Search results for: stabilization time
17995 A Study on the Waiting Time for the First Employment of Arts Graduates in Sri Lanka
Authors: Imali T. Jayamanne, K. P. Asoka Ramanayake
Abstract:
Transition from tertiary level education to employment is one of the challenges that many fresh university graduates face after graduation. The transition period or the waiting time to obtain the first employment varies with the socio-economic factors and the general characteristics of a graduate. Compared to other fields of study, Arts graduates in Sri Lanka, have to wait a long time to find their first employment. The objective of this study is to identify the determinants of the transition from higher education to employment of these graduates using survival models. The study is based on a survey that was conducted in the year 2016 on a stratified random sample of Arts graduates from Sri Lankan universities who had graduated in 2012. Among the 469 responses, 36 (8%) waiting times were interval censored and 13 (3%) were right censored. Waiting time for the first employment varied between zero to 51 months. Initially, the log-rank and the Gehan-Wilcoxon tests were performed to identify the significant factors. Gender, ethnicity, GCE Advanced level English grade, civil status, university, class received, degree type, sector of first employment, type of first employment and the educational qualifications required for the first employment were significant at 10%. The Cox proportional hazards model was fitted to model the waiting time for first employment with these significant factors. All factors, except ethnicity and type of employment were significant at 5%. However, since the proportional hazard assumption was violated, the lognormal Accelerated failure time (AFT) model was fitted to model the waiting time for the first employment. The same factors were significant in the AFT model as in Cox proportional model.Keywords: AFT model, first employment, proportional hazard, survey design, waiting time
Procedia PDF Downloads 31217994 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency
Authors: Shao-Ku Kao
Abstract:
This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.Keywords: wireless power transfer, active diode, delay compensation, time to voltage converter, PCE
Procedia PDF Downloads 28217993 Heuristic for Accelerating Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina, A. Kumar, P. Boulet
Abstract:
In this paper, we propose a new packing strategy to find free resources for run-time mapping of application tasks on NoC-based Heterogeneous MPSoCs. The proposed strategy minimizes the task mapping time in addition to placing the communicating tasks close to each other. To evaluate our approach, a comparative study is carried out. Experiments show that our strategy provides better results when compared to latest dynamic mapping strategies reported in the literature.Keywords: heterogeneous MPSoCs, NoC, dynamic mapping, routing
Procedia PDF Downloads 52617992 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.Keywords: time estimation, machine learning, Artificial neural network, project design phase
Procedia PDF Downloads 9717991 Internet of Things Based Process Model for Smart Parking System
Authors: Amjaad Alsalamah, Liyakathunsia Syed
Abstract:
Transportation is an essential need for many people to go to their work, school, and home. In particular, the main common method inside many cities is to drive the car. Driving a car can be an easy job to reach the destination and load all stuff in a reasonable time. However, deciding to find a parking lot for a car can take a long time using the traditional system that can issue a paper ticket for each customer. The old system cannot guarantee a parking lot for all customers. Also, payment methods are not always available, and many customers struggled to find their car among a numerous number of cars. As a result, this research focuses on providing an online smart parking system in order to save time and budget. This system provides a flexible management system for both parking owner and customers by receiving all request via the online system and it gets an accurate result for all available parking and its location.Keywords: smart parking system, IoT, tracking system, process model, cost, time
Procedia PDF Downloads 33517990 Formation of Stable Aqueous Dispersions of Polyaniline-Silica Particles for Application in Anticorrosive Coatings on Steel
Authors: K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva
Abstract:
Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. Two forms of PANI are generally accepted to have effective protection of steel: the conducting emeraldine salt (ES) and the non-conducting emeraldine base (EB). The ability to intercept electrons at the metal surface and to transport them is typically attributed to ES, while the success of EB as an anticorrosive additive in the coating is attributed to its ability to oxidize and reduce in a reversible way. This electrochemical mechanism is probably combined with barrier effect against corrosion species. In this work, we describe the preparation of stable suspensions of colloidal PANI-SiO₂ particles, suitable for obtaining of composite anticorrosive coating on steel. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO₂ particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO₂ particles’ suspension against aggregation is realized at pH > 5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO₂ particles. We anticipate that incorporation of the small particles will provide a more homogeneous distribution in the coating matrix and will decrease the negative effect on barrier properties of the composite coating.Keywords: particles, stable dispersion, composite coatings, corrosion protection
Procedia PDF Downloads 17517989 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems
Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis
Abstract:
Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties
Procedia PDF Downloads 15317988 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection
Authors: Mefteh Bouhalleb
Abstract:
With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.Keywords: nanofluid, nanoparticles, heat transfer, time response
Procedia PDF Downloads 9217987 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 24617986 Real-Time Web Map Service Based on Solar-Powered Unmanned Aerial Vehicle
Authors: Sunghun Jung
Abstract:
The existing web map service providers contract with the satellite operators to update their maps by paying an astronomical amount of money, but the cost could be minimized by operating a cheap and small UAV. In contrast to the satellites, we only need to replace aged battery packs from time to time for the usage of UAVs. Utilizing both a regular camera and an infrared camera mounted on a small, solar-powered, long-endurance, and hoverable UAV, daytime ground surface photographs, and nighttime infrared photographs will be continuously and repeatedly uploaded to the web map server and overlapped with the existing ground surface photographs in real-time. The real-time web map service using a small, solar-powered, long-endurance, and hoverable UAV can also be applied to the surveillance missions, in particular, to detect border area intruders. The improved real-time image stitching algorithm is developed for the graphic map data overlapping. Also, a small home server will be developed to manage the huge size of incoming map data. The map photographs taken at tens or hundreds of kilometers by a UAV would improve the map graphic resolution compared to the map photographs taken at thousands of kilometers by satellites since the satellite photographs are limited by weather conditions.Keywords: long-endurance, real-time web map service (RWMS), solar-powered, unmanned aerial vehicle (UAV)
Procedia PDF Downloads 27417985 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet
Abstract:
Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm
Procedia PDF Downloads 48917984 The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field
Authors: Taha Zakaraia Abdel Wahid
Abstract:
The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed.Keywords: dilute gas, radiation field, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics, unsteady non-equilibrium distribution functions
Procedia PDF Downloads 49517983 Effects of Screen Time on Children from a Systems Engineering Perspective
Authors: Misagh Faezipour
Abstract:
This paper explores the effects of screen time on children from a systems engineering perspective. We reviewed literature from several related works on the effects of screen time on children to explore all factors and interrelationships that would impact children that are subjected to using long screen times. Factors such as kids' age, parent attitudes, parent screen time influence, amount of time kids spend with technology, psychosocial and physical health outcomes, reduced mental imagery, problem-solving and adaptive thinking skills, obesity, unhealthy diet, depressive symptoms, health problems, disruption in sleep behavior, decrease in physical activities, problematic relationship with mothers, language, social, emotional delays, are examples of some factors that could be either a cause or effect of screen time. A systems engineering perspective is used to explore all the factors and factor relationships that were discovered through literature. A causal model is used to illustrate a graphical representation of these factors and their relationships. Through the causal model, the factors with the highest impacts can be realized. Future work would be to develop a system dynamics model to view the dynamic behavior of the relationships and observe the impact of changes in different factors in the model. The different changes on the input of the model, such as a healthier diet or obesity rate, would depict the effect of the screen time in the model and portray the effect on the children’s health and other factors that are important, which also works as a decision support tool.Keywords: children, causal model, screen time, systems engineering, system dynamics
Procedia PDF Downloads 14417982 Rapid Detection of MBL Genes by SYBR Green Based Real-Time PCR
Authors: Taru Singh, Shukla Das, V. G. Ramachandran
Abstract:
Objectives: To develop SYBR green based real-time PCR assay to detect carbapenemases (NDM, IMP) genes in E. coli. Methods: A total of 40 E. coli from stool samples were tested. Six were previously characterized as resistant to carbapenems and documented by PCR. The remaining 34 isolates previously tested susceptible to carbapenems and were negative for these genes. Bacterial RNA was extracted using manual method. The real-time PCR was performed using the Light Cycler III 480 instrument (Roche) and specific primers for each carbapenemase target were used. Results: Each one of the two carbapenemase gene tested presented a different melting curve after PCR amplification. The melting temperature (Tm) analysis of the amplicons identified was as follows: blaIMP type (Tm 82.18°C), blaNDM-1 (Tm 78.8°C). No amplification was detected among the negative samples. The results showed 100% concordance with the genotypes previously identified. Conclusions: The new assay was able to detect the presence of two different carbapenemase gene type by real-time PCR.Keywords: resistance, b-lactamases, E. coli, real-time PCR
Procedia PDF Downloads 41117981 Modelling of Cavity Growth in Underground Coal Gasification
Authors: Preeti Aghalayam, Jay Shah
Abstract:
Underground coal gasification (UCG) is the in-situ gasification of unmineable coals to produce syngas. In UCG, gasifying agents are injected into the coal seam, and a reactive cavity is formed due to coal consumption. The cavity formed is typically hemispherical, and this report consists of the MATLAB model of the UCG cavity to predict the composition of the output gases. There are seven radial and two time-variant ODEs. A MATLAB solver (ode15s) is used to solve the radial ODEs from the above equations. Two for-loops are implemented in the model, i.e., one for time variations and another for radial variation. In the time loop, the radial odes are solved using the MATLAB solver. The radial loop is nested inside the time loop, and the density odes are numerically solved using the Euler method. The model is validated by comparing it with the literature results of laboratory-scale experiments. The model predicts the radial and time variation of the product gases inside the cavity.Keywords: gasification agent, MATLAB model, syngas, underground coal gasification (UCG)
Procedia PDF Downloads 20617980 System Dynamics Projections of Environmental Issues for Domestic Water and Wastewater Scenarios in Urban Area of India
Authors: Isha Sharawat, R. P. Dahiya, T. R. Sreekrishnan
Abstract:
One of the environmental challenges in India is urban wastewater management as regulations and infrastructural development has not kept pace with the urbanization and growing population. The quality of life of people is also improving with the rapid growth of the gross domestic product. This has contributed to the enhancement in the per capita water requirement and consumption. More domestic water consumption generates more wastewater. The scarcity of potable water is making the situation quite serious, and water supply has to be regulated in most parts of the country during summer. This requires elaborate and concerted efforts to efficiently manage the water resources and supply systems. In this article, a system dynamics modelling approach is used for estimating the water demand and wastewater generation in a district headquarter city of North India. Projections are made till the year 2035. System dynamics is a software tool used for formulation of policies. On the basis of the estimates, policy scenarios are developed for sustainable development of water resources in conformity with the growing population. Mitigation option curtailing the water demand and wastewater generation include population stabilization, water reuse and recycle and water pricing. The model is validated quantitatively, and sensitivity analysis tests are carried out to examine the robustness of the model.Keywords: system dynamics, wastewater, water pricing, water recycle
Procedia PDF Downloads 26517979 Determining Coordinates of Ultra-Light Drones Based on the Time Difference of Arrival (TDOA) Method
Authors: Nguyen Huy Hoang, Do Thanh Quan, Tran Vu Kien
Abstract:
The use of the active radar to measure the coordinates of ultra-light drones is frequently difficult due to long-distance, absolutely small radar cross-section (RCS) and obstacles. Since ultra-light drones are usually controlled by the Time Difference of Arrival (RF), the paper proposed a method to measure the coordinates of ultra-light drones in the space based on the arrival time of the signal at receiving antennas and the time difference of arrival (TDOA). The experimental results demonstrate that the proposed method is really potential and highly accurate.Keywords: ultra-light drone, TDOA, radar cross-section (RCS), RF
Procedia PDF Downloads 20817978 Designing User Interfaces for Just in Time Enterprise Solution
Authors: Romi Dey
Abstract:
Introduction: One of the most important criteria for technology to sustain and grow is through it’s elaborate and intuitive design methodology and design thinking. Designing for enterprise applications that cater to Just in Time Technology is one of the most challenging and detailed processes any User Experience Designer would come across. Description: The basic principles of Design, when applied to tailor to these technologies, creates an immense challenge and that’s how a set of redefined and revised design principles that can be applied to designing any Just In Time manufacturing solution. Findings: The thorough process of understanding the end user, their existing pain points which they’ve faced in the real world, their responsibilities and expectations, the core needs and last but not the least the demands, creates havoc nurturing of the design methodologies for the Just in Time solutions. With respect to the business aspect, design and design principles play a strong role in any form of innovation. Conclusion: Innovation and knowledge about the latest technologies are the keywords in the manufacturing industry. It becomes crucial for the product development team to be precise in their understanding of the technology and being sure of end users expectation.Keywords: design thinking, enterprise application, Just in Time, user experience design
Procedia PDF Downloads 17017977 Airy Wave Packet for a Particle in a Time-Dependant Linear Potential
Authors: M. Berrehail, F. Benamira
Abstract:
We study the quantum motion of a particle in the presence of a time- dependent linear potential using an operator invariant that is quadratic in p and linear in q within the framework of the Lewis-Riesenfeld invariant, The special invariant operator proposed in this work is demonstrated to be an Hermitian operator which has an Airy wave packet as its EigenfunctionKeywords: airy wave packet, ivariant, time-dependent linear potential, unitary transformation
Procedia PDF Downloads 49217976 A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication
Authors: Yulong Jia, Xiang Zhang, Ziyuan Wu, Shiji Hu
Abstract:
The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in the quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in the quadratic extension domain. The sub-expanded domain Fp₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, The output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (AB+CD)r⁻¹ mod form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process.Keywords: sm9, hardware, NLP, Montgomery
Procedia PDF Downloads 317975 Analysis of Ionospheric Variations over Japan during 23rd Solar Cycle Using Wavelet Techniques
Authors: C. S. Seema, P. R. Prince
Abstract:
The characterization of spatio-temporal inhomogeneities occurring in the ionospheric F₂ layer is remarkable since these variations are direct consequences of electrodynamical coupling between magnetosphere and solar events. The temporal and spatial variations of the F₂ layer, which occur with a period of several days or even years, mainly owe to geomagnetic and meteorological activities. The hourly F₂ layer critical frequency (foF2) over 23rd solar cycle (1996-2008) of three ionosonde stations (Wakkanai, Kokunbunji, and Okinawa) in northern hemisphere, which falls within same longitudinal span, is analyzed using continuous wavelet techniques. Morlet wavelet is used to transform continuous time series data of foF2 to a two dimensional time-frequency space, quantifying the time evolution of the oscillatory modes. The presence of significant time patterns (periodicities) at a particular time period and the time location of each periodicity are detected from the two-dimensional representation of the wavelet power, in the plane of scale and period of the time series. The mean strength of each periodicity over the entire period of analysis is studied using global wavelet spectrum. The quasi biennial, annual, semiannual, 27 day, diurnal and 12 hour variations of foF2 are clearly evident in the wavelet power spectra in all the three stations. Critical frequency oscillations with multi-day periods (2-3 days and 9 days in the low latitude station, 6-7 days in all stations and 15 days in mid-high latitude station) are also superimposed over large time scaled variations.Keywords: continuous wavelet analysis, critical frequency, ionosphere, solar cycle
Procedia PDF Downloads 22017974 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 36817973 Indoor Microclimate in a Historic Library: Considerations on the Positive Effect of Historic Books on the Stability of Indoor Relative Humidity
Authors: Magda Posani, Maria Do Rosario Veiga, Vasco Peixoto De Freitas
Abstract:
The presented research considers the hygrothermal data acquired in the municipal library of Porto. The library is housed in an XVIII century convent and, among all the rooms in the construction, one, in particular, was chosen for the monitoring campaign because of the presence of a great number of historic books. Temperature and relative humidity, as well as CO₂ concentration, were measured for six consecutive months, in the period December 24th - June 24th. The indoor environment of the building is controlled with a heating and cooling system that is turned on only during the opening hours of the library. The ventilation rate is low because the windows are kept closed, and there is no forced ventilation. The micro-climate is analyzed in terms of users’ comfort and degradation risks for historic books and valuable building surfaces. Through a comparison between indoor and outdoor measured hygrothermal data, indoor relative humidity appears very stable. The influence of the hygroscopicity of books on the stabilization of indoor relative humidity is therefore investigated in detail. The paper finally discusses the benefits given by the presence of historic books in libraries with intermittent heating and cooling. The possibility of obtaining a comfortable and stable indoor climate with low use of HVAC systems in these conditions, while avoiding degradation risks for books and historic building components, is further debated.Keywords: books, historic buildings, hygroscopicity, relative humidity
Procedia PDF Downloads 15117972 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients
Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga
Abstract:
In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence
Procedia PDF Downloads 86617971 Transport Mode Selection under Lead Time Variability and Emissions Constraint
Authors: Chiranjit Das, Sanjay Jharkharia
Abstract:
This study is focused on transport mode selection under lead time variability and emissions constraint. In order to reduce the carbon emissions generation due to transportation, organization has often faced a dilemmatic choice of transport mode selection since logistic cost and emissions reduction are complementary with each other. Another important aspect of transportation decision is lead-time variability which is least considered in transport mode selection problem. Thus, in this study, we provide a comprehensive mathematical based analytical model to decide transport mode selection under emissions constraint. We also extend our work through analysing the effect of lead time variability in the transport mode selection by a sensitivity analysis. In order to account lead time variability into the model, two identically normally distributed random variables are incorporated in this study including unit lead time variability and lead time demand variability. Therefore, in this study, we are addressing following questions: How the decisions of transport mode selection will be affected by lead time variability? How lead time variability will impact on total supply chain cost under carbon emissions? To accomplish these objectives, a total transportation cost function is developed including unit purchasing cost, unit transportation cost, emissions cost, holding cost during lead time, and penalty cost for stock out due to lead time variability. A set of modes is available to transport each node, in this paper, we consider only four transport modes such as air, road, rail, and water. Transportation cost, distance, emissions level for each transport mode is considered as deterministic and static in this paper. Each mode is having different emissions level depending on the distance and product characteristics. Emissions cost is indirectly affected by the lead time variability if there is any switching of transport mode from lower emissions prone transport mode to higher emissions prone transport mode in order to reduce penalty cost. We provide a numerical analysis in order to study the effectiveness of the mathematical model. We found that chances of stock out during lead time will be higher due to the higher variability of lead time and lad time demand. Numerical results show that penalty cost of air transport mode is negative that means chances of stock out zero, but, having higher holding and emissions cost. Therefore, air transport mode is only selected when there is any emergency order to reduce penalty cost, otherwise, rail and road transport is the most preferred mode of transportation. Thus, this paper is contributing to the literature by a novel approach to decide transport mode under emissions cost and lead time variability. This model can be extended by studying the effect of lead time variability under some other strategic transportation issues such as modal split option, full truck load strategy, and demand consolidation strategy etc.Keywords: carbon emissions, inventory theoretic model, lead time variability, transport mode selection
Procedia PDF Downloads 43417970 The Impact of Community Settlement on Leisure Time Use and Body Composition in Determining Physical Lifestyles among Women
Authors: Mawarni Mohamed, Sharifah Shahira A. Hamid
Abstract:
Leisure time is an important component to offset the sedentary lifestyle of the people. Women tend to benefit from leisure activities not only to reduce stress but also to provide opportunities for well-being and self-satisfaction. This study was conducted to investigate body composition and leisure time use among women in Selangor from the influences of community settlement. A total of 419 women aged 18-65 years were selected to participate in this study. Descriptive statistics, t-test and ANOVA were used to analyze the level of physical activity and the relationship between leisure-time use and body composition were made to analyze the physical lifestyles. The results showed that women with normal body composition seem to be involved in more passive activities than women with less weight gain and obesity. Thus, the study recommended that the government and other health and recreational agencies should develop more places and activities suitable for leisure preference for women in their community settlement so they become more interested to engage in more active recreational and physical activities.Keywords: body composition, community settlement, leisure time, physical lifestyles
Procedia PDF Downloads 45317969 Improving the Residence Time of a Rectangular Contact Tank by Varying the Geometry Using Numerical Modeling
Authors: Yamileth P. Herrera, Ronald R. Gutierrez, Carlos, Pacheco-Bustos
Abstract:
This research aims at the numerical modeling of a rectangular contact tank in order to improve the hydrodynamic behavior and the retention time of the water to be treated with the disinfecting agent. The methodology to be followed includes a hydraulic analysis of the tank to observe the fluid velocities, which will allow evidence of low-speed areas that may generate pathogenic agent incubation or high-velocity areas, which may decrease the optimal contact time between the disinfecting agent and the microorganisms to be eliminated. Based on the results of the numerical model, the efficiency of the tank under the geometric and hydraulic conditions considered will be analyzed. This would allow the performance of the tank to be improved before starting a construction process, thus avoiding unnecessary costs.Keywords: contact tank, numerical models, hydrodynamic modeling, residence time
Procedia PDF Downloads 16817968 Driver Behavior Analysis and Inter-Vehicular Collision Simulation Approach
Authors: Lu Zhao, Nadir Farhi, Zoi Christoforou, Nadia Haddadou
Abstract:
The safety test of deploying intelligent connected vehicles (ICVs) on the road network is a critical challenge. Road traffic network simulation can be used to test the functionality of ICVs, which is not only time-saving and less energy-consuming but also can create scenarios with car collisions. However, the relationship between different human driver behaviors and the car-collision occurrences has been not understood clearly; meanwhile, the procedure of car-collisions generation in the traffic numerical simulators is not fully integrated. In this paper, we propose an approach to identify specific driver profiles from real driven data; then, we replicate them in numerical traffic simulations with the purpose of generating inter-vehicular collisions. We proposed three profiles: (i) 'aggressive': short time-headway, (ii) 'inattentive': long reaction time, and (iii) 'normal' with intermediate values of reaction time and time-headway. These three driver profiles are extracted from the NGSIM dataset and simulated using the intelligent driver model (IDM), with an extension of reaction time. At last, the generation of inter-vehicular collisions is performed by varying the percentages of different profiles.Keywords: vehicular collisions, human driving behavior, traffic modeling, car-following models, microscopic traffic simulation
Procedia PDF Downloads 17117967 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models
Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah
Abstract:
In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model
Procedia PDF Downloads 24017966 Joint Modeling of Longitudinal and Time-To-Event Data with Latent Variable
Authors: Xinyuan Y. Song, Kai Kang
Abstract:
Joint models for analyzing longitudinal and survival data are widely used to investigate the relationship between a failure time process and time-variant predictors. A common assumption in conventional joint models in the survival analysis literature is that all predictors are observable. However, this assumption may not always be supported because unobservable traits, namely, latent variables, which are indirectly observable and should be measured through multiple observed variables, are commonly encountered in the medical, behavioral, and financial research settings. In this study, a joint modeling approach to deal with this feature is proposed. The proposed model comprises three parts. The first part is a dynamic factor analysis model for characterizing latent variables through multiple observed indicators over time. The second part is a random coefficient trajectory model for describing the individual trajectories of latent variables. The third part is a proportional hazard model for examining the effects of time-invariant predictors and the longitudinal trajectories of time-variant latent risk factors on hazards of interest. A Bayesian approach coupled with a Markov chain Monte Carlo algorithm to perform statistical inference. An application of the proposed joint model to a study on the Alzheimer's disease neuroimaging Initiative is presented.Keywords: Bayesian analysis, joint model, longitudinal data, time-to-event data
Procedia PDF Downloads 143