Search results for: vehicle volume modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7507

Search results for: vehicle volume modeling

7057 Importance of Mathematical Modeling in Teaching Mathematics

Authors: Selahattin Gultekin

Abstract:

Today, in engineering departments, mathematics courses such as calculus, linear algebra and differential equations are generally taught by mathematicians. Therefore, during mathematicians’ classroom teaching there are few or no applications of the concepts to real world problems at all. Most of the times, students do not know whether the concepts or rules taught in these courses will be used extensively in their majors or not. This situation holds true of for all engineering and science disciplines. The general trend toward these mathematic courses is not good. The real-life application of mathematics will be appreciated by students when mathematical modeling of real-world problems are tackled. So, students do not like abstract mathematics, rather they prefer a solid application of the concepts to our daily life problems. The author highly recommends that mathematical modeling is to be taught starting in high schools all over the world In this paper, some mathematical concepts such as limit, derivative, integral, Taylor Series, differential equations and mean-value-theorem are chosen and their applications with graphical representations to real problems are emphasized.

Keywords: applied mathematics, engineering mathematics, mathematical concepts, mathematical modeling

Procedia PDF Downloads 311
7056 Improved Qualitative Modeling of the Magnetization Curve B(H) of the Ferromagnetic Materials for a Transformer Used in the Power Supply for Magnetron

Authors: M. Bassoui, M. Ferfra, M. Chrayagne

Abstract:

This paper presents a qualitative modeling for the nonlinear B-H curve of the saturable magnetic materials for a transformer with shunts used in the power supply for the magnetron. This power supply is composed of a single phase leakage flux transformer supplying a cell composed of a capacitor and a diode, which double the voltage and stabilize the current, and a single magnetron at the output of the cell. A procedure consisting of a fuzzy clustering method and a rule processing algorithm is then employed for processing the constructed fuzzy modeling rules to extract the qualitative properties of the curve.

Keywords: B(H) curve, fuzzy clustering, magnetron, power supply

Procedia PDF Downloads 231
7055 Prioritizing Roads Safety Based on the Quasi-Induced Exposure Method and Utilization of the Analytical Hierarchy Process

Authors: Hamed Nafar, Sajad Rezaei, Hamid Behbahani

Abstract:

Safety analysis of the roads through the accident rates which is one of the widely used tools has been resulted from the direct exposure method which is based on the ratio of the vehicle-kilometers traveled and vehicle-travel time. However, due to some fundamental flaws in its theories and difficulties in gaining access to the data required such as traffic volume, distance and duration of the trip, and various problems in determining the exposure in a specific time, place, and individual categories, there is a need for an algorithm for prioritizing the road safety so that with a new exposure method, the problems of the previous approaches would be resolved. In this way, an efficient application may lead to have more realistic comparisons and the new method would be applicable to a wider range of time, place, and individual categories. Therefore, an algorithm was introduced to prioritize the safety of roads using the quasi-induced exposure method and utilizing the analytical hierarchy process. For this research, 11 provinces of Iran were chosen as case study locations. A rural accidents database was created for these provinces, the validity of quasi-induced exposure method for Iran’s accidents database was explored, and the involvement ratio for different characteristics of the drivers and the vehicles was measured. Results showed that the quasi-induced exposure method was valid in determining the real exposure in the provinces under study. Results also showed a significant difference in the prioritization based on the new and traditional approaches. This difference mostly would stem from the perspective of the quasi-induced exposure method in determining the exposure, opinion of experts, and the quantity of accidents data. Overall, the results for this research showed that prioritization based on the new approach is more comprehensive and reliable compared to the prioritization in the traditional approach which is dependent on various parameters including the driver-vehicle characteristics.

Keywords: road safety, prioritizing, Quasi-induced exposure, Analytical Hierarchy Process

Procedia PDF Downloads 331
7054 Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis

Authors: M. Kiran Reddy, K. Sreenivasa Rao

Abstract:

The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods.

Keywords: excitation modeling, hidden Markov models, pitch-synchronous frames, speech synthesis, wavelet coefficients

Procedia PDF Downloads 241
7053 Hot Forging Process Simulation of Outer Tie Rod to Reduce Forming Load

Authors: Kyo Jin An, Bukyo Seo, Young-Chul Park

Abstract:

The current trend in car market is increase of parts of automobile and weight in vehicle. It comes from improvement of vehicle performance. Outer tie rod is a part of component of steering system and it is lighter than the others. But, weight lightening is still required for improvement of car mileage. So, we have presented a model of aluminized outer tie rod, but the process of fabrication has to be checked to manufacture the product. Therefore, we have anticipated forming load, die stress and abrasion to use the program of forging interpretation in the part of hot forging process of outer tie rod in this study. Also, we have implemented the experiments design to use the table of orthogonal arrays to reduce the forming load.

Keywords: forming load, hot forging, orthogonal array, outer tie rod (OTR), multi–step forging

Procedia PDF Downloads 427
7052 Process Modeling and Problem Solving: Connecting Two Worlds by BPMN

Authors: Gionata Carmignani, Mario G. C. A. Cimino, Franco Failli

Abstract:

Business Processes (BPs) are the key instrument to understand how companies operate at an organizational level, taking an as-is view of the workflow, and how to address their issues by identifying a to-be model. In last year’s, the BP Model and Notation (BPMN) has become a de-facto standard for modeling processes. However, this standard does not incorporate explicitly the Problem-Solving (PS) knowledge in the Process Modeling (PM) results. Thus, such knowledge cannot be shared or reused. To narrow this gap is today a challenging research area. In this paper we present a framework able to capture the PS knowledge and to improve a workflow. This framework extends the BPMN specification by incorporating new general-purpose elements. A pilot scenario is also presented and discussed.

Keywords: business process management, BPMN, problem solving, process mapping

Procedia PDF Downloads 404
7051 [Keynote Speaker]: Some Similarity Considerations for Design of Experiments for Hybrid Buoyant Aerial Vehicle

Authors: A. U. Haque, W. Asrar, A. A Omar, E. Sulaeman, J. S. M. Ali

Abstract:

Buoyancy force applied on deformable symmetric bodies can be estimated by using Archimedes Principle. Such bodies like ellipsoidal bodies have high volume to surface ratio and are isometrically scaled for mass, length, area and volume to follow square cube law. For scaling up such bodies, it is worthwhile to find out the scaling relationship between the other physical quantities that represent thermodynamic, structural and inertial response etc. So, dimensionless similarities to find an allometric scale can be developed by using Bukingham π theorem which utilizes physical dimensions of important parameters. Base on this fact, physical dependencies of buoyancy system are reviewed to find the set of physical variables for deformable bodies of revolution filled with expandable gas like helium. Due to change in atmospheric conditions, this gas changes its volume and this change can effect the stability of elongated bodies on the ground as well as in te air. Special emphasis was given on the existing similarity parameters which can be used in the design of experiments of such bodies whose shape is affected by the external force like a drag, surface tension and kinetic loads acting on the surface. All these similarity criteria are based on non-dimensionalization, which also needs to be consider for scaling up such bodies.

Keywords: Bukhigham pi theorem, similitude, scaling, buoyancy

Procedia PDF Downloads 369
7050 Smart Helmet for Two-Wheelers

Authors: Ravi Nandu, Kuldeep Singh

Abstract:

A helmet is a protective layer that is worn in order to prevent head injury. Helmet is the most important safety gear for two wheeler riders. However, due to carelessness of people, less importance toward safety, lot of causalities is every year. According to National Crime Records Bureau (NCRB) two wheelers claimed 92 lives every day out of which most were due to helmetless drive. The system design will be such that without wearing the helmet the rider cannot start two wheelers. The helmet will be connected to vehicle key ignition systems which will be electronically controlled. The smart helmet will be having proximity sensor fitted inside it, which will act as our switch for ignition and further with wireless connection the helmet sensor circuit will be connected to the vehicle ignition system.

Keywords: helmet, proximity sensor, microcontroller, head injury

Procedia PDF Downloads 303
7049 Boundary Motion by Curvature: Accessible Modeling of Oil Spill Evaporation/Dissipation

Authors: Gary Miller, Andriy Didenko, David Allison

Abstract:

The boundary of a region in the plane shrinks according to its curvature. A simple algorithm based upon this motion by curvature performed by a spreadsheet simulates the evaporation/dissipation behavior of oil spill boundaries.

Keywords: mathematical modeling, oil, evaporation, dissipation, boundary

Procedia PDF Downloads 504
7048 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 175
7047 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion

Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro

Abstract:

The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.

Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design

Procedia PDF Downloads 298
7046 Development and Test of an Open Source PX4 Controler for omnidirectional Unmanned Surface Vehicle

Authors: Norbert Szulc, Cezary Wieczorkowski, Igor Baranowski

Abstract:

In this paper, a control system that bridges the gap in support for Unmanned Surface Vessels in the PX4 Opensource Autopilot was developed. The system is designed for an omnidirectional water craft with four motors. A modular autopilot architecture design centred around publish-subscribe interprocess communication was used. The paper presents the implementation and integration process of a generic surface vehicle controller capable of driving any configuration of motors through the recently introduced in control allocator in PX4 autopilot. The proposed approach was successfully tested in a case study through implementation on the ASV Perkoz.

Keywords: control system, PX4, drones, rovers, surface vessels, omnidirectional

Procedia PDF Downloads 77
7045 Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials

Authors: Nassima Sotehi

Abstract:

This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers.

Keywords: modeling, porous media, thermal materials, thermal properties

Procedia PDF Downloads 461
7044 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 400
7043 A Metric to Evaluate Conventional and Electrified Vehicles in Terms of Customer-Oriented Driving Dynamics

Authors: Stephan Schiffer, Andreas Kain, Philipp Wilde, Maximilian Helbing, Bernard Bäker

Abstract:

Automobile manufacturers progressively focus on a downsizing strategy to meet the EU's CO2 requirements concerning type-approval consumption cycles. The reduction in naturally aspirated engine power is compensated by increased levels of turbocharging. By downsizing conventional engines, CO2 emissions are reduced. However, it also implicates major challenges regarding longitudinal dynamic characteristics. An example of this circumstance is the delayed turbocharger-induced torque reaction which leads to a partially poor response behavior of the vehicle during acceleration operations. That is why it is important to focus conventional drive train design on real customer driving again. The currently considered dynamic maneuvers like the acceleration time 0-100 km/h discussed by journals and car manufacturers describe longitudinal dynamics experienced by a driver inadequately. For that reason we present the realization and evaluation of a comprehensive proband study. Subjects are provided with different vehicle concepts (electrified vehicles, vehicles with naturally aspired engines and vehicles with different concepts of turbochargers etc.) in order to find out which dynamic criteria are decisive for a subjectively strong acceleration and response behavior of a vehicle. Subsequently, realistic acceleration criteria are derived. By weighing the criteria an evaluation metric is developed to objectify customer-oriented transient dynamics. Fully-electrified vehicles are the benchmark in terms of customer-oriented longitudinal dynamics. The electric machine provides the desired torque almost without delay. This advantage compared to combustion engines is especially noticeable at low engine speeds. In conclusion, we will show the degree to which extent customer-relevant longitudinal dynamics of conventional vehicles can be approximated to electrified vehicle concepts. Therefore, various technical measures (turbocharger concepts, 48V electrical chargers etc.) and drive train designs (e.g. varying the final drive) are presented and evaluated in order to strengthen the vehicle’s customer-relevant transient dynamics. As a rating size the newly developed evaluation metric will be used.

Keywords: 48V, customer-oriented driving dynamics, electric charger, electrified vehicles, vehicle concepts

Procedia PDF Downloads 402
7042 Mathematical Modeling of the Water Bridge Formation in Porous Media: PEMFC Microchannels

Authors: N. Ibrahim-Rassoul, A. Kessi, E. K. Si-Ahmed, N. Djilali, J. Legrand

Abstract:

The static and dynamic formation of liquid water bridges is analyzed using a combination of visualization experiments in a microchannel with a mathematical model. This paper presents experimental and theoretical findings of water plug/capillary bridge formation in a 250 μm squared microchannel. The approach combines mathematical and numerical modeling with experimental visualization and measurements. The generality of the model is also illustrated for flow conditions encountered in manipulation of polymeric materials and formation of liquid bridges between patterned surfaces. The predictions of the model agree favorably the observations as well as with the experimental recordings.

Keywords: green energy, mathematical modeling, fuel cell, water plug, gas diffusion layer, surface of revolution

Procedia PDF Downloads 520
7041 Modeling Approach to Better Control Fouling in a Submerged Membrane Bioreactor for Wastewater Treatment: Development of Analytical Expressions in Steady-State Using ASM1

Authors: Benaliouche Hana, Abdessemed Djamal, Meniai Abdessalem, Lesage Geoffroy, Heran Marc

Abstract:

This paper presents a dynamic mathematical model of activated sludge which is able to predict the formation and degradation kinetics of SMP (Soluble microbial products) in membrane bioreactor systems. The model is based on a calibrated version of ASM1 with the theory of production and degradation of SMP. The model was calibrated on the experimental data from MBR (Mathematical modeling Membrane bioreactor) pilot plant. Analytical expressions have been developed, describing the concentrations of the main state variables present in the sludge matrix, with the inclusion of only six additional linear differential equations. The objective is to present a new dynamic mathematical model of activated sludge capable of predicting the formation and degradation kinetics of SMP (UAP and BAP) from the submerged membrane bioreactor (BRMI), operating at low organic load (C / N = 3.5), for two sludge retention times (SRT) fixed at 40 days and 60 days, to study their impact on membrane fouling, The modeling study was carried out under the steady-state condition. Analytical expressions were then validated by comparing their results with those obtained by simulations using GPS-X-Hydromantis software. These equations made it possible, by means of modeling approaches (ASM1), to identify the operating and kinetic parameters and help to predict membrane fouling.

Keywords: Activated Sludge Model No. 1 (ASM1), mathematical modeling membrane bioreactor, soluble microbial products, UAP, BAP, Modeling SMP, MBR, heterotrophic biomass

Procedia PDF Downloads 281
7040 Smart Side View Mirror Camera for Real Time System

Authors: Nunziata Ivana Guarneri, Arcangelo Bruna, Giuseppe Spampinato, Antonio Buemi

Abstract:

In the last decade, automotive companies have invested a lot in terms of innovation about many aspects regarding the automatic driver assistance systems. One innovation regards the usage of a smart camera placed on the car’s side mirror for monitoring the back and lateral road situation. A common road scenario is the overtaking of the preceding car and, in this case, a brief distraction or a loss of concentration can lead the driver to undertake this action, even if there is an already overtaking vehicle, leading to serious accidents. A valid support for a secure drive can be a smart camera system, which is able to automatically analyze the road scenario and consequentially to warn the driver when another vehicle is overtaking. This paper describes a method for monitoring the side view of a vehicle by using camera optical flow motion vectors. The proposed solution detects the presence of incoming vehicles, assesses their distance from the host car, and warns the driver through different levels of alert according to the estimated distance. Due to the low complexity and computational cost, the proposed system ensures real time performances.

Keywords: camera calibration, ego-motion, Kalman filters, object tracking, real time systems

Procedia PDF Downloads 218
7039 Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector

Authors: Alibakhsh Kasaeian, Mohammad Sameti, Zahra Noori, Mona Rastgoo Bahambari

Abstract:

Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

Keywords: heat transfer, nanofluid, numerical analysis, trough

Procedia PDF Downloads 364
7038 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety

Procedia PDF Downloads 131
7037 Study of the Phenomenon of Collapse and Buckling the Car Body Frame

Authors: Didik Sugiyanto

Abstract:

Conditions that often occur in the framework of a particular vehicle at a car is a collision or collision with another object, an example of such damage is to the frame or chassis for the required design framework that is able to absorb impact energy. Characteristics of the material are influenced by the value of the stiffness of the material that need to be considered in choosing the material properties of the material. To obtain material properties that can be adapted to the experimental conditions tested the tensile and compression testing. In this study focused on the chassis at an angle of 150, 300, and 450. It is based on field studies that vehicle primarily for freight cars have a point of order light between 150 to 450. Research methods include design tools, design framework, procurement of materials and experimental tools, tool-making, the manufacture of the test framework, and the testing process, experiment is testing the power of the press to know the order. From this test obtained the maximum force on the corner of 150 was 569.76 kg at a distance of 16 mm, angle 300 is 370.3 kg at a distance of 15 mm, angle 450 is 391.71 kg at a distance of 28 mm. After reaching the maximum force the order will occur collapse, followed by a decrease in the next distance. It can be concluded that the greatest strain energy occurs at an angle of 150. So it is known that the frame at an angle of 150 produces the best level of security.

Keywords: buckling, collapse, body frame, vehicle

Procedia PDF Downloads 574
7036 Pattern the Location and Area of Earth-Dumping Stations from Vehicle GPS Data in Taiwan

Authors: Chun-Yuan Chen, Ming-Chang Li, Xiu-Hui Wen, Yi-Ching Tu

Abstract:

The objective of this study explores GPS (Global Positioning System) applied to trace construction vehicles such as trucks or cranes, help to pattern the earth-dumping stations of traffic construction in Taiwan. Traffic construction in this research is defined as the engineering of high-speed railways, expressways, and which that distance more than kilometers. Audit the location and check the compliance with regulations of earth-dumping stations is one of important tasks in Taiwan EPA. Basically, the earth-dumping station was known as one source of particulate matter from air pollution during construction process. Due to GPS data can be analyzed quickly and be used conveniently, this study tried to find out dumping stations by modeling vehicles tracks from GPS data during work cycle of construction. The GPS data updated from 13 vehicles related to an expressway construction in central Taiwan. The GPS footprints were retrieved to Keyhole Markup Language (KML) files so that can pattern the tracks of trucks by computer applications, the data was collected about eight months- from Feb. to Oct. in 2017. The results of GPS footprints identified dumping station and outlined the areas of earthwork had been passed to the Taiwan EPA for on-site inspection. Taiwan EPA had issued advice comments to the agency which was in charge of the construction to prevent the air pollution. According to the result of this study compared to the commonly methods in inspecting environment by manual collection, the GPS with KML patterning and modeling method can consumes less time. On the other hand, through monitoring the GPS data from construction vehicles could be useful for administration to development and implementation of strategies in environmental management.

Keywords: automatic management, earth-dumping station, environmental management, Global Positioning System (GPS), particulate matter, traffic construction

Procedia PDF Downloads 160
7035 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 376
7034 A Method to Saturation Modeling of Synchronous Machines in d-q Axes

Authors: Mohamed Arbi Khlifi, Badr M. Alshammari

Abstract:

This paper discusses the general methods to saturation in the steady-state, two axis (d & q) frame models of synchronous machines. In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon), is demonstrated. For that purpose, distinct methods of saturation modeling of dumper synchronous machine with cross-saturation are identified, and detailed models synthesis in d-q axes. A number of models are given in the final developed form. The procedure and the novel models are verified by a critical application to prove the validity of the method and the equivalence between all developed models is reported. Advantages of some of the models over the existing ones and their applicability are discussed.

Keywords: cross-magnetizing, models synthesis, synchronous machine, saturated modeling, state-space vectors

Procedia PDF Downloads 447
7033 Modeling and Performance Analysis of an Air-Cooled Absorption Chiller

Authors: A. Roukbi, B. Draoui

Abstract:

Due to the high cost and the environmental problems caused by the conventional air-conditioning systems, various researches are being increasingly focused on thermal comfort in the building sector integrating renewable energy sources, particularly solar energy. For that purpose, this study aims to present a modeling and performance analysis of a direct air-cooled Water/LiBr absorption chiller. The chiller is considered to be coupled to a small residential building at an arid zone situated in south Algeria. The system is modeled with TRNSYS simulation program. The main objective is to study the feasibility of the chosen system in arid zones and to apply a simplified method to predict the performance of the system by mean of the characteristic equation approach tacking in account the influence of the climatic conditions of the considered site, the collector area and storage volume of the hot water tank on the performance of the installation. First, the results of the system modeling are compared with an experimental data from the open literature and the developed model is then validated. In another hand, a parametric study is performed to analyze the performance of the direct air-cooled absorption chiller at the operating conditions of interest for the present study. Thus, the obtained results has shown that the studied system can present a good alternative for cooling systems in arid zones since the cooling load is roughly in phase with solar availability.

Keywords: absorption chiller, air-cooled, arid zone, thermal comfort

Procedia PDF Downloads 226
7032 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.

Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit

Procedia PDF Downloads 532
7031 Performance Modeling and Availability Analysis of Yarn Dyeing System of a Textile Industry

Authors: P. C. Tewari, Rajiv Kumar, Dinesh Khanduja

Abstract:

This paper discusses the performance modeling and availability analysis of Yarn Dyeing System of a Textile Industry. The Textile Industry is a complex and repairable engineering system. Yarn Dyeing System of Textile Industry consists of five subsystems arranged in series configuration. For performance modeling and analysis of availability, a performance evaluating model has been developed with the help of mathematical formulation based on Markov-Birth-Death Process. The differential equations have been developed on the basis of Probabilistic Approach using a Transition Diagram. These equations have further been solved using normalizing condition in order to develop the steady state availability, a performance measure of the system concerned. The system performance has been further analyzed with the help of decision matrices. These matrices provide various availability levels for different combinations of failure and repair rates for various subsystems. The findings of this paper are, therefore, considered to be useful for the analysis of availability and determination of the best possible maintenance strategies which can be implemented in future to enhance the system performance.

Keywords: performance modeling, markov process, steady state availability, availability analysis

Procedia PDF Downloads 328
7030 Dynamic Reroute Modeling for Emergency Evacuation: Case Study of Brunswick City, Germany

Authors: Yun-Pang Flötteröd, Jakob Erdmann

Abstract:

The human behaviors during evacuations are quite complex. One of the critical behaviors which affect the efficiency of evacuation is route choice. Therefore, the respective simulation modeling work needs to function properly. In this paper, Simulation of Urban Mobility’s (SUMO) current dynamic route modeling during evacuation, i.e. the rerouting functions, is examined with a real case study. The result consistency of the simulation and the reality is checked as well. Four influence factors (1) time to get information, (2) probability to cancel a trip, (3) probability to use navigation equipment, and (4) rerouting and information updating period are considered to analyze possible traffic impacts during the evacuation and to examine the rerouting functions in SUMO. Furthermore, some behavioral characters of the case study are analyzed with use of the corresponding detector data and applied in the simulation. The experiment results show that the dynamic route modeling in SUMO can deal with the proposed scenarios properly. Some issues and function needs related to route choice are discussed and further improvements are suggested.

Keywords: evacuation, microscopic traffic simulation, rerouting, SUMO

Procedia PDF Downloads 186
7029 Identification of the Interior Noise Sources of Rail Vehicles

Authors: Hyo-In Koh, Anders Nordborg, Alex Sievi, Chun-Kwon Park

Abstract:

The noise source for the interior room of the high speed train is constituted by the rolling contact between the wheel and the rail, aerodynamic noise and structure-borne sound generated through the vibrations of bogie, connection points to the carbody. Air-borne sound is radiated through the panels and structures into the interior room of the trains. The high-speed lines are constructed with slab track systems and many tunnels. The interior noise level and the frequency characteristics vary according to types of the track structure and the infrastructure. In this paper the main sound sources and the transfer paths are studied to find out the contribution characteristics of the sources to the interior noise of a high-speed rail vehicle. For the identification of the acoustic power of each parts of the rolling noise sources a calculation model of wheel/rail noise is developed and used. For the analysis of the transmission of the sources to the interior noise noise and vibration are measured during the operation of the vehicle. According to operation speeds, the mainly contributed sources and the paths could be analyzed. Results of the calculations on the source generation and the results of the measurement with a high-speed train are shown and discussed.

Keywords: rail vehicle, high-speed, interior noise, noise source

Procedia PDF Downloads 394
7028 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 123