Search results for: weld joints
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 520

Search results for: weld joints

70 A Neural Network for the Prediction of Contraction after Burn Injuries

Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen

Abstract:

A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.

Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound

Procedia PDF Downloads 34
69 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach

Authors: H. M. Ferreira, H. Cockings, D. F. Gordon

Abstract:

Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.

Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel

Procedia PDF Downloads 80
68 Ecological Ice Hockey Butterfly Motion Assessment Using Inertial Measurement Unit Capture System

Authors: Y. Zhang, J. Perez, S. Marnier

Abstract:

To date, no study on goaltending butterfly motion has been completed in real conditions, during an ice hockey game or training practice, to the author's best knowledge. This motion, performed to save score, is unnatural, intense, and repeated. The target of this research activity is to identify representative biomechanical criteria for this goaltender-specific movement pattern. Determining specific physical parameters may allow to will identify the risk of hip and groin injuries sustained by goaltenders. Four professional or academic goalies were instrumented during ice hockey training practices with five inertial measurement units. These devices were inserted in dedicated pockets located on each thigh and shank, and the fifth on the lumbar spine. A camera was also installed close to the ice to observe and record the goaltenders' activities, especially the butterfly motions, in order to synchronize the captured data and the behavior of the goaltender. Each data recorded began with a calibration of the inertial units and a calibration of the fully equipped goaltender on the ice. Three butterfly motions were recorded out of the training practice to define referential individual butterfly motions. Then, a data processing algorithm based on the Madgwick filter computed hip and knee joints joint range of motion as well as angular specific angular velocities. The developed algorithm software automatically identified and analyzed all the butterfly motions executed by the four different goaltenders. To date, it is still too early to show that the analyzed criteria are representative of the trauma generated by the butterfly motion as the research is only at its beginning. However, this descriptive research activity is promising in its ecological assessment, and once the criteria are found, the tools and protocols defined will allow the prevention of as many injuries as possible. It will thus be possible to build a specific training program for each goalie.

Keywords: biomechanics, butterfly motion, human motion analysis, ice hockey, inertial measurement unit

Procedia PDF Downloads 104
67 Controlling Differential Settlement of Large Reservoir through Soil Structure Interaction Approach

Authors: Madhav Khadilkar

Abstract:

Construction of a large standby reservoir was required to provide secure water supply. The new reservoir was required to be constructed at the same location of an abandoned old open pond due to space constraints. Some investigations were carried out earlier to improvise and re-commission the existing pond. But due to a lack of quantified risk of settlement from voids in the underlying limestone, the shallow foundations were not found feasible. Since the reservoir was resting on hard strata for about three-quarter of plan area and one quarter was resting on soil underlying with limestone and considerably low subgrade modulus. Further investigations were carried out to ascertain the locations and extent of voids within the limestone. It was concluded that the risk due to lime dissolution was acceptably low, and the site was found geotechnically feasible. The hazard posed by limestone dissolution was addressed through the integrated structural and geotechnical analysis and design approach. Finite Element Analysis was carried out to quantify the stresses and differential settlement due to various probable loads and soil-structure interaction. Walls behaving as cantilever under operational loads were found undergoing in-plane bending and tensile forces due to soil-structure interaction. Sensitivity analysis for varying soil subgrade modulus was carried out to check the variation in the response of the structure and magnitude of stresses developed. The base slab was additionally checked for the loss of soil contact due to lime pocket formations at random locations. The expansion and contraction joints were planned to receive minimal additional forces due to differential settlement. The reservoir was designed to sustain the actions corresponding to allowable deformation limits per code, and geotechnical measures were proposed to achieve the soil parameters set in structural analysis.

Keywords: differential settlement, limestone dissolution, reservoir, soil structure interaction

Procedia PDF Downloads 133
66 A Computational Framework for Decoding Hierarchical Interlocking Structures with SL Blocks

Authors: Yuxi Liu, Boris Belousov, Mehrzad Esmaeili Charkhab, Oliver Tessmann

Abstract:

This paper presents a computational solution for designing reconfigurable interlocking structures that are fully assembled with SL Blocks. Formed by S-shaped and L-shaped tetracubes, SL Block is a specific type of interlocking puzzle. Analogous to molecular self-assembly, the aggregation of SL blocks will build a reversible hierarchical and discrete system where a single module can be numerously replicated to compose semi-interlocking components that further align, wrap, and braid around each other to form complex high-order aggregations. These aggregations can be disassembled and reassembled, responding dynamically to design inputs and changes with a unique capacity for reconfiguration. To use these aggregations as architectural structures, we developed computational tools that automate the configuration of SL blocks based on architectural design objectives. There are three critical phases in our work. First, we revisit the hierarchy of the SL block system and devise a top-down-type design strategy. From this, we propose two key questions: 1) How to translate 3D polyominoes into SL block assembly? 2) How to decompose the desired voxelized shapes into a set of 3D polyominoes with interlocking joints? These two questions can be considered the Hamiltonian path problem and the 3D polyomino tiling problem. Then, we derive our solution to each of them based on two methods. The first method is to construct the optimal closed path from an undirected graph built from the voxelized shape and translate the node sequence of the resulting path into the assembly sequence of SL blocks. The second approach describes interlocking relationships of 3D polyominoes as a joint connection graph. Lastly, we formulate the desired shapes and leverage our methods to achieve their reconfiguration within different levels. We show that our computational strategy will facilitate the efficient design of hierarchical interlocking structures with a self-replicating geometric module.

Keywords: computational design, SL-blocks, 3D polyomino puzzle, combinatorial problem

Procedia PDF Downloads 106
65 The Effect of Aerobic Exercises on the Amount of Urea, Uric Acid and Creatine in Blood of Iranian Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The purpose of this research was to study the effect of aerobic exercises with 75% heart beats on the amount of urea, uric acid and creatine in blood of Iranian soccer national U-23 players. 27 players were selected according to the following demographic specifications: age: 21.4±1.60 years old; weight: 68±9.4 kg; height: 174.2±8.6 cm. Urea, uric acid and creatine in blood are considered as dependent variations where as 40 minutes running on a track with maximum 75% heart beats are independent variations. Heart beat and blood pressure in rest time, age, height, and weight are considered as the controlled variations. Maximum heart beats are recorded under maximum exercises (8 minutes and 150-250 watt energy) on ergo meter. Then, in order to determine independent variations, 75% maximum heart beats are considered for each player. Blood is taken twice (before and after determining independence variation). Moreover, the players are given a few instructions to be fulfilled 24 hours before the main exercises. Laboratory analysis method for blood urea sample is deacetyl ammoniom, for uric acid Karvy test and for creatine pyric acid. 'T' formula is applied for analyzing statistical data in dependent groups with degree of freedom 7 (d.f=7) urea and uric acid contain P>0.01 and P>0.05 for creatine. 1. Aerobic exercise can effect on the concentration of urea of blood as well as uric acid and creatine in blood serum and increase the amount of them. 2. Urea of blood serum increases from 26.75±2.59 to 28.9±2.67 (25%) with 40 minutes running and 75% heart beat. 3. Aerobic exercise causes uric acid increase 12.5% from 5.7±0.52 (before exercise) to 6.1±0.71 (after exercise). Creatine of blood serum increases from 1.36±0.27 (before exercise) to 1.85±0.49 (after exercise). We came to this result that during aerobic exercise catabolism of protein substrate increases. Moreover, augmentation of urea, uric acid and creatine in blood serum as metabolic poisons causes disorder in kidney. Also, tendons and joints are affected by these poisons. Appropriate diet and exercise can prevent production of these poisons resulted from heavy exercise.

Keywords: aerobic exercise, urea, uric acid, creatine, blood, soccer national players

Procedia PDF Downloads 510
64 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho

Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa

Abstract:

Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.

Keywords: numerical modeling, open pit mine, shear zone, slope stability

Procedia PDF Downloads 277
63 A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation

Authors: Marko Spasojevic, Ying Hei Chui, Yuxiang Chen

Abstract:

Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities.

Keywords: hygrothermal analysis, insulated sheathing, moisture performance, nail joints, wood shear wall

Procedia PDF Downloads 100
62 Socio-Demographic and Clinical Characteristics and Use of Herbal Medicine among Patients Seeking Consultation for Knee Osteoarthritis at Secondary Healthcare Facilities in Oman

Authors: Thuraya Ahmed Al Shidhani, Yahya Al Farsi, Alya Al Husni, Samir Al Adawi

Abstract:

Background: Knee osteoarthritis (knee OA) represents a major public health burden worldwide, particularly among older adults. However, little has been documented from Arabian Gulf countries, which have left an information gap. Objective: This study describes the socio-demographic, clinical risk factors, and use of herbal medicine among men and women seeking consultation for knee OA at two secondary healthcare facilities in Muscat, Oman. Methods: A cross-sectional study was conducted among 213 Omani adults with knee OA attending a referral polyclinic in Muscat, Oman, over 12 months from January to December. Socio-demographic data were collected from the participants who are seeking consultation for knee OA. Results: Among the 213 study participants, 171 were females and 42 males. The females were comparatively older than the males, had lower education and lower-income, and more overweight. The majority of the participants were normal weight or underweight. About one-third of participants reported OA in other joints as well. Most participants recalled that they had knee OA for less than a year. About 12% reported a history of trauma. The majority (63%) concurrently had other chronic illnesses, and 33% reported having at least one complication. About 22% were using herbal medicines. About 77% are using herbal local applications in form of powder and creams. Conclusion: This study, to our knowledge, is the first to explore socio-demographic characteristics, clinical risk factors and use of herbal medicine among sufferers of knee OA in Oman. Knee OA tended to occur among our participants at younger ages than reported elsewhere, while obesity appeared orthogonal to the severity of knee OA. Women were more affected than men. About one quarter of Omani patients are using herbal medicine. More studies are needed to understand the causal factors and development of knee OA in Oman. Targeted health education and rehabilitation programs are needed, particularly among Omani women, to improve their physical quality of life.

Keywords: knee joint, osteoarthritis, herbal medicine, Oman

Procedia PDF Downloads 95
61 Design, Simulation and Fabrication of Electro-Magnetic Pulse Welding Coil and Initial Experimentation

Authors: Bharatkumar Doshi

Abstract:

Electro-Magnetic Pulse Welding (EMPW) is a solid state welding process carried out at almost room temperature, in which joining is enabled by high impact velocity deformation. In this process, high voltage capacitor’s stored energy is discharged in an EM coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Due to these transient magnetic fields of few tens of Tesla near the coil is generated. As the conductive (tube) part is positioned in this area, an opposing eddy current is induced in this part. Consequently, high Lorentz forces act on the part, leading to acceleration away from the coil. In case of a tube, it gets compressed under forming velocities of more than 300 meters per second. After passing the joining gap it collides with the second metallic joining rod, leading to the formation of a jet under appropriate collision conditions. Due to the prevailing high pressure, metallurgical bonding takes place. A characteristic feature is the wavy interface resulting from the heavy plastic deformations. In the process, the formation of intermetallic compounds which might deteriorate the weld strength can be avoided, even for metals with dissimilar thermal properties. In order to optimize the process parameters like current, voltage, inductance, coil dimensions, workpiece dimensions, air gap, impact velocity, effective plastic strain, shear stress acting in the welding zone/impact zone etc. are very critical and important to establish. These process parameters could be determined by simulation using Finite Element Methods (FEM) in which electromagnetic –structural couple field analysis is performed. The feasibility of welding could thus be investigated by varying the parameters in the simulation using COMSOL. Simulation results shall be applied in performing the preliminary experiments of welding the different alloy steel tubes and/or alloy steel to other materials. The single turn coil (S.S.304) with field shaper (copper) has been designed and manufactured. The preliminary experiments are performed using existing EMPW facility available Institute for Plasma Research, Gandhinagar, India. The experiments are performed at 22kV charged into 64µF capacitor bank and the energy is discharged into single turn EM coil. Welding of axi-symetric components such as aluminum tube and rod has been proven experimentally using EMPW techniques. In this paper EM coil design, manufacturing, Electromagnetic-structural FEM simulation of Magnetic Pulse Welding and preliminary experiment results is reported.

Keywords: COMSOL, EMPW, FEM, Lorentz force

Procedia PDF Downloads 156
60 Lignin Phenol Formaldehyde Resole Resin: Synthesis and Characteristics

Authors: Masoumeh Ghorbania, Falk Liebnerb, Hendrikus W.G. van Herwijnenc, Johannes Konnertha

Abstract:

Phenol formaldehyde (PF) resins are widely used as wood adhesives for variety of industrial products such as plywood, laminated veneer lumber and others. Lignin as a main constituent of wood has become well-known as a potential substitute for phenol in PF adhesives because of their structural similarity. During the last decades numerous research approaches have been carried out to substitute phenol with pulping-derived lignin, whereby the lower reactivity of resins synthesized with shares of lignin seem to be one of the major challenges. This work reports about a systematic screening of different types of lignin (plant origin and pulping process) for their suitability to replace phenol in phenolic resins. Lignin from different plant sources (softwood, hardwood and grass) were used, as these should differ significantly in their reactivity towards formaldehyde of their reactive phenolic core units. Additionally a possible influence of the pulping process was addressed by using the different types of lignin from soda, kraft, and organosolv process and various lignosulfonates (sodium, ammonium, calcium, magnesium). To determine the influence of lignin on the adhesive performance beside others the rate of viscosity development, bond strength development of varying hot pressing time and other thermal properties were investigated. To evaluate the performance of the cured end product, a few selected properties were studied at the example of solid wood-adhesive bond joints, compact panels and plywood. As main results it was found that lignin significantly accelerates the viscosity development in adhesive synthesis. Bonding strength development during curing of adhesives decelerated for all lignin types, while this trend was least for pine kraft lignin and spruce sodium lignosulfonate. However, the overall performance of the products prepared with the latter adhesives was able to fulfill main standard requirements, even after exposing the products to harsh environmental conditions. Thus, a potential application can be considered for processes where reactivity is less critical but adhesive cost and product performance is essential.

Keywords: phenol formaldehyde resin, lignin phenol formaldehyde resin, ABES, DSC

Procedia PDF Downloads 213
59 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications

Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand

Abstract:

Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.

Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate

Procedia PDF Downloads 75
58 Study of Geological Structure for Potential Fresh-Groundwater Aquifer Determination around Cidaun Beach, Cianjur Regency, West Java Province, Indonesia

Authors: Ilham Aji Dermawan, M. Sapari Dwi Hadian, R. Irvan Sophian, Iyan Haryanto

Abstract:

The study of the geological structure in the surrounding area of Cidaun, Cianjur Regency, West Java Province, Indonesia was conducted around the southern coast of Java Island. This study aims to determine the potentially structural trap deposits of freshwater resources in the study area, according to that the study area is an area directly adjacent to the beach, where the water around it did not seem fresh and brackish due to the exposure of sea water intrusion. This study uses the method of geomorphological analysis and geological mapping by taking the data directly in the field within 10x10 km of the research area. Geomorphological analysis was done by calculating the watershed drainage density value and roundness of watershed value ratio. The goal is to determine the permeability of the sub-soil conditions, rock constituent, and the flow of surface water. While the field geological mapping aims to take the geological structure data and then will do the reconstruction to determine the geological conditions of research area. The result, from geomorphology aspects, that the considered area of potential groundwater consisted of permeable surface material, permeable sub-soil, and low of water run-off flow. It is very good for groundwater recharge area. While the results of geological reconstruction after conducted of geological mapping is joints that present were initiated for the Cipandak Fault that cuts Cipandak River. That fault across until the Cibako Syncline fold through the Cibako River. This syncline is expected to place of influent groundwater aquifer. The tip of Cibako River then united with Cipandak River, where the Cipandak River extends through Cipandak Syncline fold axis in the southern regions close to its estuary. This syncline is expected to place of influent groundwater aquifer too.

Keywords: geological structure, groundwater, hydrogeology, influent aquifer, structural trap

Procedia PDF Downloads 185
57 Repair of Thermoplastic Composites for Structural Applications

Authors: Philippe Castaing, Thomas Jollivet

Abstract:

As a result of their advantages, i.e. recyclability, weld-ability, environmental compatibility, long (continuous) fiber thermoplastic composites (LFTPC) are increasingly used in many industrial sectors (mainly automotive and aeronautic) for structural applications. Indeed, in the next ten years, the environmental rules will put the pressure on the use of new structural materials like composites. In aerospace, more than 50% of the damage are due to stress impact and 85% of damage are repaired on the fuselage (fuselage skin panels and around doors). With the arrival of airplanes mainly of composite materials, replacement of sections or panels seems difficult economically speaking and repair becomes essential. The objective of the present study is to propose a solution of repair to prevent the replacement the damaged part in thermoplastic composites in order to recover the initial mechanical properties. The classification of impact damage is not so not easy : talking about low energy impact (less than 35 J) can be totally wrong when high speed or weak thicknesses as well as thermoplastic resins are considered. Crash and perforation with higher energy create important damages and the structures are replaced without repairing, so we just consider here damages due to impacts at low energy that are as follows for laminates : − Transverse cracking; − Delamination; − Fiber rupture. At low energy, the damages are barely visible but can nevertheless reduce significantly the mechanical strength of the part due to resin cracks while few fiber rupture is observed. The patch repair solution remains the standard one but may lead to the rupture of fibers and consequently creates more damages. That is the reason why we investigate the repair of thermoplastic composites impacted at low energy. Indeed, thermoplastic resins are interesting as they absorb impact energy through plastic strain. The methodology is as follows: - impact tests at low energy on thermoplastic composites; - identification of the damage by micrographic observations; - evaluation of the harmfulness of the damage; - repair by reconsolidation according to the extent of the damage ; -validation of the repair by mechanical characterization (compression). In this study, the impacts tests are performed at various levels of energy on thermoplastic composites (PA/C, PEEK/C and PPS/C woven 50/50 and unidirectional) to determine the level of impact energy creating damages in the resin without fiber rupture. We identify the extent of the damage by US inspection and micrographic observations in the plane part thickness. The samples were in addition characterized in compression to evaluate the loss of mechanical properties. Then the strategy of repair consists in reconsolidating the damaged parts by thermoforming, and after reconsolidation the laminates are characterized in compression for validation. To conclude, the study demonstrates the feasibility of the repair for low energy impact on thermoplastic composites as the samples recover their properties. At a first step of the study, the “repair” is made by reconsolidation on a thermoforming press but we could imagine a process in situ to reconsolidate the damaged parts.

Keywords: aerospace, automotive, composites, compression, damages, repair, structural applications, thermoplastic

Procedia PDF Downloads 281
56 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 197
55 Design of Large Parallel Underground Openings in Himalayas: A Case Study of Desilting Chambers for Punatsangchhu-I, Bhutan

Authors: Kanupreiya, Rajani Sharma

Abstract:

Construction of a single underground structure is itself a challenging task, and it becomes more critical in tectonically active young mountains such as the Himalayas which are highly anisotropic. The Himalayan geology mostly comprises of incompetent and sheared rock mass in addition to fold/faults, rock burst, and water ingress. Underground tunnels form the most essential and important structure in run-of-river hydroelectric projects. Punatsangchhu I hydroelectric project (PHEP-I), Bhutan (1200 MW) is a run-of-river scheme which has four parallel underground desilting chambers. The Punatsangchhu River carries a large quantity of silt load during monsoon season. Desilting chambers were provided to remove the silt particles of size greater than and equal to 0.2 mm with 90% efficiency, thereby minimizing the rate of damage to turbines. These chambers are 330 m long, 18 m wide at the center and 23.87 m high, with a 5.87 m hopper portion. The geology of desilting chambers was known from an exploratory drift which exposed low dipping foliation joint and six joint sets. The RMR and Q value in this reach varied from 40 to 60 and 1 to 6 respectively. This paper describes different rock engineering principles undertaken for safe excavation and rock support of the moderately jointed, blocky and thinly foliated biotite gneiss. For the design of rock support system of desilting chambers, empirical and numerical analysis was adopted. Finite element analysis was carried out for cavern design and finalization of pillar width using Phase2. Phase2 is a powerful tool for simulation of stage-wise excavation with simultaneous provision of support system. As the geology of the region had 7 sets of joints, in addition to FEM based approach, safety factors for potentially unstable wedges were checked using UnWedge. The final support recommendations were based on continuous face mapping, numerical modelling, empirical calculations, and practical experiences.

Keywords: dam siltation, Himalayan geology, hydropower, rock support, numerical modelling

Procedia PDF Downloads 73
54 Inhibitory Effect of Coumaroyl Lupendioic Acid on Inflammation Mediator Generation in Complete Freund’s Adjuvant-Induced Arthritis

Authors: Rayhana Begum, Manju Sharma

Abstract:

Careya arborea Roxb. belongs to the Lecythidaceae family, is traditionally used in tumors, anthelmintic, bronchitis, epileptic fits, astringents, inflammation, an antidote to snake-venom, skin disease, diarrhea, dysentery with bloody stools, dyspepsia, ulcer, toothache, and ear pain. The present study was focused on investigating the anti-arthritic effect of coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea stem bark in the chronic inflammatory model and further assessing its possible mechanism on the modulation of inflammatory biomarkers. Arthritis was induced by injecting 0.1 ml of Complete Freund’s Adjuvant (5 mg/ml of heat killed Mycobacterium tuberculosis) into the subplantar region of the left hind paw. Treatment with coumaroyl lupendioic acid (10 and 20 mg/kg, p.o.) and reference drugs (indomethacin and dexamethasone at the dose of 5 mg/kg, p.o.) were started on the day of induction and continued up to 28 days. The progression of arthritis was evaluated by measuring paw volume, tibio tarsal joint diameters, and arthritic index. The effect of coumaroyl lupendioic acid (CLA) on the production PGE₂, NO, MPO, NF-κB, TNF-α, IL-1β, and IL-6 on serum level as well as inflamed paw tissue were also assessed. In addition, ankle joints and spleen were collected and prepared for histological examination. CLA in inflamed rats resulted in significant amelioration of paw edema, tibio-tarsal joint swelling and arthritic score as compared to CFA control group. The results indicated that CLA treated groups markedly decreased the levels of inflammatory mediators (PGE₂, NO, MPO and NF-κB levels) and down-regulated the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in paw tissue homogenates as well as in serum. However, the more pronounced effect was observed in the inflamed paw tissue homogenates. CLA also revealed a protective effect to the tibio-tarsal joint cartilage and spleen. These results suggest that coumaroyl lupendioic acid inhibits inflammation may be through the suppression of the cascade of proinflammatory mediators via the down-regulation of NF-ҡB.

Keywords: complete Freund’s adjuvant , Coumaroyl lupendioic acid, pro-inflammatory cytokines, prostaglandin E2

Procedia PDF Downloads 123
53 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing

Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren

Abstract:

Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 236
52 Epidemiological Analysis of the Patients Supplied with Foot Orthoses in Ortho-Prosthetic Center of Kosovo

Authors: Ardiana Murtezani, Ilirijana Dallku, Teuta Osmani Vllasolli, Sabit Sllamniku

Abstract:

Background: The use of foot orthoses are always indicated when there are alterations of the optimal biomechanics' position of the foot. Orthotics are very effective and very suitable for the majority of patients with pain due to overload which can be related to biomechanical disorders. Aim: To assess the frequency of patients requiring foot orthoses, type of orthoses and analysis of their disease leading to the use of foot orthoses. Material and Methods: Our study included 128 patients with various foot pathologies, treated at the outpatient department of the Ortho-Prosthetic Center of Kosovo (OPCK) in Prishtina. Prospective-descriptive clinical method was used during this study. Functional status of patients was examined, and the following parameters are noted: range of motion measurements for the affected joints/lower extremities, manual test for muscular strength below the knee and foot of the affected extremity, perimeter measurements of the lower extremities, measurements of lower extremities, foot length measurement, foot width measurements and size. In order to complete the measurements the following instruments are used: plantogram, pedogram, meter and cork shoe lift appliances. Results: The majority of subjects in this study are male (60.2% vs. 39.8%), and the dominant age group was 0-9 (47.7%), 61 subjects respectively. Most frequent foot disorders were: congenital disease 60.1%, trauma cases 13.3%, consequences from rheumatologic disease 12.5%, neurologic dysfunctions 11.7%, and the less frequented are the infectious cases 1.6%. Congenital anomalies were the most frequent cases, and from this group majority of cases suffered from pes planovalgus (37.5%), eqinovarus (15.6%) and discrepancies between extremities (6.3%). Furthermore, traumatic amputations (2.3%) and arthritis (0.8%). As far as neurologic disease, subjects with cerebral palsy are represented with (3.1%), peroneal nerve palsy (2.3%) and hemiparesis (1.6%). Infectious disease osteomyelitis sequels are represented with (1.6%). Conclusion: Based on our study results, we have concluded that the use of foot orthoses for patients suffering from rheumatoid arthritis and nonspecific arthropaty was effective treatment choice, leading to decrease of pain, less deformities and improves the quality of life.

Keywords: orthoses, epidemiological analysis, rheumatoid arthritis, rehabilitation

Procedia PDF Downloads 209
51 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 174
50 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System

Authors: Miguel Angel Calvo Salve

Abstract:

Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.

Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems

Procedia PDF Downloads 38
49 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 44
48 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage

Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov

Abstract:

Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.

Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel

Procedia PDF Downloads 255
47 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances

Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm

Abstract:

ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.

Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances

Procedia PDF Downloads 355
46 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics

Authors: Jatin Gupta, Bishakh Bhattacharya

Abstract:

With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.

Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design

Procedia PDF Downloads 171
45 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom

Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr

Abstract:

The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.

Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation

Procedia PDF Downloads 254
44 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study

Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen

Abstract:

One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.

Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction

Procedia PDF Downloads 131
43 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System

Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew

Abstract:

This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.

Keywords: arch, discrete element model, seismic assessment, shake-table testing

Procedia PDF Downloads 189
42 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis

Procedia PDF Downloads 414
41 Anti-Arthritic Effect of a Herbal Diet Formula Comprising Fruits of Rosa Multiflora and Flowers of Lonicera Japonica

Authors: Brian Chi Yan Cheng, Hui Guo, Tao Su, Xiu‐qiong Fu, Ting Li, Zhi‐ling Yu

Abstract:

Rheumatoid arthritis (RA) affects around 1% of the globe population. Yet, there is still no cure for RA. Toll-like receptor 4 (TLR4) signalling has been found to be involved in the pathogenesis of RA, making it a potential therapeutic target for RA treatment. A herbal formula (RL) consisting of fruits of Rosa Multiflora (Eijitsu rose) and flowers of Lonicera Japonica (Japanese honeysuckle) has been used in treating various inflammatory disorders for more than a thousand year. Both of them are rich sources of nutrients and bioactive phytochemicals, which can be used in producing different food products and supplements. In this study, we would evaluate the anti-arthritic effect of RL on collagen-induced arthritis (CIA) in rats and investigate the involvement of TLR4 signaling in the mode of action of RL. Anti-arthritic efficacy was evaluated using CIA rats induced by bovine type II collagen. The treatment groups were treated with RL (82.5, 165, and 330 mg/kg bw per day, p.o.) or positive control indomethacin (0.25 mg/kg bw per day, p.o.) for 35 days. Clinical signs (hind paw volume and arthritis severity scores), changes in serum inflammatory mediators, pro-/antioxidant status, histological and radiographic changes of joints were investigated. Spleens and peritoneal macrophages were used to determine the effects of RL on innate and adaptive immune responses in CIA rats. The involvement of TLR4 signalling pathways in the anti-arthritic effect of RL was examined in cartilage tissue of CIA rats, murine RAW264.7 macrophages and human THP-1 monocytic cells. The severity of arthritis in the CIA rats was significantly attenuated by RL. Antioxidant status, histological score and radiographic score were efficiently improved by RL. RL could also dose-dependently inhibit pro-inflammatory cytokines in serum of CIA rats. RL significantly inhibited the production of various pro-inflammatory mediators, the expression and/or activity of the components of TLR4 signalling pathways in animal tissue and cell lines. RL possesses anti-arthritic effect on collagen-induced arthritis in rats. The therapeutic effect of RL may be related to its inhibition on pro-inflammatory cytokines in serum. The inhibition of the TAK1/NF-κB and TAK1/MAPK pathways participate in the anti-arthritic effects of RL. This provides a pharmacological justification for the dietary use of RL in the control of various arthritic diseases. Further investigation should be done to develop RL into a anti-arthritic food products and/or supplements.

Keywords: japanese honeysuckle, rheumatoid arthritis, rosa multiflora, rosehip

Procedia PDF Downloads 410