen regional saturation (mRSO₂/cRSO₂) by NIRS in preterm with shock. Purpose: The purpose of this study is to analyze the decrease of mRSO₂ and ratio of muscle to cerebral oxygen regional saturation (mRSO₂/cRSO₂) by NIRS in preterm with shock. Patients and Methods: This cross-sectional study was conducted on preterm infants with 28-34 weeks gestational age, admitted to the NICU of Dr. Soetomo Hospital from November to January 2022. Patients were classified into two groups: shock and non-shock. The diagnosis of shock is based on clinical criteria (tachycardia, prolonged CRT, cold extremity, decreased urine production, and MAP Blood Pressure less than GA in weeks). Measurement of mRSO₂ and cRSO₂ by NIRS was performed by the doctor in charge when the patient came to NICU. Results: We enrolled 40 preterm infants. The initial conventional hemodynamic parameter as the basic diagnosis of shock showed significant differences in all variables. Preterm with shock had higher mean HR (186.45±1.5), lower MAP (29.8±2.1), and lower SBP (45.1±4.28) than non-shock children, and most had a prolonged CRT. The patients’ outcome was not a significant difference between shock and non-shock patients. The mean mRSO₂ in the shock and non-shock groups were 33,65 ± 11,32 vs. 69,15 ± 3,96 (p=0.001), and the mean ratio mRSO₂/cRSO₂ 0,45 ± 0,12 vs. 0,84 ± 0,43 (p=0,001), were significantly different. The mean cRSO₂ in the shock and non-shock groups were 71,60 ± 4,90 vs. 81,85 ± 7,85 (p 0.082), not significantly different. Conclusion: The decrease of mRSO₂ and ratio of mRSO₂/cRSO₂ can differentiate between shock and non-shock in the preterm infant when cRSO₂ is still normal.

Keywords: preterm infant, regional muscle oxygen saturation, regional cerebral oxygen saturation, NIRS, shock

Procedia PDF Downloads 72
391 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cell (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂ and two different ligands, namely oleic acid (OA) oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA, OAm and DDAB were studied. For this purpose, ITO/PQDs as well as ITO/PQDs/MAPI perovskite structures were prepared by spin coating and the effect of the ligand and oxygen plasma treatment was analyzed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA, OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA, OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA, OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behavior of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., Perovskite Solar Cells

Procedia PDF Downloads 48
390 Properties of the CsPbBr₃ Quantum Dots Treated by O₃ Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, P. Nádaždy, M. Omastová, E. Majková

Abstract:

Perovskite quantum dots (PQDs) have the potential to increase the performance of the perovskite solar cells (PSCs). The integration of PQDs into PSCs can extend the absorption range and enhance photon harvesting and device efficiency. In addition, PQDs can stabilize the device structure by passivating surface defects and traps in the perovskite layer and enhance its stability. The integration of PQDs into PSCs is strongly affected by the type of ligands on the surface of PQDs. The ligands affect the charge transport properties of PQDs, as well as the formation of well-defined interfaces and stability of PSCs. In this work, the CsPbBr₃ QDs were synthesized by the conventional hot-injection method using cesium oleate, PbBr₂, and two different ligands, namely oleic acid (OA)@oleylamine (OAm) and didodecyldimethylammonium bromide (DDAB). The STEM confirmed regular shape and relatively monodisperse cubic structure with an average size of about 10-14 nm of the prepared CsPbBr₃ QDs. Further, the photoluminescent (PL) properties of the PQDs/perovskite bilayer with the ligand OA@OAm and DDAB were studied. For this purpose, ITO/PQDs, as well as ITO/PQDs/MAPI perovskite structures, were prepared by spin coating, and the effect of the ligand and oxygen plasma treatment was analysed. The plasma treatment of the PQDs layer could be beneficial for the deposition of the MAPI perovskite layer and the formation of a well-defined PQDs/MAPI interface. The absorption edge in UV-Vis absorption spectra for OA@OAm CsPbBr₃ QDs is placed around 513 nm (the band gap 2.38 eV); for DDAB CsPbBr₃ QDs, it is located at 490 nm (the band gap 2.33 eV). The photoluminescence (PL) spectra of CsPbBr₃ QDs show two peaks located around 514 nm (503 nm) and 718 nm (708 nm) for OA@OAm (DDAB). The peak around 500 nm corresponds to the PL of PQDs, and the peak close to 710 nm belongs to the surface states of PQDs for both types of ligands. These surface states are strongly affected by the O₃ plasma treatment. For PQDs with DDAB ligand, the O₃ exposure (5, 10, 15 s) results in the blue shift of the PQDs peak and a non-monotonous change of the amplitude of the surface states' peak. For OA@OAm ligand, the O₃ exposition did not cause any shift of the PQDs peak, and the intensity of the PL peak related to the surface states is lower by one order of magnitude in comparison with DDAB, being affected by O₃ plasma treatment. The PL results indicate the possibility of tuning the position of the PL maximum by the ligand of the PQDs. Similar behaviour of the PQDs layer was observed for the ITO/QDs/MAPI samples, where an additional strong PL peak at 770 nm coming from the perovskite layer was observed; for the sample with PQDs with DDAB ligands, a small blue shift of the perovskite PL maximum was observed independently of the plasma treatment. These results suggest the possibility of affecting the PL maximum position and the surface states of the PQDs by the combination of a suitable ligand and the O₃ plasma treatment.

Keywords: perovskite quantum dots, photoluminescence, O₃ plasma., perovskite solar cells

Procedia PDF Downloads 53
389 Robust Inference with a Skew T Distribution

Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici

Abstract:

There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.

Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness

Procedia PDF Downloads 387
388 Promoting Resilience in Adolescents: Integrating Adolescent Medicine and Child Psychology Perspectives

Authors: Xu Qian

Abstract:

This abstract examines the concept of resilience in adolescents from both adolescent medicine and child psychology perspectives. It discusses the role of healthcare providers in fostering resilience among adolescents, encompassing physical, psychological, and social aspects. The paper highlights evidence-based interventions and practical strategies for promoting resilience in this population. Introduction: Resilience plays a crucial role in the healthy development of adolescents, enabling them to navigate through the challenges of this transitional period. This abstract explores the concept of resilience from the perspectives of adolescent medicine and child psychology, shedding light on the collective efforts of healthcare providers in fostering resilience. By integrating the principles and practices of these two disciplines, this abstract emphasizes the multidimensional nature of resilience and its significance in the overall well-being of adolescents. Methods: A comprehensive literature review was conducted, encompassing research articles, empirical studies, and expert opinions from both adolescent medicine and child psychology fields. The search included databases such as PubMed, PsycINFO, and Google Scholar, focusing on publications from the past decade. The review aimed to identify evidence-based interventions and practical strategies employed by healthcare providers to promote resilience among adolescents. Results: The review revealed several key findings regarding the promotion of resilience in adolescents. Firstly, resilience is a dynamic process influenced by individual characteristics, environmental factors, and the interaction between the two. Secondly, healthcare providers play a critical role in fostering resilience by addressing the physical, psychological, and social needs of adolescents. This entails comprehensive healthcare services that integrate medical care, mental health support, and social interventions. Thirdly, evidence-based interventions such as cognitive-behavioral therapy, social skills training, and positive youth development programs have shown promising outcomes in enhancing resilience. Discussion: The integration of adolescent medicine and child psychology perspectives provides a comprehensive framework for promoting resilience in adolescents. By acknowledging the interplay between physical health, psychological well-being, and social functioning, healthcare providers can tailor interventions to address the specific needs and challenges faced by adolescents. Collaborative efforts between medical professionals, psychologists, educators, and families are vital in creating a supportive environment that fosters resilience. Additionally, the findings highlight the importance of early identification and intervention, emphasizing the need for routine screening and assessment to identify adolescents at risk and provide timely support. Conclusion: Promoting resilience in adolescents requires a holistic approach that integrates adolescent medicine and child psychology perspectives. By recognizing the multifaceted nature of resilience, healthcare providers can implement evidence-based interventions and practical strategies to enhance the well-being of adolescents. The collaboration between healthcare professionals from different disciplines, alongside the involvement of families and communities, is crucial for creating a resilient support system. By investing in the promotion of resilience during adolescence, we can empower young individuals to overcome adversity and thrive in their journey toward adulthood.

Keywords: psychology, clinical psychology, child psychology, adolescent psychology, adolescent

Procedia PDF Downloads 61
387 The Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2)-derived Oncolytic Protein Reprograms Tumor-Associated Macrophages

Authors: Farrah Putri Salmanida, Mei-Li Wu, Rika Wahyuningtyas, Wen-Bin Chung, Hso-Chi Chaung, Ko-Tung Chang

Abstract:

Within the field of immunotherapy, oncolytic virotherapy (OVT) employs dual approaches that directly eliminate tumor cells while preserving healthy ones and indirectly reprogram the tumor microenvironment (TME) to elicit antitumor responses. Within the TME, tumor associated macrophages (TAMs) manifest characteristics akin to those of anti-inflammatory M2 macrophages, thus earning the designation of M2-like TAMs. In prior research, two antigens denoted as A1 (g6Ld10T) and A3 (ORF6L5), derived from a complete sequence of ORF5 with partial sequence of ORF6 in Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2), demonstrated the capacity to repolarize M2-type porcine alveolar macrophages (PAMs) into M1 phenotypes. In this study, we sought for utilizing OVT strategies by introducing A1 or A3 on TAMs to endow them with the anti-tumor traits of M1 macrophages while retaining their capacity to target cancer cells. Upon exposing human THP-1-derived M2 macrophages to a cross-species test with 2 µg/ml of either A1 or A3 for 24 hours, real time PCR revealed that A3, but not A1, treated cells exhibited upregulated gene expressions of M1 markers (CCR7, IL-1ß, CCL2, Cox2, CD80). These cells reacted to virus-derived antigen, as evidenced by increased expression of pattern-recognition receptors TLR3, TLR7, and TLR9, subsequently providing feedback in the form of type I interferon responses like IFNAR1, IFN-ß, IRF3, IRF7, OAS1, Mx1, and ISG15. Through an MTT assay, only after 15 µg/ml of A3 treatment could the cell viability decrease, with a predicted IC50 of 16.96 µg/ml. Interestingly, A3 caused dose-dependent toxicity to a rat C6 glial cancer cell line even at doses as low as 2.5 µg/ml and reached its IC50 at 9.419 µg/ml. Using Annexin V/7AAD staining and PCR test, we deduced that a significant proportion of C6 cells were undergoing the early apoptosis phase predominantly through the intrinsic apoptosis cascade involving Bcl-2 family proteins. Following this stage, we conducted a test on A3’s repolarization ability, which revealed a significant rise in M1 gene expression markers, such as TNF, CD80, and IL-1ß, in M2-like TAMs generated in vitro from murine RAW264.7 macrophages grown with conditioned medium of 4T1 breast cancer cells. This was corroborated by the results of transcriptome analysis, which revealed that the primary subset among the top 10 to top 30 significantly upregulated differentially expressed genes (DEGs) dominantly consisted of M1 macrophages profiles, including Ccl3, Ccl4, Csf3, TNF, Bcl6b, Stc1, and Dusp2. Our findings unveiled the remarkable potential of the PRRSV-derived antigen A3 to repolarize macrophages while also being capable of selectively inducing apoptosis in cancerous cells. While further in vivo study is needed for A3, it holds promise as an adjuvant by its dual effects in cancer therapy modalities.

Keywords: cancer cell apoptosis, interferon responses, macrophage repolarization, recombinant protein

Procedia PDF Downloads 39
386 Traditional Medicine in Children: A Significant Cause of Morbidity and Mortality

Authors: Atitallah Sofien, Bouyahia Olfa, Romdhani Meriam, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Traditional medicine refers to a diverse range of therapeutic practices and knowledge systems that have been employed by different cultures over an extended period to uphold and rejuvenate health. These practices can involve herbal remedies, acupuncture, massage, and alternative healing methods that deviate from conventional medical approaches. In Tunisia, we often use unidentified utensils to scratch the oral cavity internally in infants in order to widen the oral cavity for better breathing and swallowing. However, these practices can be risky and may jeopardize the patients' prognosis or even their lives. Aim: This is the case of a nine-month-old infant, admitted to the pediatric department and subsequently to the intensive care unit due to a peritonsillar abscess following the utilization of an unidentifiable tool to scrape the interior of the oral cavity. Case Report: This is a 9-month-old infant with no particular medical history, admitted for high respiratory distress and a fever persisting for 4 days. On clinical examination, he had a respiratory rate of 70 cycles per minute with an oxygen saturation of 97% and subcostal retractions, along with a heart rate of 175 beats per minute. His white blood cell count was 40,960/mm³, and his C-reactive protein was 250 mg/L. Given the severity of the clinical presentation, the infant was transferred to the intensive care unit, intubated, and mechanically ventilated. A cervical-thoracic CT scan was performed, revealing a ruptured 18 mm left peritonsillar abscess in the oropharynx associated with cellulitis of the retropharyngeal space. The oto-rhino-laryngoscopic examination revealed an asymmetry involving the left lateral wall of the oropharynx with the presence of a fistula behind the posterior pillar. Dissection of the collection cavity was performed, allowing the drainage of 2 ml of pus. The culture was negative. The patient received cefotaxime in combination with metronidazole and gentamicin for a duration of 10 days, followed by a switch to amoxicillin-clavulanic acid for 7 days. The patient was extubated after 4 days of treatment, and the clinical and radiological progress was favorable. Conclusions: Traditional medicine remains risky due to the lack of scientific evidence and the potential for injuries and transmission of infectious diseases, especially in children, who constitute a vulnerable population. Therefore, parents should consult healthcare professionals and rely on evidence-based care.

Keywords: children, peritonsillar abscess, traditional medicine, respiratory distress

Procedia PDF Downloads 52
385 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 335
384 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 135
383 Social Value of Travel Time Savings in Sub-Saharan Africa

Authors: Richard Sogah

Abstract:

The significance of transport infrastructure investments for economic growth and development has been central to the World Bank’s strategy for poverty reduction. Among the conventional surface transport infrastructures, road infrastructure is significant in facilitating the movement of human capital goods and services. When transport projects (i.e., roads, super-highways) are implemented, they come along with some negative social values (costs), such as increased noise and air pollution for local residents living near these facilities, displaced individuals, etc. However, these projects also facilitate better utilization of existing capital stock and generate other observable benefits that can be easily quantified. For example, the improvement or construction of roads creates employment, stimulates revenue generation (toll), reduces vehicle operating costs and accidents, increases accessibility, trade expansion, safety improvement, etc. Aside from these benefits, travel time savings (TTSs) which are the major economic benefits of urban and inter-urban transport projects and therefore integral in the economic assessment of transport projects, are often overlooked and omitted when estimating the benefits of transport projects, especially in developing countries. The absence of current and reliable domestic travel data and the inability of replicated models from the developed world to capture the actual value of travel time savings due to the large unemployment, underemployment, and other labor-induced distortions has contributed to the failure to assign value to travel time savings when estimating the benefits of transport schemes in developing countries. This omission of the value of travel time savings from the benefits of transport projects in developing countries poses problems for investors and stakeholders to either accept or dismiss projects based on schemes that favor reduced vehicular operating costs and other parameters rather than those that ease congestion, increase average speed, facilitate walking and handloading, and thus save travel time. Given the complex reality in the estimation of the value of travel time savings and the presence of widespread informal labour activities in Sub-Saharan Africa, we construct a “nationally ranked distribution of time values” and estimate the value of travel time savings based on the area beneath the distribution. Compared with other approaches, our method captures both formal sector workers and individuals/people who work outside the formal sector and hence changes in their time allocation occur in the informal economy and household production activities. The dataset for the estimations is sourced from the World Bank, the International Labour Organization, etc.

Keywords: road infrastructure, transport projects, travel time savings, congestion, Sub-Sahara Africa

Procedia PDF Downloads 89
382 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption

Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu

Abstract:

By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.

Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture

Procedia PDF Downloads 357
381 Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel

Authors: P. D. Pedrosa, J. M. A. Rebello, M. P. Cindra Fonseca

Abstract:

Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range.

Keywords: residual stresses, fatigue, duplex steel, shot peening

Procedia PDF Downloads 203
380 TNF Modulation of Cancer Stem Cells in Renal Clear Cell Carcinoma

Authors: Rafia S. Al-lamki, Jun Wang, Simon Pacey, Jordan Pober, John R. Bradley

Abstract:

Tumor necrosis factor alpha (TNF), signaling through TNFR2, may act an autocrine growth factor for renal tubular epithelial cells. Clear cell renal carcinomas (ccRCC) contain cancer stem cells (CSCs) that give rise to progeny which form the bulk of the tumor. CSCs are rarely in cell cycle and, as non-proliferating cells, resist most chemotherapeutic agents. Thus, recurrence after chemotherapy may result from the survival of CSCs. Therapeutic targeting of both CSCs and the more differentiated bulk tumor populations may provide a more effective strategy for treatment of RCC. In this study, we hypothesized that TNFR2 signaling will induce CSCs in ccRCC to enter cell cycle so that treatment with ligands that engage TNFR2 will render CSCs susceptible to chemotherapy. To test this hypothesis, we have utilized wild-type TNF (wtTNF) or specific muteins selective for TNFR1 (R1TNF) or TNFR2 (R2TNF) to treat either short-term organ cultures of ccRCC and adjacent normal kidney (NK) tissue or cultures of CD133+ cells isolated from ccRCC and adjacent NK, hereafter referred to as stem cell-like cells (SCLCs). The effect of cyclophosphamide (CP), currently an effective anticancer agent, was tested on CD133+SCLCs from ccRCC and NK before and after R2TNF treatment. Responses to TNF were assessed by flow cytometry (FACS), immunofluorescence, and quantitative real-time PCR, TUNEL, and cell viability assays. Cytotoxic effect of CP was analyzed by Annexin V and propidium iodide staining with FACS. In addition, we assessed the effect of TNF on isolated SCLCs differentiation using a three-dimensional (3D) culture system. Clinical samples of ccRCC contain a greater number SCLCs compared to NK and the number of SCSC increases with higher tumor grade. Isolated SCLCs show expression of stemness markers (oct4, Nanog, Sox2, Lin28) but not differentiation markers (cytokeratin, CD31, CD45, and EpCAM). In ccRCC organ cultures, wtTNF and R2TNF increase CD133 and TNFR2 expression and promote cell cycle entry whereas wtTNF and R1TNF increase TNFR1 expression and promote cell death of SCLCs. Similar findings are observed in SCLCs isolated from NK but the effect was greater in SCLCs isolated from ccRCC. Application of CP distinctly triggered apoptotic and necrotic cell death in SLCSs pre-treatment with R2TNF as compared to CP treatment alone, with SCLCs from ccRCC more sensitive to CP compared to SLCS from NK. Furthermore, TNF promotes differentiation of SCLCs to an epithelial phenotype in 3D cultures, confirmed by cytokeratin expression and loss of stemness markers Nanog and Sox2. The differentiated cells show positive expression of TNF and TNFR2. These findings provide evidence that selective engagement of TNFR2 drive CSCs to cell proliferation/differentiation, and targeting of cycling cells with TNFR2 agonist in combination with anti-cancer agents may be a potential therapy for RCC.

Keywords: cancer stem cells, ccRCC, cell cycle, cell death, TNF, TNFR1, TNFR2, CD133

Procedia PDF Downloads 248
379 A Case Report: The Role of Gut Directed Hypnotherapy in Resolution of Irritable Bowel Syndrome in a Medication Refractory Pediatric Male Patient

Authors: Alok Bapatla, Pamela Lutting, Mariastella Serrano

Abstract:

Background: Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain associated with altered bowel habits in the absence of an underlying organic cause. Although the exact etiology of IBS is not fully understood, one of the leading theories postulates a pathology within the Brain-Gut Axis that leads to an overall increase in gastrointestinal sensitivity and pejorative changes in gastrointestinal motility. Research and clinical practice have shown that Gut Directed Hypnotherapy (GDH) has a beneficial clinical role in improving Mind-Gut control and thereby comorbid conditions such as anxiety, abdominal pain, constipation, and diarrhea. Aims: This study presents a 17-year old male with underlying anxiety and a one-year history of IBS-Constipation Predominant Subtype (IBS-C), who has demonstrated impressive improvement of symptoms following GDH treatment following refractory trials with medications including bisacodyl, senna, docusate, magnesium citrate, lubiprostone, linaclotide. Method: The patient was referred to a licensed clinical psychologist specializing in clinical hypnosis and cognitive-behavioral therapy (CBT), who implemented “The Standardized Hypnosis Protocol for IBS” developed by Dr. Olafur S. Palsson, Psy.D at the University of North Carolina at Chapel Hill. The hypnotherapy protocol consisted of a total of seven weekly 45-minute sessions supplemented with a 20-minute audio recording to be listened to once daily. Outcome variables included the GAD-7, PHQ-9 and DCI-2, as well as self-ratings (ranging 0-10) for pain (intensity and frequency), emotional distress about IBS symptoms, and overall emotional distress. All variables were measured at intake prior to administration of the hypnosis protocol and at the conclusion of the hypnosis treatment. A retrospective IBS Questionnaire (IBS Severity Scoring System) was also completed at the conclusion of the GDH treatment for pre-and post-test ratings of clinical symptoms. Results: The patient showed improvement in all outcome variables and self-ratings, including abdominal pain intensity, frequency of abdominal pain episodes, emotional distress relating to gut issues, depression, and anxiety. The IBS Questionnaire showed a significant improvement from a severity score of 400 (defined as severe) prior to GDH intervention compared to 55 (defined as complete resolution) at four months after the last session. IBS Questionnaire subset questions that showed a significant score improvement included abdominal pain intensity, days of pain experienced per 10 days, satisfaction with bowel habits, and overall interference of life affected by IBS symptoms. Conclusion: This case supports the existing research literature that GDH has a significantly beneficial role in improving symptoms in patients with IBS. Emphasis is placed on the numerical results of the IBS Questionnaire scoring, which reflects a patient who initially suffered from severe IBS with failed response to multiple medications, who subsequently showed full and sustained resolution

Keywords: pediatrics, constipation, irritable bowel syndrome, hypnotherapy, gut-directed hypnosis

Procedia PDF Downloads 177
378 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 572