Search results for: drift flow model
15191 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method
Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih
Abstract:
Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style
Procedia PDF Downloads 28415190 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming
Authors: V. Pourmostaghimi, M. Zadshakoyan
Abstract:
Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.Keywords: cutting parameters, flank wear, genetic programming, hard turning
Procedia PDF Downloads 17915189 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process
Authors: Djarot B. Darmadi
Abstract:
The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.Keywords: residual stress, ferritic steels, SSPT, coupled-TMM
Procedia PDF Downloads 27015188 Development of a Framework for Assessing Public Health Risk Due to Pluvial Flooding: A Case Study of Sukhumvit, Bangkok
Authors: Pratima Pokharel
Abstract:
When sewer overflow due to rainfall in urban areas, this leads to public health risks when an individual is exposed to that contaminated floodwater. Nevertheless, it is still unclear the extent to which the infections pose a risk to public health. This study analyzed reported diarrheal cases by month and age in Bangkok, Thailand. The results showed that the cases are reported higher in the wet season than in the dry season. It was also found that in Bangkok, the probability of infection with diarrheal diseases in the wet season is higher for the age group between 15 to 44. However, the probability of infection is highest for kids under 5 years, but they are not influenced by wet weather. Further, this study introduced a vulnerability that leads to health risks from urban flooding. This study has found some vulnerability variables that contribute to health risks from flooding. Thus, for vulnerability analysis, the study has chosen two variables, economic status, and age, that contribute to health risk. Assuming that the people's economic status depends on the types of houses they are living in, the study shows the spatial distribution of economic status in the vulnerability maps. The vulnerability map result shows that people living in Sukhumvit have low vulnerability to health risks with respect to the types of houses they are living in. In addition, from age the probability of infection of diarrhea was analyzed. Moreover, a field survey was carried out to validate the vulnerability of people. It showed that health vulnerability depends on economic status, income level, and education. The result depicts that people with low income and poor living conditions are more vulnerable to health risks. Further, the study also carried out 1D Hydrodynamic Advection-Dispersion modelling with 2-year rainfall events to simulate the dispersion of fecal coliform concentration in the drainage network as well as 1D/2D Hydrodynamic model to simulate the overland flow. The 1D result represents higher concentrations for dry weather flows and a large dilution of concentration on the commencement of a rainfall event, resulting in a drop of the concentration due to runoff generated after rainfall, whereas the model produced flood depth, flood duration, and fecal coliform concentration maps, which were transferred to ArcGIS to produce hazard and risk maps. In addition, the study also simulates the 5-year and 10-year rainfall simulations to show the variation in health hazards and risks. It was found that even though the hazard coverage is very high with a 10-year rainfall events among three rainfall events, the risk was observed to be the same with a 5-year and 10-year rainfall events.Keywords: urban flooding, risk, hazard, vulnerability, health risk, framework
Procedia PDF Downloads 7515187 Willingness to Pay for Improvements of MSW Disposal: Views from Online Survey
Authors: Amornchai Challcharoenwattana, Chanathip Pharino
Abstract:
Rising amount of MSW every day, maximizing material diversions from landfills via recycling is a prefer method to land dumping. Characteristic of Thai MSW is classified as 40 -60 per cent compostable wastes while potentially recyclable materials in waste streams are composed of plastics, papers, glasses, and metals. However, rate of material recovery from MSW, excluding composting or biogas generation, in Thailand is still low. Thailand’s recycling rate in 2010 was only 20.5 per cent. Central government as well as local governments in Thailand have tried to curb this problem by charging some of MSW management fees at the users. However, the fee is often too low to promote MSW minimization. The objective of this paper is to identify levels of willingness-to-pay (WTP) for MSW recycling in different social structures with expected outcome of sustainable MSW managements for different town settlements to maximize MSW recycling pertaining to each town’s potential. The method of eliciting WTP is a payment card. The questionnaire was deployed using online survey during December 2012. Responses were categorized into respondents living in Bangkok, living in other municipality areas, or outside municipality area. The responses were analysed using descriptive statistics, and multiple linear regression analysis to identify relationships and factors that could influence high or low WTP. During the survey period, there were 168 filled questionnaires from total 689 visits. However, only 96 questionnaires could be usable. Among respondents in the usable questionnaires, 36 respondents lived in within the boundary of Bangkok Metropolitan Administration while 45 respondents lived in the chartered areas that were classified as other municipality but not in BMA. Most of respondents were well-off as 75 respondents reported positive monthly cash flow (77.32%), 15 respondents reported neutral monthly cash flow (15.46%) while 7 respondent reported negative monthly cash flow (7.22%). For WTP data including WTP of 0 baht with valid responses, ranking from the highest means of WTP to the lowest WTP of respondents by geographical locations for good MSW management were Bangkok (196 baht/month), municipalities (154 baht/month), and non-urbanized towns (111 baht/month). In-depth analysis was conducted to analyse whether there are additional room for further increase of MSW management fees from the current payment that each correspondent is currently paying. The result from multiple-regression analysis suggested that the following factors could impacts the increase or decrease of WTP: incomes, age, and gender. Overall, the outcome of this study suggests that survey respondents are likely to support improvement of MSW treatments that are not solely relying on landfilling technique. Recommendations for further studies are to obtain larger sample sizes in order to improve statistical powers and to provide better accuracy of WTP study.Keywords: MSW, willingness to pay, payment card, waste seperation
Procedia PDF Downloads 29015186 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries
Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco
Abstract:
SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model
Procedia PDF Downloads 15215185 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment
Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal
Abstract:
There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport, the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonder and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.Keywords: auto-rickshaws, business model, GPS device, mobile application
Procedia PDF Downloads 22715184 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model
Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus
Abstract:
This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method
Procedia PDF Downloads 48315183 Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis
Authors: M. Kiran Reddy, K. Sreenivasa Rao
Abstract:
The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods.Keywords: excitation modeling, hidden Markov models, pitch-synchronous frames, speech synthesis, wavelet coefficients
Procedia PDF Downloads 24815182 Adopting the Transition Management Model as a Tool for Sustainable Groundwater Management in Nigeria
Authors: Ali Bakari Mohammed
Abstract:
Transitioning is a continuous process of radical change in a society which involves co-evolution of institutional, technological, socio-cultural, and ecological developments at different scales and levels. Transition management model is a methodology that influences structural change of complex systems over a period (0-30 years) by experimenting and implementing new techniques. A transition management in the context of groundwater is a radical change from the current operate and control system to a next generation integrated and sustainable system that takes into account quality protection and sustained supply into the future. This study evaluates the transition management model in adopting it as a viable tool for the attainment of sustainable groundwater management. The outcome of the evaluation shows that there are three levels (strategic, tactical and operational) of operating the transition management model. At the strategic level, long-term goals for sustainable groundwater management are formulated, at the tactical level activities such as inter institutional networking, negotiation, planning and financing are carried out, and at the operational level, transition experiments and strategic niche management are carried out at the societal level. Overall, different actors and set of activities are required to partake at each management level. The outcome of this paper will provide basis for the implementation of the Sustainable Development Goal (SDG) 6 in Nigeria.Keywords: transition management, groundwater, sustainable management, tool, Nigeria
Procedia PDF Downloads 27115181 Quality by Design in the Optimization of a Fast HPLC Method for Quantification of Hydroxychloroquine Sulfate
Authors: Pedro J. Rolim-Neto, Leslie R. M. Ferraz, Fabiana L. A. Santos, Pablo A. Ferreira, Ricardo T. L. Maia-Jr., Magaly A. M. Lyra, Danilo A F. Fonte, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim
Abstract:
Initially developed as an antimalarial agent, hydroxychloroquine (HCQ) sulfate is often used as a slow-acting antirheumatic drug in the treatment of disorders of connective tissue. The United States Pharmacopeia (USP) 37 provides a reversed-phase HPLC method for quantification of HCQ. However, this method was not reproducible, producing asymmetric peaks in a long analysis time. The asymmetry of the peak may cause an incorrect calculation of the concentration of the sample. Furthermore, the analysis time is unacceptable, especially regarding the routine of a pharmaceutical industry. The aiming of this study was to develop a fast, easy and efficient method for quantification of HCQ sulfate by High Performance Liquid Chromatography (HPLC) based on the Quality by Design (QbD) methodology. This method was optimized in terms of peak symmetry using the surface area graphic as the Design of Experiments (DoE) and the tailing factor (TF) as an indicator to the Design Space (DS). The reference method used was that described at USP 37 to the quantification of the drug. For the optimized method, was proposed a 33 factorial design, based on the QbD concepts. The DS was created with the TF (in a range between 0.98 and 1.2) in order to demonstrate the ideal analytical conditions. Changes were made in the composition of the USP mobile-phase (USP-MP): USP-MP: Methanol (90:10 v/v, 80:20 v/v and 70:30 v/v), in the flow (0.8, 1.0 and 1.2 mL) and in the oven temperature (30, 35, and 40ºC). The USP method allowed the quantification of drug in a long time (40-50 minutes). In addition, the method uses a high flow rate (1,5 mL.min-1) which increases the consumption of expensive solvents HPLC grade. The main problem observed was the TF value (1,8) that would be accepted if the drug was not a racemic mixture, since the co-elution of the isomers can become an unreliable peak integration. Therefore, the optimization was suggested in order to reduce the analysis time, aiming a better peak resolution and TF. For the optimization method, by the analysis of the surface-response plot it was possible to confirm the ideal setting analytical condition: 45 °C, 0,8 mL.min-1 and 80:20 USP-MP: Methanol. The optimized HPLC method enabled the quantification of HCQ sulfate, with a peak of high resolution, showing a TF value of 1,17. This promotes good co-elution of isomers of the HCQ, ensuring an accurate quantification of the raw material as racemic mixture. This method also proved to be 18 times faster, approximately, compared to the reference method, using a lower flow rate, reducing even more the consumption of the solvents and, consequently, the analysis cost. Thus, an analytical method for the quantification of HCQ sulfate was optimized using QbD methodology. This method proved to be faster and more efficient than the USP method, regarding the retention time and, especially, the peak resolution. The higher resolution in the chromatogram peaks supports the implementation of the method for quantification of the drug as racemic mixture, not requiring the separation of isomers.Keywords: analytical method, hydroxychloroquine sulfate, quality by design, surface area graphic
Procedia PDF Downloads 63915180 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology
Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen
Abstract:
Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient
Procedia PDF Downloads 20715179 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model
Authors: Shivahari Revathi Venkateswaran
Abstract:
Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering
Procedia PDF Downloads 7115178 Agriculture and Global Economy vis-à-vis the Climate Change
Authors: Assaad Ghazouani, Ati Abdessatar
Abstract:
In the world, agriculture maintains a social and economic importance in the national economy. Its importance is distinguished by its ripple effects not only downstream but also upstream vis-à-vis the non-agricultural sector. However, the situation is relatively fragile because of weather conditions. In this work, we propose a model to highlight the impacts of climate change (CC) on economic growth in the world where agriculture is considered as a strategic sector. The CC is supposed to directly and indirectly affect economic growth by reducing the performance of the agricultural sector. The model is tested for Tunisia. The results validate the hypothesis that the potential economic damage of the CC is important. Indeed, an increase in CO2 concentration (temperatures and disruption of rainfall patterns) will have an impact on global economic growth particularly by reducing the performance of the agricultural sector. Analysis from a vector error correction model also highlights the magnitude of climate impact on the performance of the agricultural sector and its repercussions on economic growthKeywords: Climate Change, Agriculture, Economic Growth, World, VECM, Cointegration.
Procedia PDF Downloads 61915177 A Selection Approach: Discriminative Model for Nominal Attributes-Based Distance Measures
Authors: Fang Gong
Abstract:
Distance measures are an indispensable part of many instance-based learning (IBL) and machine learning (ML) algorithms. The value difference metrics (VDM) and inverted specific-class distance measure (ISCDM) are among the top-performing distance measures that address nominal attributes. VDM performs well in some domains owing to its simplicity and poorly in others that exist missing value and non-class attribute noise. ISCDM, however, typically works better than VDM on such domains. To maximize their advantages and avoid disadvantages, in this paper, a selection approach: a discriminative model for nominal attributes-based distance measures is proposed. More concretely, VDM and ISCDM are built independently on a training dataset at the training stage, and the most credible one is recorded for each training instance. At the test stage, its nearest neighbor for each test instance is primarily found by any of VDM and ISCDM and then chooses the most reliable model of its nearest neighbor to predict its class label. It is simply denoted as a discriminative distance measure (DDM). Experiments are conducted on the 34 University of California at Irvine (UCI) machine learning repository datasets, and it shows DDM retains the interpretability and simplicity of VDM and ISCDM but significantly outperforms the original VDM and ISCDM and other state-of-the-art competitors in terms of accuracy.Keywords: distance measure, discriminative model, nominal attributes, nearest neighbor
Procedia PDF Downloads 11415176 Sea-Spray Calculations Using the MESO-NH Model
Authors: Alix Limoges, William Bruch, Christophe Yohia, Jacques Piazzola
Abstract:
A number of questions arise concerning the long-term impact of the contribution of marine aerosol fluxes generated at the air-sea interface on the occurrence of intense events (storms, floods, etc.) in the coastal environment. To this end, knowledge is needed on sea-spray emission rates and the atmospheric dynamics of the corresponding particles. Our aim is to implement the mesoscale model MESO-NH on the study area using an accurate sea-spray source function to estimate heat fluxes and impact on the precipitations. Based on an original and complete sea-spray source function, which covers a large size spectrum since taking into consideration the sea-spray produced by both bubble bursting and surface tearing process, we propose a comparison between model simulations and experimental data obtained during an oceanic scientific cruise on board the navy ship Atalante. The results show the relevance of the sea-spray flux calculations as well as their impact on the heat fluxes and AOD.Keywords: atmospheric models, sea-spray source, sea-spray dynamics, aerosols
Procedia PDF Downloads 14915175 The Intention to Use Telecare in People of Fall Experience: Application of Fuzzy Neural Network
Authors: Jui-Chen Huang, Shou-Hsiung Cheng
Abstract:
This study examined their willingness to use telecare for people who have had experience falling in the last three months in Taiwan. This study adopted convenience sampling and a structural questionnaire to collect data. It was based on the definition and the constructs related to the Health Belief Model (HBM). HBM is comprised of seven constructs: perceived benefits (PBs), perceived disease threat (PDT), perceived barriers of taking action (PBTA), external cues to action (ECUE), internal cues to action (ICUE), attitude toward using (ATT), and behavioral intention to use (BI). This study adopted Fuzzy Neural Network (FNN) to put forward an effective method. It shows the dependence of ATT on PB, PDT, PBTA, ECUE, and ICUE. The training and testing data RMSE (root mean square error) are 0.028 and 0.166 in the FNN, respectively. The training and testing data RMSE are 0.828 and 0.578 in the regression model, respectively. On the other hand, as to the dependence of ATT on BI, as presented in the FNN, the training and testing data RMSE are 0.050 and 0.109, respectively. The training and testing data RMSE are 0.529 and 0.571 in the regression model, respectively. The results show that the FNN method is better than the regression analysis. It is an effective and viable good way.Keywords: fall, fuzzy neural network, health belief model, telecare, willingness
Procedia PDF Downloads 20115174 The Case for Strategic Participation: How Facilitated Engagement Can Be Shown to Reduce Resistance and Improve Outcomes Through the Use of Strategic Models
Authors: Tony Mann
Abstract:
This paper sets out the case for involving and engaging employees/workers/stakeholders/staff in any significant change that is being considered by the senior executives of the organization. It establishes the rationale, the approach, the methodology of engagement and the benefits of a participative approach. It challenges the new norm of imposing change for fear of resistance and instead suggests that involving people has better outcomes and a longer-lasting impact. Various strategic models are introduced and illustrated to explain how the process can be most effective. The paper highlights one model in particular (the Process Iceberg® Organizational Change model) that has proven to be instrumental in developing effective change. Its use is demonstrated in its various forms and explains why so much change fails to address the key elements and how we can be more productive in managing change. ‘Participation’ in change is too often seen as negative, expensive and unwieldy. The paper aims to show that another model: UIA=O+E, can offset the difficulties and, in fact, produce much more positive and effective change.Keywords: facilitation, stakeholders, buy-in, digital workshops
Procedia PDF Downloads 10915173 Investigation of a Technology Enabled Model of Home Care: the eShift Model of Palliative Care
Authors: L. Donelle, S. Regan, R. Booth, M. Kerr, J. McMurray, D. Fitzsimmons
Abstract:
Palliative home health care provision within the Canadian context is challenged by: (i) a shortage of registered nurses (RN) and RNs with palliative care expertise, (ii) an aging population, (iii) reliance on unpaid family caregivers to sustain home care services with limited support to conduct this ‘care work’, (iv) a model of healthcare that assumes client self-care, and (v) competing economic priorities. In response, an interprofessional team of service provider organizations, a software/technology provider, and health care providers developed and implemented a technology-enabled model of home care, the eShift model of palliative home care (eShift). The eShift model combines communication and documentation technology with non-traditional utilization of health human resources to meet patient needs for palliative care in the home. The purpose of this study was to investigate the structure, processes, and outcomes of the eShift model of care. Methodology: Guided by Donebedian’s evaluation framework for health care, this qualitative-descriptive study investigated the structure, processes, and outcomes care of the eShift model of palliative home care. Interviews and focus groups were conducted with health care providers (n= 45), decision-makers (n=13), technology providers (n=3) and family care givers (n=8). Interviews were recorded, transcribed, and a deductive analysis of transcripts was conducted. Study Findings (1) Structure: The eShift model consists of a remotely-situated RN using technology to direct care provision virtually to patients in their home. The remote RN is connected virtually to a health technician (an unregulated care provider) in the patient’s home using real-time communication. The health technician uses a smartphone modified with the eShift application and communicates with the RN who uses a computer with the eShift application/dashboard. Documentation and communication about patient observations and care activities occur in the eShift portal. The RN is typically accountable for four to six health technicians and patients over an 8-hour shift. The technology provider was identified as an important member of the healthcare team. Other members of the team include family members, care coordinators, nurse practitioners, physicians, and allied health. (2) Processes: Conventionally, patient needs are the focus of care; however within eShift, the patient and the family caregiver were the focus of care. Enhanced medication administration was seen as one of the most important processes, and family caregivers reported high satisfaction with the care provided. There was perceived enhanced teamwork among health care providers. (3) Outcomes: Patients were able to die at home. The eShift model enabled consistency and continuity of care, and effective management of patient symptoms and caregiver respite. Conclusion: More than a technology solution, the eShift model of care was viewed as transforming home care practice and an innovative way to resolve the shortage of palliative care nurses within home care.Keywords: palliative home care, health information technology, patient-centred care, interprofessional health care team
Procedia PDF Downloads 41815172 Multi-Objective Simulated Annealing Algorithms for Scheduling Just-In-Time Assembly Lines
Authors: Ghorbanali Mohammadi
Abstract:
New approaches to sequencing mixed-model manufacturing systems are present. These approaches have attracted considerable attention due to their potential to deal with difficult optimization problems. This paper presents Multi-Objective Simulated Annealing Algorithms (MOSAA) approaches to the Just-In-Time (JIT) sequencing problem where workload-smoothing (WL) and the number of set-ups (St) are to be optimized simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models similar in product characteristics are assembled. Moreover, this type of problem is NP-hard. Two annealing methods are proposed to solve the multi-objective problem and find an efficient frontier of all design configurations. The performances of the two methods are tested on several problems from the literature. Experimentation demonstrates the relative desirable performance of the presented methodology.Keywords: scheduling, just-in-time, mixed-model assembly line, sequencing, simulated annealing
Procedia PDF Downloads 12815171 A Sharp Interface Model for Simulating Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi, Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater intrusion, sharp interface, coastal aquifer, algeria
Procedia PDF Downloads 12015170 Effect of Cryogenic Pre-stretching on the Room Temperature Tensile Behavior of AZ61 Magnesium Alloy and Dominant Grain Growth Mechanisms During Subsequent Annealing
Authors: Umer Masood Chaudry, Hafiz Muhammad Rehan Tariq, Chung-soo Kim, Tea-sung Jun
Abstract:
This study explored the influence of pre-stretching temperature on the microstructural characteristics and deformation behavior of AZ61 magnesium alloy and its implications on grain growth during subsequent annealing. AZ61 alloy was stretched to 5% plastic strain along rolling (RD) and transverse direction (TD) at room (RT) and cryogenic temperature (-150 oC, CT) followed by annealing at 320 oC for 1 h to investigate the twinning and dislocation evolution and its consequent effect on the flow stress, plastic strain and strain hardening rate. Compared to RT-stretched samples, significant improvement in yield stress, strain hardening rate and moderate reduction in elongation to failure were witnessed for CT-stretched samples along RD and TD. The subsequent EBSD analysis revealed the increased fraction of fine {10-12} twins and nucleation of multiple {10-12} twin variants caused by higher local stress concentration at the grain boundaries in CT-stretched samples as manifested by the kernel average misorientation. This higher twin fraction and twin-twin interaction imposed the strengthening by restricting the mean free path of dislocations, leading to higher flow stress and strain hardening rate. During annealing of the RT/CT-stretched samples, the residual strain energy and twin boundaries were decreased due to static recovery, leading to a coarse-grained twin-free microstructure. Strain induced boundary migration (SBIM) was found to be the predominant mechanism governing the grain growth during annealing via movement of high angle grain boundaries.Keywords: magnesium, twinning, twinning variant selection, EBSD, cryogenic deformation
Procedia PDF Downloads 6715169 Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations
Authors: A. Azari, S. S. K. Seyyedi
Abstract:
One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided.Keywords: molecular, noise, diffusion, channel
Procedia PDF Downloads 27915168 Decoding Socio-Cultural Trends in Indian Urban Youth Using Ogilvy 3E Model
Authors: Falguni Vasavada, Pradyumna Malladi
Abstract:
The research focuses on studying the ecosystem of the youth using Ogilvy's 3E model, Ethnography and Thematic Analysis. It has been found that urban Indian youth today is an honest generation, hungry for success, living life by the moment, fiercely independent, are open about sex, sexuality and embrace individual differences. Technology and social media dominate their life. However, they are also phobic about commitments, often drifting along life and engage in unsubstantiated brave-talk.Keywords: ethnography, youth, culture, track, buyer behavior
Procedia PDF Downloads 36015167 Estimation of Optimum Parameters of Non-Linear Muskingum Model of Routing Using Imperialist Competition Algorithm (ICA)
Authors: Davood Rajabi, Mojgan Yazdani
Abstract:
Non-linear Muskingum model is an efficient method for flood routing, however, the efficiency of this method is influenced by three applied parameters. Therefore, efficiency assessment of Imperialist Competition Algorithm (ICA) to evaluate optimum parameters of non-linear Muskingum model was addressed through this study. In addition to ICA, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) were also used aiming at an available criterion to verdict ICA. In this regard, ICA was applied for Wilson flood routing; then, routing of two flood events of DoAab Samsami River was investigated. In case of Wilson flood that the target function was considered as the sum of squared deviation (SSQ) of observed and calculated discharges. Routing two other floods, in addition to SSQ, another target function was also considered as the sum of absolute deviations of observed and calculated discharge. For the first floodwater based on SSQ, GA indicated the best performance, however, ICA was on first place, based on SAD. For the second floodwater, based on both target functions, ICA indicated a better operation. According to the obtained results, it can be said that ICA could be used as an appropriate method to evaluate the parameters of Muskingum non-linear model.Keywords: Doab Samsami river, genetic algorithm, imperialist competition algorithm, meta-exploratory algorithms, particle swarm optimization, Wilson flood
Procedia PDF Downloads 50415166 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate
Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar
Abstract:
Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis
Procedia PDF Downloads 19815165 Competency Based Talent Acquisition: Concept, Practice, and Model, with Reference to Indian Industries
Authors: Manasi V. Shah
Abstract:
Organizations, in the competitive era, are participating in the competency act. They have discerned that, strategically researched and defined competencies when put up on the shelf, can help in achieving business goals. The research focuses on critical elements of competency-based talent acquisition process from practical vantage, with significant experience in a variety of business settings. The research is exploratory and descriptive in nature. The research conduct and outcome is the hinge on with reference to Indian Industries. It elaborates about the concept, practice and a brief model that human resource practitioner can use for effective talent acquisition process, which in turn would be in alignment with business performance. The research helps to present a prudent understanding of recruiting and selecting apt human capital, that can fit in a given job role and has action oriented competency based assessment approach for measuring the probable success of a job incumbent in a given job role.Keywords: competency based talent acquisition, competency model, talent acquisition concept, talent acquisition practice
Procedia PDF Downloads 31215164 Using Social Network Analysis for Cyber Threat Intelligence
Authors: Vasileios Anastopoulos
Abstract:
Cyber threat intelligence assists organizations in understanding the threats they face and helps them make educated decisions on preparing their defenses. Sharing of threat intelligence and threat information is increasingly leveraged by organizations and enterprises, and various software solutions are already available, with the open-source malware information sharing platform (MISP) being a popular one. In this work, a methodology for the production of cyber threat intelligence using the threat information stored in MISP is proposed. The methodology leverages the discipline of social network analysis and the diamond model, a model used for intrusion analysis, to produce cyber threat intelligence. The workings are demonstrated with a case study on a production MISP instance of a real organization. The paper concluded with a discussion on the proposed methodology and possible directions for further research.Keywords: cyber threat intelligence, diamond model, malware information sharing platform, social network analysis
Procedia PDF Downloads 17815163 Digital Employment of Disabled People: Empirical Study from Shanghai
Abstract:
Across the globe, ICTs are influencing employment both as an industry that creates jobs and as a tool that empowers disabled people to access new forms of work, in innovative and more flexible ways. The advancements in ICT and the number of apps and solutions that support persons with physical, cognitive and intellectual disabilities challenge traditional biased notions and offer a pathway out of traditional sheltered workshops. As the global leader in digital technology innovation, China is arguably a leader in the use of digital technology as a 'lever' in ending the economic and social marginalization of the disabled. This study investigates factors that influence adoption and use of employment-oriented ICT applications among disabled people in China and seeks to integrate three theoretical approaches: the technology acceptance model (TAM), the uses and gratifications (U&G) approach, and the social model of disability. To that end, the study used data from self-reported survey of 214 disabled adults who have been involved in two top-down 'Internet + employment' programs promoted by local disabled persons’ federation in Shanghai. A structural equation model employed in the study demonstrates that the use of employment-oriented ICT applications is affected by demographic factors of gender, categories of disability, education and marital status. The organizational support of local social organizations demonstrates significate effects on the motivations of disabled people. Results from the focus group interviews particularly suggested that to maximize the positive impact of ICTs on employment, there is significant need to build stakeholder capacity on how ICTs could benefits persons with disabilities.Keywords: disabled people, ICTs, technology acceptance model, uses and gratifications, the social model of disability
Procedia PDF Downloads 10815162 Combined Analysis of m⁶A and m⁵C Modulators on the Prognosis of Hepatocellular Carcinoma
Authors: Hongmeng Su, Luyu Zhao, Yanyan Qian, Hong Fan
Abstract:
Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that endanger human health seriously. RNA methylation, especially N6-methyladenosine (m⁶A) and 5-methylcytosine (m⁵C), a crucial epigenetic transcriptional regulatory mechanism, plays an important role in tumorigenesis, progression and prognosis. This research aims to systematically evaluate the prognostic value of m⁶A and m⁵C modulators in HCC patients. Methods: Twenty-four modulators of m⁶A and m⁵C were candidates to analyze their expression level and their contribution to predict the prognosis of HCC. Consensus clustering analysis was applied to classify HCC patients. Cox and LASSO regression were used to construct the risk model. According to the risk score, HCC patients were divided into high-risk and low/medium-risk groups. The clinical pathology factors of HCC patients were analyzed by univariate and multivariate Cox regression analysis. Results: The HCC patients were classified into 2 clusters with significant differences in overall survival and clinical characteristics. Nine-gene risk model was constructed including METTL3, VIRMA, YTHDF1, YTHDF2, NOP2, NSUN4, NSUN5, DNMT3A and ALYREF. It was indicated that the risk score could serve as an independent prognostic factor for patients with HCC. Conclusion: This study constructed a Nine-gene risk model by modulators of m⁶A and m⁵C and investigated its effect on the clinical prognosis of HCC. This model may provide important consideration for the therapeutic strategy and prognosis evaluation analysis of patients with HCC.Keywords: hepatocellular carcinoma, m⁶A, m⁵C, prognosis, RNA methylation
Procedia PDF Downloads 68