Search results for: real time pest tracking
16721 On the Main Factor That Causes the Instabilities of the Earth Rotation
Authors: Jin Sim, Kwan U. Kim, Ryong Jin Jang, Sung Duk Kim
Abstract:
Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. The invention of quartz clocks in the 1930s and atomic time 1950s and the introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth rotation, however, has not been up to the high level of astronomic observation due to limitation of the time such as impossibility of quantitative calculation of moment of external force for Euler’s dynamical equation based on Newtonian mechanics. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth rotation axis which have not been described in a single equation in a quantitative way from the unique law of Earth rotation. In particular, at present the problem of what the main factor causing the instabilities of the Earth rotation is has not been solved clearly in quantitative ways yet. Therefore, this paper addresses quantitative proof that the main factor which causes the instabilities of the Earth rotation is the moment of external force rather than variations in the relative atmospheric angular momentum and in moment of inertia of the Earth’s body due to the time limitation and under some assumptions.Keywords: atmospheric angular momentum, instabilities of the Earth’s rotation, law of the Earth’s rotation change, moment of inertia of the Earth
Procedia PDF Downloads 1916720 Service Information Integration Platform as Decision Making Tools for the Service Industry Supply Chain-Indonesia Service Integration Project
Authors: Haikal Achmad Thaha, Pujo Laksono, Dhamma Nibbana Putra
Abstract:
Customer service is one of the core interest in a service sector of a company, whether as the core business or as service part of the operation. Most of the time, the people and the previous research in service industry is focused on finding the best business model solution for the service sector, usually to decide between total in house customer service, outsourcing, or something in between. Conventionally, to take this decision is some important part of the management job, and this is a process that usually takes some time and staff effort, meanwhile market condition and overall company needs may change and cause loss of income and temporary disturbance in the companies operation . However, in this paper we have offer a new concept model to assist decision making process in service industry. This model will featured information platform as central tool to integrate service industry operation. The result is service information model which would ideally increase response time and effectivity of the decision making. it will also help service industry in switching the service solution system quickly through machine learning when the companies growth and the service solution needed are changing.Keywords: service industry, customer service, machine learning, decision making, information platform
Procedia PDF Downloads 62216719 A Coordination of Supply Chain Disruption in Different Types of Manufacturing Environments: A Case Study of Sugar Manufacturing Company
Authors: Max Moleke, Gilbert Mbonde
Abstract:
Coordinating supply chain process within a manufacturing environment is a very critical aspect of any organization. Nowadays, most manufacturing industries turn to look at only the financial indicator which in real life situation on the shop floor, there are a number of supply chain disruptions that are been ignored. In this work, we had to look at different types of supply chain disruption and their various impact within the organization. A number of Industrial engineering tools are employed which includes, Multifactor productivity, activity on arrow and rescheduling plans. The final result shows that supply chain disruption various with different geographical area where the production plant is operating.Keywords: supply chain, disruptions, flow shop scheduling, uncertainty
Procedia PDF Downloads 42916718 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date
Abstract:
To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min. In addition, the optimum addition time of SP to mortar should be in this period.Keywords: combined effect, delay addition, heat stimulation, flow of mortar
Procedia PDF Downloads 20216717 PTOP Expression Correlates with Telomerase Activity and Grades of Malignancy in Human Glioma Tissues
Authors: F. Polito, M. Cucinotta, A. Conti, C. Lo Giudice, C. Tomasello, F. Angileri, D. La Torre, M. Aguennouz
Abstract:
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors, with an extremely poor prognosis. Telomeres lenght is associated with tumor progression in several type of human cancers and telomere elongation is a common molecular feature of advanced malignancies. Among the telomeric shelterin proteins PTOP is required for telomeric protein complex assembly, telomerase recruitment and activity, and telomere length regulation through a PTOP-telomerase interaction. Previous studies suggest that PTOP upregulation is involved in radioresistance and telomere lengthening in colorectal cancer cells. Moreover, in human osteosarcoma cells PTOP deletion led to telomere shortening, increased apoptosis and radiation sensitivity enhancement. However, to date, little is known about the role of PTOP in progression of glioma cancers. In light of this background aim of the study is to investigate the expression of PTOP in different grades of human glioma and its correlation with the pathological grade of gliomas, grades of malignancy, proliferative activity and apoptosis. Fifteen Low Grade Astrocytomas (LGA), 18 Anaplastic Astrocytomas (AA) and 26 Glioblastoma Multiforme (GBM) samples were analyzed. Three samples of normal brain tissue (NBT) were used as controls. The expression levels of PTOP, h-TERT, BIRC1 and cyclin D1 were determined by real time PCR and/or western blot. Results obtained shows that PTOP expression in glioma tissues is tightly correlated with clinical grade ( p < 0.01 ). No correlation was found between PTOP expression and other clinicopathologic parameters. The expression of PTOP was positively correlated with the expression of hTERT and TERF1. Furthermore PTOP positively correlates with cyclin D1 and negatively correlates with the expression of BIRC1. Our findings indicate that PTOP might play key role in the progression of glioma regulating telomerase activity and likely through regulation of cell cycle and apoptosis. In conclusion results obtained prompted us to speculate that PTOP might represents a potential molecular bio marker and a therapeutic target for the treatment of glioblastoma tumors.Keywords: glioblastoma, PTOP, telomere, brain tumors
Procedia PDF Downloads 34616716 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 8516715 Effect of Juvenile Hormone on Respiratory Metabolism during Non-Diapausing Sesamia cretica Wandering Larvae (Lepidoptera: Noctuidae)
Authors: E. A. Abdel-Hakim
Abstract:
The corn stemborer Sesamia cretica (Lederer), has been viewed in many parts of the world as a major pest of cultivated maize, graminaceous crops and sugarcane. Its life cycle is comprised of two different phases, one is the growth and developmental phase (non-diapause) and the other is diapause phase which takes place at the last larval instar. Several problems associated with the use of conventional insecticides, have strongly demonstrated the need for applying alternative safe compounds. Prominent among the prototypes of such prospective chemicals are the juvenoids; i.e. the insect (JH) mimics. In fact, the hormonal effect on metabolism has long been viewed as a secondary consequence of its direct action on specific energy-requiring biosynthetic mechanisms. Therefore, the present study was undertaken essentially in a rather systematic fashion as a contribution towards clarifying metabolic and energetic changes taking place during non-diapause wandering larvae as regulated by (JH) mimic. For this purpose, we applied two different doses of JH mimic (Ro 11-0111) in a single (standard) dose of 100µg or in a single dose of 20 µg/g bw in1µl acetone topically at the onset of nondiapause wandering larvae (WL). Energetic data were obtained by indirect calorimetry methods by conversion of respiratory gas exchange volumetric data, as measured manometrically using a Warburg constant respirometer, to caloric units (g-cal/g fw/h). The findings obtained can be given in brief; these treated larvae underwent supernumerary larval moults. However, this potential the wandering larvae proved to possess whereby restoration of larval programming for S. cretica to overcome stresses even at this critical developmental period. The results obtained, particularly with the high dose used, show that 98% wandering larvae were rescued to survive up to one month (vs. 5 days for normal controls), finally the formation of larval-adult intermediates. Also, the solvent controls had resulted in about 22% additional, but stationary moultings. The basal respiratory metabolism (O2 uptake and CO2 output) of the (WL), whether un-treated or larvae not had followed reciprocal U-shaped curves all along of their developmental duration. The lowest points stood nearly to the day of prepupal formation (571±187 µl O2/gfw/h and 553±181 µl CO2/gfw/h) during un-treated in contrast to the larvae treated with JH (210±48 µl O2/gfw/h and 335±81 µl CO2/gfw/h). Un-treated (normal) larvae proved to utilize carbohydrates as the principal source for energy supply; being fully oxidised without sparing any appreciable amount for endergonic conversion to fats. While, the juvenoid-treated larvae and compared with the acetone-treated control equivalents, there existed no distinguishable differences between them; both had been observed utilising carbohydrates as the sole source of energy demand and converting endergonically almost similar percentages to fats. The overall profile, treated and un-treated (WL) utilized carbohydrates as the principal source for energy demand during this stage.Keywords: juvenile hormone, respiratory metabolism, Sesamia cretica, wandering phase
Procedia PDF Downloads 29416714 Volatility and Stylized Facts
Authors: Kalai Lamia, Jilani Faouzi
Abstract:
Measuring and controlling risk is one of the most attractive issues in finance. With the persistence of uncontrolled and erratic stocks movements, volatility is perceived as a barometer of daily fluctuations. An objective measure of this variable seems then needed to control risks and cover those that are considered the most important. Non-linear autoregressive modeling is our first evaluation approach. In particular, we test the presence of “persistence” of conditional variance and the presence of a degree of a leverage effect. In order to resolve for the problem of “asymmetry” in volatility, the retained specifications point to the importance of stocks reactions in response to news. Effects of shocks on volatility highlight also the need to study the “long term” behaviour of conditional variance of stocks returns and articulate the presence of long memory and dependence of time series in the long run. We note that the integrated fractional autoregressive model allows for representing time series that show long-term conditional variance thanks to fractional integration parameters. In order to stop at the dynamics that manage time series, a comparative study of the results of the different models will allow for better understanding volatility structure over the Tunisia stock market, with the aim of accurately predicting fluctuation risks.Keywords: asymmetry volatility, clustering, stylised facts, leverage effect
Procedia PDF Downloads 29916713 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 31016712 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.Keywords: ANFIS, MGT, prediction modeling, rail track degradation
Procedia PDF Downloads 33516711 A 2D Numerical Model of Viscous Flow-Cylinder Interaction
Authors: Bang-Fuh Chen, Chih-Chun Chu
Abstract:
The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder.Keywords: 2D cylinder, finite-difference method, flow-cylinder interaction, flow induced vibration
Procedia PDF Downloads 51116710 SynKit: A Event-Driven and Scalable Microservices-Based Kitting System
Authors: Bruno Nascimento, Cristina Wanzeller, Jorge Silva, João A. Dias, André Barbosa, José Ribeiro
Abstract:
The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles.Keywords: microservices, event-driven, kitting, AMR, lean manufacturing, industry 4.0, industry 5.0
Procedia PDF Downloads 2416709 Association of a Genetic Polymorphism in Cytochrome P450, Family 1 with Risk of Developing Esophagus Squamous Cell Carcinoma
Authors: Soodabeh Shahid Sales, Azam Rastgar Moghadam, Mehrane Mehramiz, Malihe Entezari, Kazem Anvari, Mohammad Sadegh Khorrami, Saeideh Ahmadi Simab, Ali Moradi, Seyed Mahdi Hassanian, Majid Ghayour-Mobarhan, Gordon A. Ferns, Amir Avan
Abstract:
Background Esophageal cancer has been reported as the eighth most common cancer universal and the seventh cause of cancer-related death in men .recent studies have revealed that cytochrome P450, family 1, subfamily B, polypeptide 1, which plays a role in metabolizing xenobiotics, is associated with different cancers. Therefore in the present study, we investigated the impact of CYP1B1-rs1056836 on esophagus squamous cell carcinoma (ESCC) patients. Method: 317 subjects, with and without ESCC were recruited. DNA was extracted and genotyped via Real-time PCR-Based Taq Man. Kaplan Meier curves were utilized to assess overall and progression-free survival. To evaluate the relationship between patients clinicopathological data, genotypic frequencies, disease prognosis, and patients survival, Pearson chi-square and t-test were used. Logistic regression was utilized to assess the association between the risk of ESCC and genotypes. Results: the genotypic frequency for GG, GC, and CC are respectively 58.6% , 29.8%, 11.5% in the healthy group and 51.8%, 36.14% and 12% in ESCC group. With respect to the recessive genetic inheritance model, an association between the GG genotype and stage of ESCC were found. Also, statistically significant results were not found for this variation and risk of ESCC. Patients with GG genotype had a decreased risk of nodal metastasis in comparison with patients with CC/CG genotype, although this link was not statistically significant. Conclusion: Our findings illustrated the correlation of CYP1B1-rs1056836 as a potential biomarker for ESCC patients, supporting further studies in larger populations in different ethnic groups. Moreover, further investigations are warranted to evaluate the association of emerging marker with dietary intake and lifestyle.Keywords: Cytochrome P450, esophagus squamous cell carcinoma, dietary intake, lifestyle
Procedia PDF Downloads 19916708 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry
Authors: Zeynep Sener, Mehtap Dursun
Abstract:
Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.Keywords: fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection
Procedia PDF Downloads 45116707 Implementation of a Predictive DTC-SVM of an Induction Motor
Authors: Chebaani Mohamed, Gplea Amar, Benchouia Mohamed Toufik
Abstract:
Direct torque control is characterized by the merits of fast response, simple structure and strong robustness to the motor parameters variations. This paper proposes the implementation of DTC-SVM of an induction motor drive using Predictive controller. The principle of the method is explained and the system mathematical description is provided. The derived control algorithm is implemented both in the simulation software MatLab/Simulink and on the real induction motor drive with dSPACE control system. Simulated and measured results in steady states and transients are presented.Keywords: induction motor, DTC-SVM, predictive controller, implementation, dSPACE, Matlab, Simulink
Procedia PDF Downloads 51816706 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition
Authors: A. Bayaga
Abstract:
This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.Keywords: AIDS mortality rates, epidemiological model, time-homogeneous markov jump process, transition probability, statistics South Africa
Procedia PDF Downloads 49616705 Benefit Of Waste Collection Route Optimisation
Authors: Bojana Tot, Goran BošKović, Goran Vujić
Abstract:
Route optimisation is a process of planning one or multiple routes, with the purpose of minimizing overall costs, while achieving the highest possible performance under a set of given constraints. It combines routing or route planning, which is the process of creating the most cost-effective route by minimizing the distance or travelled time necessary to reach a set of planned stops, and route scheduling, which is the process of assigning an arrival and service time for each stop, with drivers being given shifts that adhere to their working hours. The objective of this paper is to provide benefits on the implementation of waste collection route optimisation and thus achieve economic efficiency for public utility companies, better service for citizens and positive environment and health.Keywords: waste management, environment, collection route optimisation, GIS
Procedia PDF Downloads 16116704 Moderate Electric Field Influence on Carotenoids Extraction Time from Heterochlorella luteoviridis
Authors: Débora P. Jaeschke, Eduardo A. Merlo, Rosane Rech, Giovana D. Mercali, Ligia D. F. Marczak
Abstract:
Carotenoids are high value added pigments that can be alternatively extracted from some microalgae species. However, the application of carotenoids synthetized by microalgae is still limited due to the utilization of organic toxic solvents. In this context, studies involving alternative extraction methods have been conducted with more sustainable solvents to replace and reduce the solvent volume and the extraction time. The aim of the present work was to evaluate the extraction time of carotenoids from the microalgae Heterochlorella luteoviridis using moderate electric field (MEF) as a pre-treatment to the extraction. The extraction methodology consisted of a pre-treatment in the presence of MEF (180 V) and ethanol (25 %, v/v) for 10 min, followed by a diffusive step performed for 50 min using a higher ethanol concentration (75 %, v/v). The extraction experiments were conducted at 30 °C and, to keep the temperature at this value, it was used an extraction cell with a water jacket that was connected to a water bath. Also, to enable the evaluation of MEF effect on the extraction, control experiments were performed using the same cell and conditions without voltage application. During the extraction experiments, samples were withdrawn at 1, 5 and 10 min of the pre-treatment and at 1, 5, 30, 40 and 50 min of the diffusive step. Samples were, then, centrifuged and carotenoids analyses were performed in the supernatant. Furthermore, an exhaustive extraction with ethyl acetate and methanol was performed, and the carotenoids content found for this analyses was considered as the total carotenoids content of the microalgae. The results showed that the application of MEF as a pre-treatment to the extraction influenced the extraction yield and the extraction time during the diffusive step; after the MEF pre-treatment and 50 min of the diffusive step, it was possible to extract up to 60 % of the total carotenoids content. Also, results found for carotenoids concentration of the extracts withdrawn at 5 and 30 min of the diffusive step did not presented statistical difference, meaning that carotenoids diffusion occurs mainly in the very beginning of the extraction. On the other hand, the results for control experiments showed that carotenoids diffusion occurs mostly during 30 min of the diffusive step, which evidenced MEF effect on the extraction time. Moreover, carotenoids concentration on samples withdrawn during the pre-treatment (1, 5 and 10 min) were below the quantification limit of the analyses, indicating that the extraction occurred in the diffusive step, when ethanol (75 %, v/v) was added to the medium. It is possible that MEF promoted cell membrane permeabilization and, when ethanol (75 %) was added, carotenoids interacted with the solvent and the diffusion occurred easily. Based on the results, it is possible to infer that MEF promoted the decrease of carotenoids extraction time due to the increasing of the permeability of the cell membrane which facilitates the diffusion from the cell to the medium.Keywords: moderate electric field (MEF), pigments, microalgae, ethanol
Procedia PDF Downloads 46316703 An Investigation of Peptide Functionalized Gold Nanoparticles On Colon Cancer Cells For Biomedical Application
Authors: Rolivhuwa Bishop Ramagoma1*, Lynn Cairncross1, , Saartjie Roux1
Abstract:
According to the world health organisation, colon cancer is among the most common cancers diagnosed in both men and women. Specifically, it is the second leading cause of cancer related deaths accounting for over 860 000 deaths worldwide in 2018. Currently, chemotherapy has become an essential component of most cancer treatments. Despite progress in cancer drug development over the previous years, traditional chemotherapeutic drugs still have low selectivity for targeting tumour tissues and are frequently constrained by dose-limiting toxicity. The creation of nanoscale delivery vehicles capable of directly directing treatment into cancer cells has recently caught the interest of researchers. Herein, the development of peptide-functionalized polyethylene glycol gold nanoparticles (Peptide-PEG-AuNPs) as a cellular probe and delivery agent is described, with the higher aim to develop a specific diagnostic prototype and assess their specificity not only against cell lines but primary human cells as well. Gold nanoparticles (AuNPs) were synthesized and stabilized through chemical conjugation. The synthesized AuNPs were characterized, stability in physiological solutions was assessed, their cytotoxicity against colon carcinoma and non-carcinoma skin fibroblasts was also studied. Furthermore, genetic effect through real-time polymerase chain reaction (RT-PCR), localization and uptake, peptide specificity were also determined. In this study, different peptide-AuNPs were found to have preferential toxicity at higher concentrations, as revealed by cell viability assays, however, all AuNPs presented immaculate stability for over 3 months following the method of synthesis. The final obtained peptide-PEG-AuNP conjugates showed good biocompatibility in the presence of high ionic solutions and biological media and good cellular uptake. Formulation of colon cancer specific targeting peptide was successful, additionally, the genes/pathways affected by the treatments were determined through RT-PCR. Primary cells study is still on going with promising results thus far.Keywords: nanotechnology, cancer, diagnosis, therapeutics, gold nanoparticles.
Procedia PDF Downloads 9416702 Renewable Energy and Environment: Design of a Decision Aided Tool for Sustainable Development
Authors: Mustapha Ouardouz, Mina Amharref, Abdessamed Bernoussi
Abstract:
The future energy, for limited energy resources countries, goes through renewable energies (solar, wind etc.). The renewable energies constitute a major component of the energy strategy to cover a substantial part of the growing needs and contribute to environmental protection by replacing fossil fuels. Indeed, sustainable development involves the promotion of renewable energy and the preservation of the environment by the use of clean energy technologies to limit emissions of greenhouse gases and reducing the pressure exerted on the forest cover. So the impact studies, of the energy use on the environment and farm-related risks are necessary. For that, a global approach integrating all the various sectors involved in such project seems to be the best approach. In this paper we present an approach based on the multi criteria analysis and the realization of one pilot to achieve the development of an innovative geo-intelligent environmental platform. An implementation of this platform will collect, process, analyze and manage environmental data in connection with the nature of used energy in the studied region. As an application we consider a region in the north of Morocco characterized by intense agricultural and industrials activities and using diverse renewable energy. The strategic goals of this platform are; the decision support for better governance, improving the responsiveness of public and private companies connected by providing them in real time with reliable data, modeling and simulation possibilities of energy scenarios, the identification of socio-technical solutions to introduce renewable energies and estimate technical and implantable potential by socio-economic analyzes and the assessment of infrastructure for the region and the communities, the preservation and enhancement of natural resources for better citizenship governance through democratization of access to environmental information, the tool will also perform simulations integrating environmental impacts of natural disasters, particularly those linked to climate change. Indeed extreme cases such as floods, droughts and storms will be no longer rare and therefore should be integrated into such projects.Keywords: renewable energies, decision aided tool, environment, simulation
Procedia PDF Downloads 45916701 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment
Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak
Abstract:
Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage
Procedia PDF Downloads 20216700 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization
Authors: Aitor Bilbao, Dragos Axinte, John Billingham
Abstract:
The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation
Procedia PDF Downloads 27516699 Incorporating Priority Round-Robin Scheduler to Sustain Indefinite Blocking Issue and Prioritized Processes in Operating System
Authors: Heng Chia Ying, Charmaine Tan Chai Nie, Burra Venkata Durga Kumar
Abstract:
Process scheduling is the method of process management that determines which process the CPU will proceed with for the next task and how long it takes. Some issues were found in process management, particularly for Priority Scheduling (PS) and Round Robin Scheduling (RR). The proposed recommendations made for IPRRS are to combine the strengths of both into a combining algorithm while they draw on others to compensate for each weakness. A significant improvement on the combining technique of scheduler, Incorporating Priority Round-Robin Scheduler (IPRRS) address an algorithm for both high and low priority task to sustain the indefinite blocking issue faced in the priority scheduling algorithm and minimize the average turnaround time (ATT) and average waiting time (AWT) in RR scheduling algorithm. This paper will delve into the simple rules introduced by IPRRS and enhancements that both PS and RR bring to the execution of processes in the operating system. Furthermore, it incorporates the best aspects of each algorithm to build the optimum algorithm for a certain case in terms of prioritized processes, ATT, and AWT.Keywords: round Robin scheduling, priority scheduling, indefinite blocking, process management, sustain, turnaround time
Procedia PDF Downloads 14816698 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 54816697 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria
Authors: J. Julius Adebayo
Abstract:
The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security
Procedia PDF Downloads 14416696 Enquiry Based Approaches to Teaching Grammar and Differentiation in the Senior Japanese Classroom
Authors: Julie Devine
Abstract:
This presentation will look at the approaches to teaching grammar taken over two years with students studying Japanese in the last two years of high school. The main focus is an enquiry based approach to grammar introduction and a three tier system using videos and online support material to allow for differentiation and personalised learning in the classroom. The aim is to create space for motivated students to do some higher order activities using the target pattern to solve problems and create scenarios. Less motivated students have time to complete basic exercises and struggling students have some time with the teacher in smaller groups.Keywords: differentiation, digital technologies, personalised learning plans, student engagement
Procedia PDF Downloads 16616695 Enumerative Search for Crane Schedule in Anodizing Operations
Authors: Kanate Pantusavase, Jaramporn Hassamontr
Abstract:
This research aims to develop an algorithm to generate a schedule of multiple cranes that will maximize load throughputs in anodizing operation. The algorithm proposed utilizes an enumerative strategy to search for constant time between successive loads and crane covering range over baths. The computer program developed is able to generate a near-optimal crane schedule within reasonable times, i.e. within 10 minutes. Its results are compared with existing solutions from an aluminum extrusion industry. The program can be used to generate crane schedules for mixed products, thus allowing mixed-model line balancing to improve overall cycle times.Keywords: crane scheduling, anodizing operations, cycle time minimization
Procedia PDF Downloads 46516694 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 23116693 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning
Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang
Abstract:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG
Procedia PDF Downloads 15016692 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 149