Search results for: thermal storage
4909 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate
Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes
Abstract:
In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions
Procedia PDF Downloads 2774908 Using Infrared Thermography, Photogrammetry and a Remotely Piloted Aircraft System to Create 3D Thermal Models
Authors: C. C. Kruger, P. Van Tonder
Abstract:
Concrete deteriorates over time and the deterioration can be escalated due to multiple factors. When deteriorations are beneath the concrete’s surface, they could be unknown, even more so when they are located at high elevations. Establishing the severity of such defects could prove difficult and therefore the need to find efficient, safe and economical methods to find these defects becomes ever more important. Current methods using thermography to find defects require equipment such as scaffolding to reach these higher elevations. This could become time- consuming and costly. The risks involved with personnel scaffold or abseil to such heights are high. Accordingly, by combining the technologies of a thermal camera and a Remotely Piloted Aerial System it could be used to find better diagnostic methods. The data could then be constructed into a 3D thermal model to easy representation of the resultsKeywords: concrete, infrared thermography, 3D thermal models, diagnostic
Procedia PDF Downloads 1734907 Obtaining High Purity Hydroxyapatite from Bovine Bone: Effect of Chemical and Thermal Treatments
Authors: Hernandez Pardo Diego F., Guiza Arguello Viviana R., Coy Echeverria Ana, Viejo Abrante Fernando
Abstract:
The biological hydroxyapatite obtained from bovine bone arouses great interest in its application as a material for bone regeneration due to its better bioactive behavior in comparison with synthetic hydroxyapatite. For this reason, the objective of the present investigation was to determine the effect of chemical and thermal treatments in obtaining biological bovine hydroxyapatite of high purity and crystallinity. Two different chemical reagents were evaluated (NaOH and HCl) with the aim to remove the organic matrix of the bovine cortical bone. On the other hand, for analyzing the effect of thermal treatment temperature was ranged between 500 and 1000°C for a holding time of 4 hours. To accomplish the above, the materials before and after the chemical and thermal treatments were characterized by elemental compositional analysis (CHN), infrared spectroscopy by Fourier transform (FTIR), RAMAN spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and energy dispersion X-ray spectroscopy (EDS). The results allowed to establish that NaOH is more effective in the removal of the organic matrix of the bone when compared to HCl, whereas a thermal treatment at 700ºC for 4 hours was enough to obtain biological hydroxyapatite of high purity and crystallinity.Keywords: bovine bone, hydroxyapatite, biomaterials, thermal treatment
Procedia PDF Downloads 1164906 Thermal Interruption Performance of High Voltage Gas Circuit Breaker Operating with CO₂ Mixtures
Authors: Yacine Babou, Nitesh Ranjan, Branimir Radisavljevic , Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti, Paulo Cristini
Abstract:
In the frame of replacement of Sulfur hexafluoride (SF6) gas as insulating and switching medium, diverse alternative gases, offering acceptable Global Warming Potential and fulfilling requirements in terms of heat dissipation, insulation and arc quenching performances are currently investigated for High Voltage Circuit Breaker applications. Among the potential gases, CO₂ seems a promising candidate for replacing SF6, because on one hand it is environmentally friendly, harmless, non-toxic, non-corrosive, non-flammable and on the other hand previous studies have demonstrated its fair interruption capabilities. The present study aims at investigating the performance of CO₂ for the thermal interruption in high voltage self-blast circuit breakers. In particular, the correlation between thermal interruption performance and arc voltage is considered and the effect of the arc-network interaction on the performance is rigorously analyzed. For the considered designs, the thermal interruption was evaluated by varying the slope at current zero (i.e., di/dt) for which the breaker could interrupt. Besides, the characteristics of the post-arc current are examined in detail for various rated voltages and currents. The outcome of these experimental investigations will be reported and analyzed.Keywords: current zero measurement, high voltage circuit breaker, thermal arc discharge, thermal interruption
Procedia PDF Downloads 1854905 Sustainable Design for Building Envelope in Hot Climates: A Case Study for the Role of the Dome as a Component of an Envelope in Heat Exchange
Authors: Akeel Noori Almulla Hwaish
Abstract:
Architectural design is influenced by the actual thermal behaviour of building components, and this in turn depends not only on their steady and periodic thermal characteristics, but also on exposure effects, orientation, surface colour, and climatic fluctuations at the given location. Design data and environmental parameters should be produced in an accurate way for specified locations, so that architects and engineers can confidently apply them in their design calculations that enable precise evaluation of the influence of various parameters relating to each component of the envelope, which indicates overall thermal performance of building. The present paper will be carried out with an objective of thermal behaviour assessment and characteristics of the opaque and transparent parts of one of the very unique components used as a symbolic distinguished element of building envelope, its thermal behaviour under the impact of solar temperatures, and its role in heat exchange related to a specific U-value of specified construction materials alternatives. The research method will consider the specified Hot-Dry weather and new mosque in Baghdad, Iraq as a case study. Also, data will be presented in light of the criteria of indoor thermal comfort in terms of design parameters and thermal assessment for a“model dome”. Design alternatives and considerations of energy conservation, will be discussed as well using comparative computer simulations. Findings will be incorporated to outline the conclusions clarifying the important role of the dome in heat exchange of the whole building envelope for approaching an indoor thermal comfort level and further research in the future.Keywords: building envelope, sustainable design, dome impact, hot-climates, heat exchange
Procedia PDF Downloads 4754904 Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options
Authors: David Glew, Felix Thomas, Matthew Brooke-Peat
Abstract:
Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes.Keywords: condensation risk, hygrothermal simulation, internal wall insulation, thermal bridging
Procedia PDF Downloads 1614903 Electro-Thermal Imaging of Breast Phantom: An Experimental Study
Authors: H. Feza Carlak, N. G. Gencer
Abstract:
To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.Keywords: medical diagnostic imaging, breast phantom, active thermography, breast cancer detection
Procedia PDF Downloads 4284902 A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes
Authors: Gloria A. Adewumi, Andrew C. Eloka-Eboka, Freddie L. Inambao
Abstract:
Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.Keywords: carbon nanotubes, phonons, thermal conductivity, Umklapp process
Procedia PDF Downloads 3604901 Comfort in Green: Thermal Performance and Comfort Analysis of Sky Garden, SM City, North EDSA, Philippines
Authors: Raul Chavez Jr.
Abstract:
Green roof's body of knowledge appears to be in its infancy stage in the Philippines. To contribute to its development, this study intends to answer the question: Does the existing green roof in Metro Manila perform well in providing thermal comfort and satisfaction to users? Relatively, this study focuses on thermal sensation and satisfaction of users, surface temperature comparison, weather data comparison of the site (Sky Garden) and local weather station (PAG-ASA), and its thermal resistance capacity. Initially, the researcher conducted a point-in-time survey in parallel with weather data gathering from PAG-ASA and Sky Garden. In line with these, ambient and surface temperature are conducted through the use of a digital anemometer, with humidity and temperature, and non-contact infrared thermometer respectively. Furthermore, to determine the Sky Garden's overall thermal resistance, materials found on site were identified and tabulated based on specified locations. It revealed that the Sky Garden can be considered comfortable based from PMV-PPD Model of ASHRAE Standard 55 having similar results from thermal comfort and thermal satisfaction survey, which is contrary to the actual condition of the Sky Garden by means of a psychrometric chart which falls beyond the contextualized comfort zone. In addition, ground floor benefited the most in terms of lower average ambient temperature and humidity compared to the Sky Garden. Lastly, surface temperature data indicates that the green roof portion obtained the highest average temperature yet performed well in terms of heat resistance compared to other locations. These results provided the researcher valuable baseline information of the actual performance of a certain green roof in Metro Manila that could be vital in locally enhancing the system even further and for future studies.Keywords: Green Roof, Thermal Analysis, Thermal Comfort, Thermal Performance
Procedia PDF Downloads 1694900 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools
Authors: A. Oukaira, A. Lakhssassi, O. Ettahri
Abstract:
To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.Keywords: ABDM, APD, thermal mapping, complex system
Procedia PDF Downloads 2644899 Conducting Computational Physics Laboratory Course Using Cloud Storage Space
Authors: Ajay Wadhwa
Abstract:
A Laboratory course on computational physics is different from the conventional lab course on other topics of physics like Mechanics, Heat, Optics, etc. because it involves active participation of the teacher as well as one-to-one interaction between teacher and the student. The course content requires the teacher to teach programming language as well as numerical methods along with their applications in physics. The task becomes more daunting when about 90% of the students in the class have no previous experience of any programming language. In the presented work, we have described a methodology for conducting the computational physics course by using the Google Drive and Dropitto.me cloud storage services. We have evaluated the performance in a class of sixty students by dividing them equally into four groups. One of the groups was made the peer group on whom the presented methodology was tested. The other groups were taught by using conventional method of classroom lectures. In order to assess our methodology, we analyzed the performance of students in four class tests. A study of certain statistical parameters like the mean, standard deviation, and Z-test hypothesis revealed that the cyber methodology based on cloud storage is more efficient than the conventional method of teaching.Keywords: computational Physics, Z-test hypothesis, cloud storage, Google drive
Procedia PDF Downloads 3004898 Sizing and Thermal Analysis of Mechanically Pumped Fluid Loop Thermal Control Technique for Small Satellite Scientific Applications
Authors: Shanmugasundaram Selvadurai, Amal Chandran
Abstract:
Small satellites have become an alternative low-cost solution for several missions to accomplish specific missions such as Earth imaging, Technology demonstration, Education, and other commercial purposes. Small satellite missions focusing on Infrared imaging applications require lower temperature for scientific instruments and such low temperature can be achieved only using external cryocoolers but the disadvantage is that they generate a large amount of waste heat. Existing passive thermal control techniques are not capable to handle such large thermal loads and hence one of the traditional active Thermal Control System (TCS) is studied for a small satellite configuration. This work aims to downscale the existing Mechanically Pumped Fluid Loop (MPFL) TCS to a 27U CubeSat platform for an imaginary scientific instrument. The temperature-sensitive detector in the instrument considered to be maintained between 130K and 150K to reduce dark current noise and increase the data quality. A Single-Phase fluid based MPFL is chosen for this system-level study and this TCS consists of a microfluid pump, a micro-cryocooler, a fluid accumulator, external heaters, flow regulators, and sensors. This work also explains the thermal control system architecture with a conceptual design, arrangement of all the components, and thermal analysis for different low orbit conditions. Sizing and extensive trade studies for the components are conducted and the results have shown that the Single-phase MPFL system is able to handle the given thermal loads and maintain the satellite’s interface temperature within the desired limit.Keywords: active thermal control system, satellite thermal, mechanically pumped fluid loop system, cryogenics, cryocooler
Procedia PDF Downloads 2614897 Evolutions of Structural Properties of Native Phospho Casein (NPC) Powder during Storage
Authors: Sarah Nasser, Anne Moreau, Alain Hedoux, Romain Jeantet, Guillaume Delaplace
Abstract:
Background: Spray dryed powders containing some caseins are commonly produced in dairy industry. It is widely admitted that the structure of casein evolves during powder storage, inducing a loss of solubility. However few studies evaluate accurately the destabilization mechanisms at molecular and mesoscopic level, in particular for Native Phospho Casein powder (NPC). Consequently, at the state of the art, it is very difficult to assess which secondary structure change or crosslinks initiate insolubility during storage. To address this issue, controlled ageing conditions have been applied to a NPC powder (which was obtained by spray drying a concentrate containing a higher content of casein (90%), whey protein (8%) and lactose (few %)). Evolution of structure and loss of solubility, with the effects of temperature and time of storage were systematically reported. Methods: FTIR spectroscopy, Raman and Circular Dichroism were used to monitor changes of secondary structure in dry powder and in solution after rehydration. Besides, proteomic tools and electrophoresis have been performed after varying storage conditions for evaluating aggregation and post translational modifications, like lactosylation or phosphorylation. Finally, Tof Sims and MEB were used to follow in parallel evolution of structure in surface and skin formation due to storage. Results + conclusion: These results highlight the important role of storage temperature in the stability of NPC. It is shown that this is not lactosylation at the heart of formation of aggregates, as advanced in others publications This is almost the rise of multitude post translational modifications (chemical cross link), added to disulphide bridges (physical cross link) wich contribute to the destabilisation of structure and aggregation of casein. A relative quantification of each kind of cross link, source of aggregates, is proposed. In addition, it has been proved that migration of lipids and formation of skin in surface during the ageing also explains the evolution of structure casein and thus the alterations of functional properties of NPC powder.Keywords: casein, cross link, powder, storage
Procedia PDF Downloads 3794896 High-Performance Supercapacitors with Activated Carbon and Nickel Sulfide Composite
Authors: Sarita Sindhu, Vinay Kumar
Abstract:
The growing demand for efficient energy storage in applications such as portable electronics, electric vehicles, and renewable energy systems has emphasized the need for advanced energy storage materials. This study addresses the pressing need for efficient energy storage materials by exploring the synthesis and application of a composite of activated carbon (AC) and nickel sulfide (NiS) for supercapacitors. Activated carbon, possessing high surface area and excellent electrochemical stability, was combined with nickel sulfide, a transition metal sulfide with high theoretical capacitance, to enhance the electrochemical performance of the composite material. Characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), were employed to analyze the morphology, crystalline structure, and bonding characteristics, confirming the successful formation of a uniformly distributed AC/NiS composite. Electrochemical evaluations revealed that the AC/NiS composite exhibited superior capacitance, excellent rate capability, and enhanced cycling stability compared to pure AC and NiS. The synergistic effect of the large surface area from activated carbon and redox-active sites of nickel sulfide provided an improved energy storage capacity, making this composite a promising electrode material for high-performance supercapacitors.Keywords: activated carbon, energy storage, sulfide, surface area
Procedia PDF Downloads 114895 Development of Web Application for Warehouse Management System: A Case Study of Ceramics Factory
Authors: Thanaphat Suwanaklang, Supaporn Suwannarongsri
Abstract:
Presently, there are many industries in Thailand producing various products for both domestic distribution and export to foreign countries. Warehouse is one of the most important areas of business needing to store their products. Such businesses need to have a suitable warehouse management system for reducing the storage time and using the space as much as possible. This paper proposes the development of a web application for a warehouse management system. One of the ceramics factories in Thailand is conducted as a case study. By applying the ABC analysis, fixed location, commodity system, ECRS, and 7-waste theories and principles, the web application for the warehouse management system of the selected ceramics factory is developed to design the optimal storage area for groups of products and design the optimal routes of forklifts. From experimental results, it was found that the warehouse management system developed via the web application can reduce the travel distance of forklifts and the time of searching for storage area by 100% once compared with the conventional method. In addition, the entire storage area can be on-line and real-time monitored.Keywords: warehouse management system, warehouse design method, logistics system, web application
Procedia PDF Downloads 1364894 Land Cover Classification System for the Estimation of Carbon Storage in Terrestrial Ecosystems
Authors: Lei Zhang
Abstract:
The carbon cycle greatly influences global change, and the land cover changes contribute to the status and rate of the carbon budget in ecosystems. This paper proposes a land cover classification system for mapping land cover, the national ecological environment assessment, and estimating carbon storage in ecosystems. The classification system consists of basic land cover classes at levels Ⅰ and Ⅱ and auxiliary features at level III. The basic 38 classes characterizing land cover features are derived from 19 criteria referring to composition, structure, pattern, phenology, etc. The basic classes reflect the status of carbon storage in ecosystems. The auxiliary classes at level III complement the attributes of higher levels by 9 criteria. The 5 environmental criteria of temperature, moisture, landform, aspect and slope mainly reflect the potential and intensity of carbon storage in ecosystems. The disturbance of vegetation succession caused by land use type influences the vegetation carbon budget. The other 3 vegetation cover criteria, growth period, and species characteristics further refine the vegetation types. The hierarchical structure of the land cover map (the classes of levels Ⅰ and Ⅱ) is independent of the products of level III, which is helpful for land cover product management and applications. The classification system has been adopted in the Chinese national land cover database for the carbon budget in ecosystems at a 30 m scale.Keywords: classification system, land cover, ecosystem, carbon storage, object based
Procedia PDF Downloads 704893 Validating Thermal Performance of Existing Wall Assemblies Using In-Situ Measurements
Authors: Shibei Huang
Abstract:
In deep energy retrofits, the thermal performance of existing building envelopes is often difficult to determine with a high level of accuracy. For older buildings, the records of existing assemblies are often incomplete or inaccurate. To obtain greater baseline performance accuracy for energy models, in-field measurement tools can be used to obtain data on the thermal performance of the existing assemblies. For a known assembly, these field measurements assist in validating the U-factor estimates. If the field-measured U-factor consistently varies from the calculated prediction, those measurements prompt further study. For an unknown assembly, successful field measurements can provide approximate U-factor evaluation, validate assumptions, or identify anomalies requiring further investigation. Using case studies, this presentation will focus on the non-destructive methods utilizing a set of various field tools to validate the baseline U-factors for a range of existing buildings with various wall assemblies. The lessons learned cover what can be achieved, the limitations of these approaches and tools, and ideas for improving the validity of measurements. Key factors include the weather conditions, the interior conditions, the thermal mass of the measured assemblies, and the thermal profiles of the assemblies in question.Keywords: existing building, sensor, thermal analysis, retrofit
Procedia PDF Downloads 634892 Safety Testing of Commercial Lithium-Ion Batteries and Failure Modes Analysis
Authors: Romeo Malik, Yashraj Tripathy, Anup Barai
Abstract:
Transportation safety is a major concern for vehicle electrification on a large-scale. The failure cost of lithium-ion batteries is substantial and is significantly impacted by higher liability and replacement cost. With continuous advancement on the material front in terms of higher energy density, upgrading safety characteristics are becoming more crucial for broader integration of lithium-ion batteries. Understanding and impeding thermal runaway is the prime issue for battery safety researchers. In this study, a comprehensive comparison of thermal runaway mechanisms for two different cathode types, Li(Ni₀.₃Co₀.₃Mn₀.₃)O₂ and Li(Ni₀.₈Co₀.₁₅Al₀.₀₅)O₂ is explored. Both the chemistries were studied for different states of charge, and the various abuse scenarios that lead to thermal runaway is investigated. Abuse tests include mechanical abuse, electrical abuse, and thermal abuse. Batteries undergo thermal runaway due to a series of combustible reactions taking place internally; this is observed as multiple jets of flame reaching temperatures of the order of 1000ºC. The physicochemical characterisation was performed on cells, prior to and after abuse. Battery’s state of charge and chemistry have a significant effect on the flame temperature profiles which is otherwise quantified as heat released. Majority of the failures during transportation is due to these external short circuit. Finally, a mitigation approach is proposed to impede the thermal runaway hazard. Transporting lithium-ion batteries under low states of charge is proposed as a way forward. Batteries at low states of charge have demonstrated minimal heat release under thermal runaway reducing the risk of secondary hazards such as thermal runaway propagation.Keywords: battery reliability, lithium-ion batteries, thermal runaway characterisation, tomography
Procedia PDF Downloads 1224891 Knowledge-driven Integration of Meat Storage and Safety Practices among College of Science Undergraduate Students of Polytechnic University of the Philippines – Sta. Mesa
Authors: Erwin L. Descallar
Abstract:
Food safety is crucial in protecting the health of consumers, maintaining integrity in the entire food industry, and ensuring regulatory compliance. Food is a universal need for survival, and everyone is at risk of engaging in improper food handling, which increases vulnerability to foodborne illnesses. The level of knowledge or awareness and meat storage practices of students are behaviors influenced by various demographic factors. The Health Belief Model examines the relationship of such demographic factors towards the attitude, perception, and actions of individuals on perceived risk. This study aims to analyze and understand the correlation of said behaviors with course programs, prior food poisoning experience, and food handling of university students. The study employed randomized responses from 89 university students (n=89) under the College of Science at the Polytechnic University of the Philippines–Sta. Mesa (Manila). The results were subjected to measures of central tendency for score ranking and inferential statistics. The statistics were compared using Pearson ‘r’ Product Moment Correlation to determine the degree of relationship between the knowledge and practices on meat storage and safety. No statistically significant differences were found between the course program of students, food poisoning experiences, level of knowledge, and awareness regarding proper meat storage practices. However, increased frequency and involvement in meat handling have shown a positive correlation, indicating that there is a correlation between food handling and proper meat storage practices of university students.Keywords: meat storage practices, food handling, food safety, meat science and technology
Procedia PDF Downloads 84890 Assessment of the Thermal and Mechanical Properties of Bio-based Composite Materials for Thermal Insulation
Authors: Nega Tesfie Asfaw, Rafik Absi, Labouda B. A, Ikram El Abbassi
Abstract:
Composite materials have come to the fore a few decades ago because of their superior insulation performances. Recycling natural fiber composites and natural fiber reinforcement of waste materials are other steps for conserving resources and the environment. This paper reviewed the Thermal properties (Thermal conductivity, Effusivity, and Diffusivity) and Mechanical properties (Compressive strength, Flexural strength, and Tensile strength) of bio-composite materials for thermal insulation in the construction industry. For several years, the development of the building materials industry has placed a special emphasis on bio-source materials. According to recent studies, most natural fibers have good thermal insulating qualities and good mechanical properties. To determine the thermal and mechanical performance of bio-composite materials in construction most research used experimental methods. the results of the study show that these natural fibers have allowed us to optimize energy consumption in a building and state that density, porosity, percentage of fiber, the direction of heat flow orientation of the fiber, and the shape of the specimen are the main elements that limit the thermal performance and also showed that density, porosity, Type of Fiber, Fiber length, orientation and weight percentage loading, Fiber-matrix adhesion, Choice of the polymer matrix, Presence of void are the main elements that limit the mechanical performance of the insulation material. Based on the results of this reviewed paper Moss fibers (0.034W/ (m. K)), Wood Fiber (0.043 W/ (m. K)), Wheat straw (0.046 W/ (m. K), and corn husk fibers (0.046 W/ (m. K) are a most promising solution for energy efficiency for construction industry with interesting insulation properties and with good acceptable mechanical properties. Finally, depending on the best fibers used for insulation applications in the construction sector, the thermal performance rate of various fibers reviewed in this article are analyzed. Due to Typha's high porosity, the results indicated that Typha australis fiber had a better thermal performance rate of 89.03% with clay.Keywords: bio-based materials, thermal conductivity, compressive strength, thermal performance
Procedia PDF Downloads 294889 Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator
Authors: Petr Mohyla, Ivo Hlavatý, Jiří Hrubý, Lucie Krejčí
Abstract:
This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.Keywords: heat affected zone, impact test, thermal cycle simulator, time of tempering
Procedia PDF Downloads 3024888 Easy Way of Optimal Process-Storage Network Design
Authors: Gyeongbeom Yi
Abstract:
The purpose of this study is to introduce the analytic solution for determining the optimal capacity (lot-size) of a multiproduct, multistage production and inventory system to meet the finished product demand. Reasonable decision-making about the capacity of processes and storage units is an important subject for industry. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ (Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. However, the unrealistic material flow assumption of the EOQ/EPQ model is not suitable for chemical plant design with highly interlinked processes and storage units. This study overcomes the limitation of the classical lot sizing method developed on the basis of the single product and single stage assumption. The superstructure of the plant considered consists of a network of serially and/or parallelly interlinked processes and storage units. The processes involve chemical reactions with multiple feedstock materials and multiple products as well as mixing, splitting or transportation of materials. The objective function for optimization is minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis method, PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for plant design and operation problem confronted in diverse economic situations.Keywords: analytic solution, optimal design, process-storage network
Procedia PDF Downloads 3314887 Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler
Authors: M. E. Ali Mohsin, Agus Arsad, Othman Y. Alothman
Abstract:
This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increased values for the tensile and flexural strength, as compared to the pure HDPE matrix. The thermal analysis result showed improved thermal stability of the formulated nanocomposites. Transmission electron microscopy (TEM) images revealed that larger aggregates of CNTs were disappeared upon addition of these two components leading to the enhancement of thermo-mechanical properties for such composites.Keywords: secondary filler, montmorillonite, carbon nanotube, nanocomposite
Procedia PDF Downloads 3634886 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme
Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim
Abstract:
Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.Keywords: functionally graded plate, thermal buckling analysis, neutral surface
Procedia PDF Downloads 4014885 Acidity and Aridity: Soil Carbon Storage and Myeloablation
Authors: Tom Spears, Zotique Laframboise
Abstract:
Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 arid soil samples taken from 6 profiles in the Nepean Desert, Canada, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. We investigated the possible implications for tectonic platelet activity but identified none.Keywords: soil, carbon storage, acidity, soil inorganic carbon (SIC)
Procedia PDF Downloads 4904884 Valorization of the Algerian Plaster and Dune Sand in the Building Sector
Authors: S. Dorbani, F. Kharchi, F. Salem, K. Arroudj, N. Chioukh
Abstract:
The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.Keywords: local materials, mortar, plaster, dune sand, compaction, mechanical performance, thermal performance
Procedia PDF Downloads 4834883 An Investigation on the Effect of Window Tinting on Thermal Comfort inside Office Buildings
Authors: S. El-Azzeh, A. Al-Aqqad, M. Salem, H. Al-Khaldi, S. Thaher
Abstract:
Thermal comfort studies are very important during the early stages of the building’s design. If this study was ignored, problems will start to occur for the occupants in the future. In hot climates, where solar radiations are entering buildings all year long, occupant’s thermal comfort in office buildings needs to be examined. This study aims to investigate the thermal comfort at an existing office building at the Australian College of Kuwait and test its validity and improve occupant’s thermal satisfaction by covering windows with a heat rejection tint material that enables sunlight to pass through the office while reflecting solar heat outside. Environmental variables were measured using thermal comfort data logger INNOVA 1221 to find the predicted mean vote (PMV) in the selected location. Also, subjective variables were measured to find the actual mean vote (AMV) through surveys distributed among occupants in the selected case study office. All the variables collected were analyzed and classified according to international standards ISO 7730 and ASHRAE55. The results of this study showed improvement in both PMV and AMV. The mean value of PMV based on the original design was 0.691 which dropped to 0.32 after installation and it still at comfort zone. Also, the mean value of the AMV has improved for the first occupant, where before it was -0.46 and it became -1 which is cooler. For the other occupant, it was slightly warm with a mean value of 0.9 and it was improved and became cooler with a -0.25 mean value based on American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) seven-point scale.Keywords: thermal comfort, office buildings, indoor environments, predicted mean vote
Procedia PDF Downloads 1974882 Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test
Authors: Abdul Murad Zainal Abidin, Azahar Mohd, Nor Idayu Arifin, Siti Nor Azila Khalid, Mohd Julzaha Zahari Mohamad Yusof
Abstract:
A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages.Keywords: energy efficiency, thermoelectric cooling, pre-cooling device, heat flow meter, sustainable technology, thermal conductivity
Procedia PDF Downloads 1554881 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses
Authors: Ashis Mallick, Rajeev Ranjan
Abstract:
The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity
Procedia PDF Downloads 3274880 A Hybrid P2P Storage Scheme Based on Erasure Coding and Replication
Authors: Usman Mahmood, Khawaja M. U. Suleman
Abstract:
A peer-to-peer storage system has challenges like; peer availability, data protection, churn rate. To address these challenges different redundancy, replacement and repair schemes are used. This paper presents a hybrid scheme of redundancy using replication and erasure coding. We calculate and compare the storage, access, and maintenance costs of our proposed scheme with existing redundancy schemes. For realistic behaviour of peers a trace of live peer-to-peer system is used. The effect of different replication, and repair schemes are also shown. The proposed hybrid scheme performs better than existing double coding hybrid scheme in all metrics and have an improved maintenance cost than hierarchical codes.Keywords: erasure coding, P2P, redundancy, replication
Procedia PDF Downloads 394