Search results for: relay selection
2014 Fuzzy Decision Making to the Construction Project Management: Glass Facade Selection
Authors: Katarina Rogulj, Ivana Racetin, Jelena Kilic
Abstract:
In this study, the fuzzy logic approach (FLA) was developed for construction project management (CPM) under uncertainty and duality. The focus was on decision making in selecting the type of the glass facade for a residential-commercial building in the main design. The adoption of fuzzy sets was capable of reflecting construction managers’ reliability level over subjective judgments, and thus the robustness of the system can be achieved. An α-cuts method was utilized for discretizing the fuzzy sets in FLA. This method can communicate all uncertain information in the optimization process, taking into account the values of this information. Furthermore, FLA provides in-depth analyses of diverse policy scenarios that are related to various levels of economic aspects when it comes to the construction projects' valid decision making. The developed approach is applied to CPM to demonstrate its applicability. Analyzing the materials of glass facades, variants were defined. The development of the FLA for the CPM included relevant construction projec'ts stakeholders that were involved in the criteria definition to evaluate each variant. Using fuzzy Decision-Making Trial and Evaluation Laboratory Method (DEMATEL) comparison of the glass facade was conducted. This way, a rank, according to the priorities for inclusion into the main design, of variants is obtained. The concept was tested on a residential-commercial building in the city of Rijeka, Croatia. The newly developed methodology was then compared with the existing one. The aim of the research was to define an approach that will improve current judgments and decisions when it comes to the material selection of buildings facade as one of the most important architectural and engineering tasks in the main design. The advantage of the new methodology compared to the old one is that it includes the subjective side of the managers’ decisions, as an inevitable factor in each decision making. The proposed approach can help construction projects managers to identify the desired type of glass facade according to their preference and practical conditions, as well as facilitate in-depth analyses of tradeoffs between economic efficiency and architectural design.Keywords: construction projects management, DEMATEL, fuzzy logic approach, glass façade selection
Procedia PDF Downloads 1392013 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv
Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman
Abstract:
Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals
Procedia PDF Downloads 4342012 Parameter Measurement Systems to Evaluate Performance of Archers
Authors: Muhammad Zikril Hakim Md. Azizi, Norhafizan Ahmad, Raja Ariffin Raja Ghazilla
Abstract:
Postural stability, attention level of the archer and particularly the vibrations of the bow itself plays a prominent role in determining the athletes performance. Many techniques and systems had been developing to monitor the parameters of the archers during training. In Malaysia, archery coaches tend to use non-scientific ways that they are familiar with, to evaluate archer performance. An approach that provides more affordable yet accurate systems to the masses and relatively easy system deployment procedure need to be proposed. Hence, this project will address to fulfil the needs. Three area of the archer parameter were included for data monitoring sensors. Attention level can be measured using EEG sensor, centre of mass linked to the postural stability can be measured by foot pressure sensor, and the bow vibrations in three axis will be relayed by the vibrations sensors placed directly on the bow using wireless sensors. Arduino based microcontroller used to relay all the data back to the interfacing systems. Interface systems will be using Python language and C++ framework for user interface and hardware interfacing systems. All sensor data can be observed in real time using the in-house applications, and each sessions can be saved to common files so that coach and the team can have a further discussion and comparisons.Keywords: archery, graphical user interface, microcontroller, wireless sensor, monitoring system
Procedia PDF Downloads 3042011 Georgia Case: Tourism Expenses of International Visitors on the Basis of Growing Attractiveness
Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili
Abstract:
At present actual tourism indicators cannot be calculated in Georgia, making it impossible to perform their quantitative analysis. Therefore, the study conducted by us is highly important from a theoretical as well as practical standpoint. The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors and to calculate statistical attractiveness indices of the tourism potential of Georgia. During the research, the method involving random and proportional selection has been applied. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from major Georgian airports, and a representative population of foreign visitors and a rule of selection of respondents were determined. The results show a trend of growth in tourist numbers and the share of tourists from post-soviet countries are constantly increasing. The level of satisfaction with tourist facilities and quality of service has improved, but still we have a problem of disparity between the service quality and the prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher. Attractiveness of popular cities of Georgia has increased by 43%.Keywords: tourist, expenses, indexes, statistics, analysis
Procedia PDF Downloads 3392010 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 1052009 An Energy Holes Avoidance Routing Protocol for Underwater Wireless Sensor Networks
Authors: A. Khan, H. Mahmood
Abstract:
In Underwater Wireless Sensor Networks (UWSNs), sensor nodes close to water surface (final destination) are often preferred for selection as forwarders. However, their frequent selection makes them depleted of their limited battery power. In consequence, these nodes die during early stage of network operation and create energy holes where forwarders are not available for packets forwarding. These holes severely affect network throughput. As a result, system performance significantly degrades. In this paper, a routing protocol is proposed to avoid energy holes during packets forwarding. The proposed protocol does not require the conventional position information (localization) of holes to avoid them. Localization is cumbersome; energy is inefficient and difficult to achieve in underwater environment where sensor nodes change their positions with water currents. Forwarders with the lowest water pressure level and the maximum number of neighbors are preferred to forward packets. These two parameters together minimize packet drop by following the paths where maximum forwarders are available. To avoid interference along the paths with the maximum forwarders, a packet holding time is defined for each forwarder. Simulation results reveal superior performance of the proposed scheme than the counterpart technique.Keywords: energy holes, interference, routing, underwater
Procedia PDF Downloads 4122008 Automatic Detection of Defects in Ornamental Limestone Using Wavelets
Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas
Abstract:
A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.Keywords: automatic detection, defects, fracture lines, wavelets
Procedia PDF Downloads 2512007 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 1662006 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University
Authors: Greg Turner, Bin Lu, Cheer-Sun Yang
Abstract:
As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.Keywords: agile methods, mobile apps, software process model, waterfall model
Procedia PDF Downloads 4102005 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 1002004 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines
Authors: Shahrokh Barati, Reza Ramezani
Abstract:
Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy
Procedia PDF Downloads 4042003 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.Keywords: data grid, data replication, simulation, replica selection, replica placement
Procedia PDF Downloads 2632002 The Impact of Access to Microcredit Programme on Women Empowerment: A Case Study of Cowries Microfinance Bank in Lagos State, Nigeria
Authors: Adijat Olubukola Olateju
Abstract:
Women empowerment is an essential developmental tool in every economy especially in less developed countries; as it helps to enhance women's socio-economic well-being. Some empirical evidence has shown that microcredit has been an effective tool in enhancing women empowerment, especially in developing countries. This paper therefore, investigates the impact of microcredit programme on women empowerment in Lagos State, Nigeria. The study used Cowries Microfinance Bank (CMB) as a case study bank, and a total of 359 women entrepreneurs were selected by simple random sampling technique from the list of Cowries Microfinance Bank. Selection bias which could arise from non-random selection of participants or non-random placement of programme, was adjusted for by dividing the data into participant women entrepreneurs and non-participant women entrepreneurs. The data were analyzed with a Propensity Score Matching (PSM) technique. The result of the Average Treatment Effect on the Treated (ATT) obtained from the PSM indicates that the credit programme has a significant effect on the empowerment of women in the study area. It is therefore, recommended that microfinance banks should be encouraged to give loan to women and for more impact of the loan to be felt by the beneficiaries the loan programme should be complemented with other programmes such as training, grant, and periodic monitoring of programme should be encouraged.Keywords: empowerment, microcredit, socio-economic wellbeing, development
Procedia PDF Downloads 3112001 A Framework for Railway Passenger Station Site Selection Using Transit-Oriented Development and Urban Regeneration Approaches
Authors: M. Taghavi Zavareh, H. Saremi
Abstract:
Railway transportation is one of the types of transportation systems which, due to the advantages such as the ability to transport a large number of passengers, environmental protection, low energy consumption, and contribution to tourism, has importance. The existence of suitable and accessible stations is one of the requirements that leads to better performance and plays a significant role in the economic, social, political, and cultural development of urban areas. This paper aims to propose a framework for locating railway passenger stations. This research used descriptive-analytical methods and library tools to answer which definitions and theoretical approaches are suitable for the location of railway passenger stations. The results showed that theoretical approaches such as Transit-Oriented Development and Urban Regeneration are of the utmost importance theoretical bases in the field of research. Moreover, we studied three stations in Iran to find out about real trends and criteria in this research. This study also proposed four major criteria including accessibility, development, rail related and economics, and environmental harmony. Ultimately with an emphasis on the proposed criteria, the study concludes that the combination of Transit-Oriented Development and Urban Regeneration is the most suitable framework to locate railway passenger stations.Keywords: railway passenger station, railway station, site selection, transit-oriented development, urban regeneration
Procedia PDF Downloads 2742000 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs
Authors: Iman Farasat, Howard M. Salis
Abstract:
The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.Keywords: biophysical model, CRISPR, Cas9, genome editing
Procedia PDF Downloads 4091999 Effect of Aerobic Training with Coriandrum sativum Extract on Selection of Oxidative Stress Markers in Diabetic Rats
Authors: M. Golzade Gangraj, A. Abdi, N. ganji
Abstract:
Aim: The aim of this study was to evaluate the Effect of aerobic training with Coriandrum sativum extract on selection of oxidative stress markers in diabetic rats. Methods: The population of male Wistar rats is the Pasteur Institute. Forty rats were randomly selected as subjects. After moving the mouse in vitro and stay for a week in a cage for sustainability, were diabetic. Diabetes induced by injection STZ (55 mg per kg of body weight of mice) was performed. According blood glucose was randomly divided into four experimental groups (control, training, extract and training-extract). Extract group consumed 150 mg per kg of body weight per day coriander juice. Training group performed aerobic training (50-55% VO2max). Result: The results showed that aerobic exercise training and coriander seed extract caused a significant increase in total antioxidant; superoxide dismutase and catalase were significantly decreased malondialdehyde. Conclusion: the research findings can be stated that the exercise with coriander seed extract has the ability to inhibit free radicals and can have beneficial effects on the body's antioxidant defense system and reduce oxidative stress in diabetic rats with STZ. Because it improves the body's antioxidant defense by increasing serum levels of antioxidant enzymes.Keywords: aerobic training, coriandrum sativum, antioxidant, diabetes
Procedia PDF Downloads 5141998 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)
Procedia PDF Downloads 2401997 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)
Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare
Abstract:
During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS
Procedia PDF Downloads 1681996 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks
Authors: Shidrokh Goudarzi, Wan Haslina Hassan
Abstract:
Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms
Procedia PDF Downloads 3981995 Oman’s Position in U.S. Tourists’ Mind: The Use of Importance-Performance Analysis on Destination Attributes
Authors: Mohammed Gamil Montasser, Angelo Battaglia
Abstract:
Tourism is making its presence felt across the Sultanate of Oman. The story is one of the most recognized phenomena as a sustainable solid growth and is considered a remarkable outcome for any destination. The competitive situation and challenges within the tourism industry worldwide entail a better understanding of the destination position and its image to achieve Oman’s aspiration to retain its international reputation as one of the most desirable destinations in the Middle East. To access general perceptions of Oman’s attributes, their importance and their influences among U.S. tourists, an online survey was conducted with 522 American travelers who have traveled internationally, including non-visitors, virtual-visitors and visitors to Oman. This research involved a total of 36 attributes in the survey. Participants were asked to rate their agreement on how each attribute represented Oman and how important each attribute was for selecting destinations on 5- point Likert Scale. They also indicated if each attribute has a positive, neutral or negative influence on their destination selection. Descriptive statistics and importance performance analysis (IPA) were conducted. IPA illustrated U.S. tourists’ perceptions of Oman’s destination attributes and their importance in destination selection on a matrix with four quadrants, divided by actual mean value in each grid for importance (M=3.51) and performance (M=3.57). Oman tourism organizations and destination managers may use these research findings for future marketing and management efforts toward the U.S. travel market.Keywords: analysis of importance, performance, destination attributes, Oman's position, U.S. tourists
Procedia PDF Downloads 3101994 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization
Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik
Abstract:
The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection
Procedia PDF Downloads 1941993 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot
Authors: S. Cobos-Guzman
Abstract:
This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot
Procedia PDF Downloads 1791992 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection
Authors: Muhammad Ali
Abstract:
Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection
Procedia PDF Downloads 1301991 Fuzzy Approach for the Evaluation of Feasibility Levels of Vehicle Movement on the Disaster-Streaking Zone’s Roads
Authors: Gia Sirbiladze
Abstract:
Route planning problems are among the activities that have the highest impact on logistical planning, transportation, and distribution because of their effects on efficiency in resource management, service levels, and client satisfaction. In extreme conditions, the difficulty of vehicle movement between different customers causes the imprecision of time of movement and the uncertainty of the feasibility of movement. A feasibility level of vehicle movement on the closed route of the disaster-streaking zone is defined for the construction of an objective function. Experts’ evaluations of the uncertain parameters in q-rung ortho-pair fuzzy numbers (q-ROFNs) are presented. A fuzzy bi-objective combinatorial optimization problem of fuzzy vehicle routine problem (FVRP) is constructed based on the technique of possibility theory. The FVRP is reduced to the bi-criteria partitioning problem for the so-called “promising” routes which were selected from the all-admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in real-time computing. For the numerical solution of the bi-criteria partitioning problem, the -constraint approach is used. The main results' support software is designed. The constructed model is illustrated with a numerical example.Keywords: q-rung ortho-pair fuzzy sets, facility location selection problem, multi-objective combinatorial optimization problem, partitioning problem
Procedia PDF Downloads 1401990 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 2421989 Mating Behaviour and Its Significance in Reproductive Performance of Dysdercus koenigii
Authors: Kamal Kumar Gupta
Abstract:
The present research work was carried out on Dysdercus koenigii to understand various aspects of reproductive behavior such as mate finding and recognition, mate selection and mating preference, mating receptivity, and prolonged copulation. The studies carried out on mate searching and courtship behaviour of Dysdercus reflected the courtship behaviour in Dysdercus was brief. The opposite sexes are brought together by the pheromone. The males responded to female sex pheromones by showing directional movements toward the sex partners. Change in mating receptivity pattern of female Dysdercus was ascertained using three parameters of mating behaviour i.e. numbers of male’s encounter, the time taken to mate successfully and per cent females responding to mating. It was seen that a receptive female responded positively to the courting males and a high percentage of females mate usually in a very short time span. The females of Dysdercus showed continued mating receptivity throughout their life. The studies pertaining to mate selection by females showed that females generally do not discriminate among males and usually mate with any male they encountered first. The adults of Dysdercus remain in continuous copula up to 72hr. and mate 5-7 time in their life span. Studies pertaining to significance of prolonged mating in the life time reproductive success of the female Dysdercus indicated that fecundity and fertility and oviposition behavior of the female Dysdercus was related to duration of mating. In order to understand sperm precedence, the sterilized males were produced by exposing them to Gamma radiation. Our studies indicated that a dose of 50 Gy of Gamma radiations induced 95% sterility but does not impair the mating behaviour drastically. To understand role of sperms which were transfer during second mating in fertilizing the subsequent egg batches the sperm utilization pattern of doubly mated female was assessed. The females were mated with normal male or sterilized male in a combination. The sperm utilization pattern was determined by P2 value, our studies indicated a very high P2 value of 0.966, and indicated that sperms of last mating were utilized by the female for fertilization. In light of some of the unique reproductive behaviour of Dysdercus koenigii, such as brief courtship behavior, generalized mate selection by the female, continued mating receptivity and a prolonged pre oviposition period, the present studies on sperm precedence provides an explanation to an unusually prolonged copulation in Dysdercus.Keywords: dysdercus koenigii, mating behaviour, reproductive performance, entomology
Procedia PDF Downloads 3471988 Evidence of Total Mercury Biomagnification in Tropical Estuary Lagoon in East Coast of Peninsula, Malaysia
Authors: Quang Dung Le, Kentaro Tanaka, Viet Dung Luu, Kotaro Shirai
Abstract:
Mercury pollutant is great concerns in globe due to its toxicity and biomagnification through the food web. Recently increasing approaches of stable isotope analyses which have applied in food-web structure are enabled to elucidate more insight trophic transfer of pollutants in ecosystems. In this study, the integration of total mercury (Hg) and stable isotopic analyses (δ13C and δ15N) were measured from basal food sources to invertebrates and fishes in order to determine Hg transfer in Setiu lagoon food webs. The average Hg concentrations showed the increasing trend from low to high trophic levels. The result also indicated that potential Hg exposure from inside mangrove could be higher than that from the tidal flat of mangrove creek. Fish Hg concentrations are highly variable, and many factors driving this variability need further examinations. A positive correlation found between Hg concentrations and δ15N values (the trophic magnification factor was 3.02), suggesting Hg biomagnification through the lagoon food web. Almost all Hg concentrations in fishes and mud crabs did not present a risk for human consumption, however, the Hg concentrations of Caranx ignobilis exceed the permitted level could raise a concern of the potential risk for the marine system. Further investigations should be done to elucidate whether trophic relay relates to high Hg concentrations of some fish species in coastal systems.Keywords: mercury, transfer, stable isotopes, health risk, mangrove, food web
Procedia PDF Downloads 3151987 A Nonlinear Feature Selection Method for Hyperspectral Image Classification
Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo
Abstract:
For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine
Procedia PDF Downloads 2651986 Sensitivity Analysis Optimization of a Horizontal Axis Wind Turbine from Its Aerodynamic Profiles
Authors: Kevin Molina, Daniel Ortega, Manuel Martinez, Andres Gonzalez-Estrada, William Pinto
Abstract:
Due to the increasing environmental impact, the wind energy is getting strong. This research studied the relationship between the power produced by a horizontal axis wind turbine (HAWT) and the aerodynamic profiles used for its construction. The analysis is studied using the Computational Fluid Dynamic (CFD), presenting the parallel between the energy generated by a turbine designed with selected profiles and another one optimized. For the study, a selection process was carried out from profile NACA 6 digits recommended by the National Renewable Energy Laboratory (NREL) for the construction of this type of turbines. The selection was taken into account different characteristics of the wind (speed and density) and the profiles (aerodynamic coefficients Cl and Cd to different Reynolds and incidence angles). From the selected profiles, was carried out a sensitivity analysis optimization process between its geometry and the aerodynamic forces that are induced on it. The 3D model of the turbines was realized using the Blade Element Momentum method (BEM) and both profiles. The flow fields on the turbines were simulated, obtaining the forces induced on the blade, the torques produced and an increase of 3% in power due to the optimized profiles. Therefore, the results show that the sensitivity analysis optimization process can assist to increment the wind turbine power.Keywords: blade element momentum, blade, fluid structure interaction, horizontal axis wind turbine, profile design
Procedia PDF Downloads 2621985 Coding and Decoding versus Space Diversity for Rayleigh Fading Radio Frequency Channels
Authors: Ahmed Mahmoud Ahmed Abouelmagd
Abstract:
The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, convolution coding, viterbi decoding, space diversity
Procedia PDF Downloads 445