Search results for: speed dispersion
3091 Electrochemical Synthesis of Copper Nanoparticles
Authors: Juan Patricio Ibáñez, Exequiel López
Abstract:
A method for synthesizing copper nanoparticles through an electrochemical approach is proposed, employing surfactants to stabilize the size of the newly formed nanoparticles. The electrolyte was made up of a matrix of H₂SO₄ (190 g/L) having Cu²⁺ (from 3.2 to 9.5 g/L), sodium dodecyl sulfate -SDS- (from 0.5 to 1.0 g/L) and Tween 80 (from 0 to 7.5 mL/L). Tween 80 was used in a molar relation of 1 to 1 with SDS. A glass cell was used, which was in a thermostatic water bath to keep the system temperature, and the electrodes were cathodic copper as an anode and stainless steel 316-L as a cathode. This process was influenced by the control exerted through the initial copper concentration in the electrolyte and the applied current density. Copper nanoparticles of electrolytic purity, exhibiting a spherical morphology of varying sizes with low dispersion, were successfully produced, contingent upon the chemical composition of the electrolyte and current density. The minimum size achieved was 3.0 nm ± 0.9 nm, with an average standard deviation of 2.2 nm throughout the entire process. The deposited copper mass ranged from 0.394 g to 1.848 g per hour (over an area of 25 cm²), accompanied by an average Faradaic efficiency of 30.8% and an average specific energy consumption of 4.4 kWh/kg. The chemical analysis of the product employed X-ray powder diffraction (XRD), while physical characteristics such as size and morphology were assessed using atomic force microscopy (AFM). It was identified that the initial concentration of copper and the current density are the variables defining the size and dispersion of the nanoparticles, as they serve as reactants in the cathodic half-reaction. The presence of surfactants stabilizes the nanoparticle size as their molecules adsorb onto the nanoparticle surface, forming a thick barrier that prevents mass transfer with the exterior and halts further growth.Keywords: copper nanopowder, electrochemical synthesis, current density, surfactant stabilizer
Procedia PDF Downloads 633090 Effect of Bi-Dispersity on Particle Clustering in Sedimentation
Authors: Ali Abbas Zaidi
Abstract:
In free settling or sedimentation, particles form clusters at high Reynolds number and dilute suspensions. It is due to the entrapment of particles in the wakes of upstream particles. In this paper, the effect of bi-dispersity of settling particles on particle clustering is investigated using particle-resolved direct numerical simulation. Immersed boundary method is used for particle fluid interactions and discrete element method is used for particle-particle interactions. The solid volume fraction used in the simulation is 1% and the Reynolds number based on Sauter mean diameter is 350. Both solid volume fraction and Reynolds number lie in the clustering regime of sedimentation. In simulations, the particle diameter ratio (i.e. diameter of larger particle to smaller particle (d₁/d₂)) is varied from 2:1, 3:1 and 4:1. For each case of particle diameter ratio, solid volume fraction for each particle size (φ₁/φ₂) is varied from 1:1, 1:2 and 2:1. For comparison, simulations are also performed for monodisperse particles. For studying particles clustering, radial distribution function and instantaneous location of particles in the computational domain are studied. It is observed that the degree of particle clustering decreases with the increase in the bi-dispersity of settling particles. The smallest degree of particle clustering or dispersion of particles is observed for particles with d₁/d₂ equal to 4:1 and φ₁/φ₂ equal to 1:2. Simulations showed that the reduction in particle clustering by increasing bi-dispersity is due to the difference in settling velocity of particles. Particles with larger size settle faster and knockout the smaller particles from clustered regions of particles in the computational domain.Keywords: dispersion in bi-disperse settling particles, particle microstructures in bi-disperse suspensions, particle resolved direct numerical simulations, settling of bi-disperse particles
Procedia PDF Downloads 2073089 Counting People Utilizing Space-Time Imagery
Authors: Ahmed Elmarhomy, K. Terada
Abstract:
An automated method for counting passerby has been proposed using virtual-vertical measurement lines. Space-time image is representing the human regions which are treated using the segmentation process. Different color space has been used to perform the template matching. A proper template matching has been achieved to determine direction and speed of passing people. Distinguish one or two passersby has been investigated using a correlation between passerby speed and the human-pixel area. Finally, the effectiveness of the presented method has been experimentally verified.Keywords: counting people, measurement line, space-time image, segmentation, template matching
Procedia PDF Downloads 4523088 The Study of Tire Pyrolysis Fuel in CI Diesel Engine for Spray Combustion Character and Performance
Authors: Chun Pao Kuo, Chi Tong Lin
Abstract:
The study explored atomization characteristics of tire pyrolysis fuel and its impacts on using three types of fuel: diesel oil mixed with 10% of tire pyrolysis fuel (called T10), diesel oil mixed with 20% tire pyrolysis (called T20), and consumer-grade diesel oil (D100). The investigators used the fuel for simulation and tests at various fuel injection timing, engine speed, and fuel injection speed to inspect impacts from fuel type on oil droplet atomization speed and output power. Actual vehicle tests were conducted using a 5-ton sedan (Hino) with 3660 cc displacement and a front-end inline four-cylinder diesel engine, and this type of vehicle is easily available from the market. A dynamometer was used to set up three engine speeds for the dynamometer testing at different injection timing and pressure. Next, an exhaust analyzer was used to measure exhaust pollution at different conditions to explore the effect of fuel types and injection speeds on output power in order to establish the best operation conditions for tire pyrolysis fuel.Keywords: diesel engine, exhaust pollution, fuel injection timing, tire pyrolysis oil
Procedia PDF Downloads 4083087 Effect of Rolling Parameters on Thin Strip Profile in Cold Rolling
Authors: H. B. Tibar, Z. Y. Jiang
Abstract:
In this study, the influence of rolling process parameters such as the work roll cross angle and work roll shifting value on the strip shape and profile of aluminum have been investigated under dry conditions at a speed ratio of 1.3 using Hille 100 experimental mill. The strip profile was found to improve significantly with increase in work roll cross angle from 0o to 1o, with an associated decrease in rolling force. The effect of roll shifting (from 0 to 8mm) was not as significant as the roll cross angle. However, an increase in work roll shifting value achieved a similar decrease in rolling force as that of work roll cross angle. The effect of work roll shifting was also found to be maximum at an optimum roll speed of 0.0986 m/s for the desired thickness. Of all these parameters, the most significant effect of the strip shape profile was observed with variation of work roll cross angle. However, the rolling force can be a significantly reduced by either increasing the the work roll cross angle or work roll shifting.Keywords: rolling speed ratio, strip shape, work roll cross angle, work roll shifting
Procedia PDF Downloads 4093086 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space
Authors: Xin Chen
Abstract:
It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency
Procedia PDF Downloads 773085 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher
Abstract:
Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture
Procedia PDF Downloads 1573084 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting
Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan
Abstract:
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.Keywords: electron beam melting, additive manufacturing, Ti6Al4V, surface morphology
Procedia PDF Downloads 1143083 Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank
Authors: S. Chikh, S. Boulifa
Abstract:
The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed.Keywords: evaporation, liquid ammonia, storage tank, numerical simulation
Procedia PDF Downloads 2883082 Evaluation of Traffic Noise Level: A Case Study in Residential Area of Ishbiliyah , Kuwait
Authors: Jamal Almatawah, Hamad Matar, Abdulsalam Altemeemi
Abstract:
The World Health Organization (WHO) has recognized environmental noise as harmful pollution that causes adverse psychosocial and physiologic effects on human health. The motor vehicle is considered to be one of the main source of noise pollution. It is a universal phenomenon, and it has grown to the point that it has become a major concern for both the public and policymakers. The aim of this paper, therefore, is to investigate the Traffic noise levels and the contributing factors that affect its level, such as traffic volume, heavy-vehicle Speed and other metrological factors in Ishbiliyah as a sample of a residential area in Kuwait. Three types of roads were selected in Ishbiliyah expressway, major arterial and collector street. The other source of noise that interferes the traffic noise has also been considered in this study. Traffic noise level is measured and analyzed using the Bruel & Kjaer outdoor sound level meter 2250-L (2250 Light). The Count-Cam2 Video Camera has been used to collect the peak and off-peak traffic count. Ambient Weather WM-5 Handheld Weather Station is used for metrological factors such as temperature, humidity and wind speed. Also, the spot speed was obtained using the radar speed: Decatur Genesis model GHD-KPH. All the measurement has been detected at the same time (simultaneously). The results showed that the traffic noise level is over the allowable limit on all types of roads. The average equivalent noise level (LAeq) for the Expressway, Major arterial and Collector Street was 74.3 dB(A), 70.47 dB(A) and 60.84 dB(A), respectively. In addition, a Positive Correlation coefficient between the traffic noise versus traffic volume and between traffic noise versus 85th percentile speed was obtained. However, there was no significant relation and Metrological factors. Abnormal vehicle noise due to poor maintenance or user-enhanced exhaust noise was found to be one of the highest factors that affected the overall traffic noise reading.Keywords: traffic noise, residential area, pollution, vehicle noise
Procedia PDF Downloads 663081 Accurate Binding Energy of Ytterbium Dimer from Ab Initio Calculations and Ultracold Photoassociation Spectroscopy
Authors: Giorgio Visentin, Alexei A. Buchachenko
Abstract:
Recent proposals to use Yb dimer as an optical clock and as a sensor for non-Newtonian gravity imply the knowledge of its interaction potential. Here, the ground-state Born-Oppenheimer Yb₂ potential energy curve is represented by a semi-analytical function, consisting of short- and long-range contributions. For the former, the systematic ab initio all-electron exact 2-component scalar-relativistic CCSD(T) calculations are carried out. Special care is taken to saturate diffuse basis set component with the atom- and bond-centered primitives and reach the complete basis set limit through n = D, T, Q sequence of the correlation-consistent polarized n-zeta basis sets. Similar approaches are used to the long-range dipole and quadrupole dispersion terms by implementing the CCSD(3) polarization propagator method for dynamic polarizabilities. Dispersion coefficients are then computed through Casimir-Polder integration. The semiclassical constraint on the number of the bound vibrational levels known for the ¹⁷⁴Yb isotope is used to scale the potential function. The scaling, based on the most accurate ab initio results, bounds the interaction energy of two Yb atoms within the narrow 734 ± 4 cm⁻¹ range, in reasonable agreement with the previous ab initio-based estimations. The resulting potentials can be used as the reference for more sophisticated models that go beyond the Born-Oppenheimer approximation and provide the means of their uncertainty estimations. The work is supported by Russian Science Foundation grant # 17-13-01466.Keywords: ab initio coupled cluster methods, interaction potential, semi-analytical function, ytterbium dimer
Procedia PDF Downloads 1533080 The Effect of Postural Sway and Technical Parameters of 8 Weeks Technical Training Performed with Restrict of Visual Input on the 10-12 Ages Soccer Players
Authors: Nurtekin Erkmen, Turgut Kaplan, Halil Taskin, Ahmet Sanioglu, Gokhan Ipekoglu
Abstract:
The aim of this study was to determine the effects of an 8 week soccerspecific technical training with limited vision perception on postural control and technical parameters in 10-12 aged soccer players. Subjects in this study were 24 male young soccer players (age: 11.00 ± 0.56 years, height: 150.5 ± 4.23 cm, body weight: 41.49 ± 7.56 kg). Subjects were randomly divided as two groups: Training and control. Balance performance was measured by Biodex Balance System (BBS). Short pass, speed dribbling, 20 m speed with ball, ball control, juggling tests were used to measure soccer players’ technical performances with a ball. Subjects performed soccer training 3 times per week for 8 weeks. In each session, training group with limited vision perception and control group with normal vision perception committed soccer-specific technical drills for 20 min. Data analyzed with t-test for independent samples and Mann-Whitney U between groups and paired t-test and Wilcoxon test between pre-posttests. No significant difference was found balance scores and with eyes open and eyes closed and LOS test between training and control groups after training (p>0.05). After eight week of training there are no significant difference in balance score with eyes open for both training and control groups (p>0.05). Balance scores decreased in training and control groups after the training (p<0.05). The completion time of LOS test shortened in both training and control groups after training (p<0.05). The training developed speed dribbling performance of training group (p<0.05). On the other hand, soccer players’ performance in training and control groups increased in 20 m speed with a ball after eight week training (p<0.05). In conclusion; the results of this study indicate that soccer-specific training with limited vision perception may not improves balance performance in 10-12 aged soccer players, but it develops speed dribbling performance.Keywords: Young soccer players, vision perception, postural control, technical
Procedia PDF Downloads 4693079 Motorist Driving Strategy-Related Factors Affecting Vehicle Fuel Efficiency
Authors: Aydin Azizi, Abdurrahman Tanira
Abstract:
With the onset of climate change and limited fuel resources, improving fuel efficiency has become an important part of the motor industry. To maximize fuel efficiency, development of technologies must come hand-in-hand with awareness of efficient driving strategies. This study aims to explore the various driving habits that can impact fuel efficiency by reviewing available literature. Such habits include sudden and unnecessary acceleration or deceleration, improper hardware maintenance, driving above or below optimum speed and idling. By studying such habits and ultimately applying it to driving techniques, in combination with improved mechanics of the car, will optimize the use of fuel.Keywords: fuel efficiency, driving techniques, optimum speed, optimizing fuel consumption
Procedia PDF Downloads 4593078 Realizing Teleportation Using Black-White Hole Capsule Constructed by Space-Time Microstrip Circuit Control
Authors: Mapatsakon Sarapat, Mongkol Ketwongsa, Somchat Sonasang, Preecha Yupapin
Abstract:
The designed and performed preliminary tests on a space-time control circuit using a two-level system circuit with a 4-5 cm diameter microstrip for realistic teleportation have been demonstrated. It begins by calculating the parameters that allow a circuit that uses the alternative current (AC) at a specified frequency as the input signal. A method that causes electrons to move along the circuit perimeter starting at the speed of light, which found satisfaction based on the wave-particle duality. It is able to establish the supersonic speed (faster than light) for the electron cloud in the middle of the circuit, creating a timeline and propulsive force as well. The timeline is formed by the stretching and shrinking time cancellation in the relativistic regime, in which the absolute time has vanished. In fact, both black holes and white holes are created from time signals at the beginning, where the speed of electrons travels close to the speed of light. They entangle together like a capsule until they reach the point where they collapse and cancel each other out, which is controlled by the frequency of the circuit. Therefore, we can apply this method to large-scale circuits such as potassium, from which the same method can be applied to form the system to teleport living things. In fact, the black hole is a hibernation system environment that allows living things to live and travel to the destination of teleportation, which can be controlled from position and time relative to the speed of light. When the capsule reaches its destination, it increases the frequency of the black holes and white holes canceling each other out to a balanced environment. Therefore, life can safely teleport to the destination. Therefore, there must be the same system at the origin and destination, which could be a network. Moreover, it can also be applied to space travel as well. The design system will be tested on a small system using a microstrip circuit system that we can create in the laboratory on a limited budget that can be used in both wired and wireless systems.Keywords: quantum teleportation, black-white hole, time, timeline, relativistic electronics
Procedia PDF Downloads 753077 Fluid–Structure Interaction Modeling of Wind Turbines
Authors: Andre F. A. Cyrino
Abstract:
Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade
Procedia PDF Downloads 2683076 The Effects of Cardiovascular Risk on Age-Related Cognitive Decline in Healthy Older Adults
Authors: A. Badran, M. Hollocks, H. Markus
Abstract:
Background: Common risk factors for cardiovascular disease are associated with age-related cognitive decline. There has been much interest in treating modifiable cardiovascular risk factors in the hope of reducing cognitive decline. However, there is currently no validated neuropsychological test to assess the subclinical cognitive effects of vascular risk. The Brief Memory and Executive Test (BMET) is a clinical screening tool, which was originally designed to be sensitive and specific to Vascular Cognitive Impairment (VCI), an impairment characterised by decline in frontally-mediated cognitive functions (e.g. Executive Function and Processing Speed). Objective: To cross-sectionally assess the validity of the BMET as a measure of the subclinical effects of vascular risk on cognition, in an otherwise healthy elderly cohort. Methods: Data from 346 participants (57 ± 10 years) without major neurological or psychiatric disorders were included in this study, gathered as part of a previous multicentre validation study for the BMET. Framingham Vascular Age was used as a surrogate measure of vascular risk, incorporating several established risk factors. Principal Components Analysis of the subtests was used to produce common constructs: an index for Memory and another for Executive Function/Processing Speed. Univariate General Linear models were used to relate Vascular Age to performance on Executive Function/Processing Speed and Memory subtests of the BMET, adjusting for Age, Premorbid Intelligence and Ethnicity. Results: Adverse vascular risk was associated with poorer performance on both the Memory and Executive Function/Processing Speed indices, adjusted for Age, Premorbid Intelligence and Ethnicity (p=0.011 and p<0.001, respectively). Conclusions: Performance on the BMET reflects the subclinical effects of vascular risk on cognition, in age-related cognitive decline. Vascular risk is associated with decline in both Executive Function/Processing Speed and Memory groups of subtests. Future studies are needed to explore whether treating vascular risk factors can effectively reduce age-related cognitive decline.Keywords: age-related cognitive decline, vascular cognitive impairment, subclinical cerebrovascular disease, cognitive aging
Procedia PDF Downloads 4713075 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines
Authors: Mustafa Sahin, İlkay Yavrucuk
Abstract:
This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control
Procedia PDF Downloads 1363074 Speed Power Control of Double Field Induction Generator
Authors: Ali Mausmi, Ahmed Abbou, Rachid El Akhrif
Abstract:
This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.Keywords: control of speed, correction of the equivalent command, induction generator, sliding mode
Procedia PDF Downloads 3773073 A Study on Traction Motor Design for Obtaining the Maximum Traction Force of Tram-Train
Authors: Geochul Jeong, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
This study is about IPMSM design for obtaining the maximum traction force of Tram-Train. Tram-Train is a Tram and Train-combined railway vehicles, which operates at a maximum speed of 70km/h in the city section (Tram section) and at a maximum speed of 150km/h in the out-of-city section (Train section). For this reason, tram-train was designed to be an IPMSM (Interior Permanent Synchronous Motor) with a wide range of speed variation. IPMSM’s magnetic path varies depending on the shape of rotor and in this case, the power characteristics are different in the constant torque area and the flux weakening area. Therefore, this study suggests a method to improve Tram-Train’s traction force, based on the relationship between magnetic torque and reluctance torque. The suggested method was applied through IPMSM rotor shape design and electromagnetic field finite element method was conducted to verify the validity of the suggested method.Keywords: tram-train, traction motor, IPMSM, synchronous motor, railway vehicles
Procedia PDF Downloads 4713072 SVM-DTC Using for PMSM Speed Tracking Control
Authors: Kendouci Khedidja, Mazari Benyounes, Benhadria Mohamed Rachid, Dadi Rachida
Abstract:
In recent years, direct torque control (DTC) has become an alternative to the well-known vector control especially for permanent magnet synchronous motor (PMSM). However, it presents a problem of field linkage and torque ripple. In order to solve this problem, the conventional DTC is combined with space vector pulse width modulation (SVPWM). This control theory has achieved great success in the control of PMSM. That has become a hotspot for resolving. The main objective of this paper gives us an introduction of the DTC and SVPWM-DTC control theory of PMSM which has been simulating on each part of the system via Matlab/Simulink based on the mathematical modeling. Moreover, the outcome of the simulation proved that the improved SVPWM- DTC of PMSM has a good dynamic and static performance.Keywords: PMSM, DTC, SVM, speed control
Procedia PDF Downloads 3893071 Design Consideration of a Plastic Shredder in Recycling Processes
Authors: Tolulope A. Olukunle
Abstract:
Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm.Keywords: design, machine, plastic waste, recycling
Procedia PDF Downloads 3213070 The Influence of Music Education and the Order of Sounds on the Grouping of Sounds into Sequences of Six Tones
Authors: Adam Rosiński
Abstract:
This paper discusses an experiment conducted with two groups of participants, composed of musicians and non-musicians, in order to investigate the impact of the speed of a sound sequence and the order of sounds on the grouping of sounds into sequences of six tones. Significant differences were observed between musicians and non-musicians with respect to the threshold sequence speed at which the sequence was split into two streams. The differences in the results for the two groups suggest that the musical education of the participating listeners may be a vital factor. The criterion of musical education should be taken into account during experiments so that the results obtained are reliable, uniform, and free from interpretive errors.Keywords: auditory scene analysis, education, hearing, psychoacoustics
Procedia PDF Downloads 1023069 Alloying Effect on Hot Workability of M42 High Speed Steel
Authors: Jung-Ho Moon, Tae Kwon Ha
Abstract:
In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0C, 0.2Mn, 3.8Cr, 1.5W, 8.5Co, 9.2Mo, and 1.0V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3 wt.% were cast into ingots of 140 mm´ 140 mm´ 330 mm by vacuum induction melting. After solution treatment at 1150°C for 1.5 hrs. followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminium and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.Keywords: high speed steels, alloying elements, eutectic carbides, microstructure, hot workability
Procedia PDF Downloads 3523068 Studies on Race Car Aerodynamics at Wing in Ground Effect
Authors: Dharni Vasudhevan Venkatesan, K. E. Shanjay, H. Sujith Kumar, N. A. Abhilash, D. Aswin Ram, V. R. Sanal Kumar
Abstract:
Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.Keywords: external aerodynamics, external flow choking, race car aerodynamics, wing in ground effect
Procedia PDF Downloads 3563067 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction
Authors: Hicham Idriss
Abstract:
Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic
Procedia PDF Downloads 2533066 Effect of Helium and Sulfur Hexafluoride Gas Inhalation on Voice Resonances
Authors: Pallavi Marathe
Abstract:
Voice is considered to be a unique biometric property of human beings. Unlike other biometric evidence, for example, fingerprints and retina scans, etc., voice can be easily changed or mimicked. The present paper talks about how the inhalation of helium and sulfur hexafluoride (SF6) gas affects the voice formant frequencies that are the resonant frequencies of the vocal tract. Helium gas is low-density gas; hence, the voice travels with a higher speed than that of air. On the other side in SF6 gas voice travels with lower speed than that of air due to its higher density. These results in decreasing the resonant frequencies of voice in helium and increasing in SF6. Results are presented with the help of Praat software, which is used for voice analysis.Keywords: voice formants, helium, sulfur hexafluoride, gas inhalation
Procedia PDF Downloads 1253065 A Vehicle Detection and Speed Measurement Algorithm Based on Magnetic Sensors
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
Cooperative intelligent transport systems (C-ITS) can greatly improve safety and efficiency in road transport by enabling communication, not only between vehicles themselves but also between vehicles and infrastructure. For that reason, traffic surveillance systems on the road are of great importance. This paper focuses on the development of an on-road unit comprising several magnetic sensors for real-time vehicle detection, movement direction, and speed measurement calculations. Magnetic sensors can feel and measure changes in the earth’s magnetic field. Vehicles are composed of many parts with ferromagnetic properties. Depending on sensors’ sensitivity, changes in the earth’s magnetic field caused by passing vehicles can be detected and analyzed in order to extract information on the properties of moving vehicles. In this paper, we present a prototype algorithm for real-time, high-accuracy, vehicle detection, and speed measurement, which can be implemented as a portable, low-cost, and non-invasive to existing infrastructure solution with the potential to replace existing high-cost implementations. The paper describes the algorithm and presents results from its preliminary lab testing in a close to real condition environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: magnetic sensors, vehicle detection, speed measurement, traffic surveillance system
Procedia PDF Downloads 1213064 Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics
Authors: David Nagy
Abstract:
This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force.Keywords: aerodynamic simulation, aircraft, airfoil, computational fluid dynamics, lift to drag ratio, NACA 64-206, NACA 65-415
Procedia PDF Downloads 3883063 Energy Saving Study of Mass Rapid Transit by Optimal Train Coasting Operation
Authors: Artiya Sopharak, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
This paper presents an energy-saving study of Mass Rapid Transit (MRT) using an optimal train coasting operation. For the dynamic train movement with four modes of operation, including accelerating mode, constant speed or cruising mode, coasting mode, and braking mode are considered in this study. The acceleration rate, the deceleration rate, and the starting coasting point are taken into account the optimal train speed profile during coasting mode with considering the energy saving and acceptable travel time comparison to the based case with no coasting operation. In this study, the mathematical method as a Quadratic Search Method (QDS) is conducted to carry out the optimization problem. A single train of MRT services between two stations with a distance of 2 km and a maximum speed of 80 km/h is taken to be the case study. Regarding the coasting mode operation, the results show that the longer distance of costing mode, the less energy consumption in cruising mode and the less braking energy. On the other hand, the shorter distance of coasting mode, the more energy consumption in cruising mode and the more braking energy.Keywords: energy saving, coasting mode, mass rapid transit, quadratic search method
Procedia PDF Downloads 3023062 Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots
Authors: Hossein Keshavarz, Alejandro Ramirez-Serrano
Abstract:
Energy efficiency and locomotion speed are two key parameters for legged robots; thus, finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot’s hind legs.Keywords: genetic algorithm optimization, locomotion path planning, quadruped robots, redundant legs
Procedia PDF Downloads 104