Search results for: relational processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3969

Search results for: relational processing

3519 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 322
3518 Tool Wear Monitoring of High Speed Milling Based on Vibratory Signal Processing

Authors: Hadjadj Abdechafik, Kious Mecheri, Ameur Aissa

Abstract:

The objective of this study is to develop a process of treatment of the vibratory signals generated during a horizontal high speed milling process without applying any coolant in order to establish a monitoring system able to improve the machining performance. Thus, many tests were carried out on the horizontal high speed centre (PCI Météor 10), in given cutting conditions, by using a milling cutter with only one insert and measured its frontal wear from its new state that is considered as a reference state until a worn state that is considered as unsuitable for the tool to be used. The results obtained show that the first harmonic follow well the evolution of frontal wear, on another hand a wavelet transform is used for signal processing and is found to be useful for observing the evolution of the wavelet approximations through the cutting tool life. The power and the Root Mean Square (RMS) values of the wavelet transformed signal gave the best results and can be used for tool wear estimation. All this features can constitute the suitable indicators for an effective detection of tool wear and then used for the input parameters of an online monitoring system. Although we noted the remarkable influence of the machining cycle on the quality of measurements by the introduction of a bias on the signal, this phenomenon appears in particular in horizontal milling and in the majority of studies is ignored.

Keywords: flank wear, vibration, milling, signal processing, monitoring

Procedia PDF Downloads 598
3517 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
3516 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: deep learning, skin cancer, image processing, melanoma

Procedia PDF Downloads 148
3515 Enhancing Word Meaning Retrieval Using FastText and Natural Language Processing Techniques

Authors: Sankalp Devanand, Prateek Agasimani, Shamith V. S., Rohith Neeraje

Abstract:

Machine translation has witnessed significant advancements in recent years, but the translation of languages with distinct linguistic characteristics, such as English and Sanskrit, remains a challenging task. This research presents the development of a dedicated English-to-Sanskrit machine translation model, aiming to bridge the linguistic and cultural gap between these two languages. Using a variety of natural language processing (NLP) approaches, including FastText embeddings, this research proposes a thorough method to improve word meaning retrieval. Data preparation, part-of-speech tagging, dictionary searches, and transliteration are all included in the methodology. The study also addresses the implementation of an interpreter pattern and uses a word similarity task to assess the quality of word embeddings. The experimental outcomes show how the suggested approach may be used to enhance word meaning retrieval tasks with greater efficacy, accuracy, and adaptability. Evaluation of the model's performance is conducted through rigorous testing, comparing its output against existing machine translation systems. The assessment includes quantitative metrics such as BLEU scores, METEOR scores, Jaccard Similarity, etc.

Keywords: machine translation, English to Sanskrit, natural language processing, word meaning retrieval, fastText embeddings

Procedia PDF Downloads 44
3514 Pedestrian Safe Bumper Design from Commingled Glass Fiber/Polypropylene Reinforced Sandwich Composites

Authors: L. Onal

Abstract:

The aim of this study is to optimize manufacturing process for thermoplastic sandwich composite structures for the pedestrian safety of automobiles subjected to collision condition. In particular, cost-effective manufacturing techniques for sandwich structures with commingled GF/PP skins and low-density foam cores are being investigated. The performance of these structures under bending load is being studied. Samples are manufactured using compression moulding technique. The relationship of this performance to processing parameters such as mould temperature, moulding time, moulding pressure and sequence of the layers during moulding is being investigated. The results of bending tests are discussed in the light of the moulding conditions and conclusions are given regarding optimum set of processing conditions using the compression moulding route

Keywords: twintex, flexural properties, automobile composites, sandwich structures

Procedia PDF Downloads 431
3513 Development and Preliminary Testing of the Dutch Version of the Program for the Education and Enrichment of Relational Skills

Authors: Sakinah Idris, Gabrine Jagersma, Bjorn Jaime Van Pelt, Kirstin Greaves-Lord

Abstract:

Background: The PEERS (Program for the Education and Enrichment of Relational Skills) intervention can be considered a well-established, evidence-based intervention in the USA. However, testing the efficacy of cultural adaptations of PEERS is still ongoing. More and more, the involvement of all stakeholders in the development and evaluation of interventions is acknowledged as crucial for the longer term implementation of interventions across settings. Therefore, in the current project, teens with ASD (Autism Spectrum Disorder), their neurotypical peers, parents, teachers, as well as clinicians were involved in the development and evaluation of the Dutch version of PEERS. Objectives: The current presentation covers (1) the formative phase and (2) the preliminary adaptation test phase of the cultural adaptation of evidence-based interventions. In the formative phase, we aim to describe the process of adaptation of the PEERS program to the Dutch culture and care system. In the preliminary adaptation phase, we will present results from the preliminary adaptation test among 32 adolescents with ASD. Methods: In phase 1, a group discussion on common vocabulary was conducted among 70 teenagers (and their teachers) from special and regular education aged 12-18 years old. This inventory concerned 14 key constructs from PEERS, e.g., areas of interests, locations for making friends, common peer groups and crowds inside and outside of school, activities with friends, commonly used ways for electronic communication, ways for handling disagreements, and common teasing comebacks. Also, 15 clinicians were involved in the translation and cultural adaptation process. The translation and cultural adaptation process were guided by the research team, and who included input and feedback from all stakeholders through an iterative feedback incorporation procedure. In phase 2, The parent-reported Social Responsiveness Scale (SRS), the Test of Adolescent Social Skills Knowledge (TASSK), and the Quality of Socialization Questionnaire (QSQ) were assessed pre- and post-intervention to evaluate potential treatment outcome. Results: The most striking cultural adaptation - reflecting the standpoints of all stakeholders - concerned the strategies for handling rumors and gossip, which were suggested to be taught using a similar approach as the teasing comebacks, more in line with ‘down-to-earth’ Dutch standards. The preliminary testing of this adapted version indicated that the adolescents with ASD significantly improved their social knowledge (TASSK; t₃₁ = -10.9, p < .01), social experience (QSQ-Parent; t₃₁ = -4.2, p < .01 and QSQ-Adolescent; t₃₂ = -3.8, p < .01), and in parent-reported social responsiveness (SRS; t₃₃ = 3.9, p < .01). In addition, subjective evaluations of teens with ASD, their parents and clinicians were positive. Conclusions: In order to further scrutinize the effectiveness of the Dutch version of the PEERS intervention, we recommended performing a larger scale randomized control trial (RCT) design, for which we provide several methodological considerations.

Keywords: cultural adaptation, PEERS, preliminary testing, translation

Procedia PDF Downloads 168
3512 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response

Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul

Abstract:

The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.

Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response

Procedia PDF Downloads 667
3511 Characterization of Shiga Toxin Escherichia coli Recovered from a Beef Processing Facility within Southern Ontario and Comparative Performance of Molecular Diagnostic Platforms

Authors: Jessica C. Bannon, Cleso M. Jordao Jr., Mohammad Melebari, Carlos Leon-Velarde, Roger Johnson, Keith Warriner

Abstract:

There has been an increased incidence of non-O157 Shiga Toxin Escherichia coli (STEC) with six serotypes (Top 6) being implicated in causing haemolytic uremic syndrome (HUS). Beef has been suggested to be a significant vehicle for non-O157 STEC although conclusive evidence has yet to be obtained. The following aimed to determine the prevalence of the Top 6 non-O157 STEC in beef processing using three different diagnostic platforms then characterize the recovered isolates. Hide, carcass and environmental swab samples (n = 60) were collected from a beef processing facility over a 12 month period. Enriched samples were screened using Biocontrol GDS, BAX or PALLgene molecular diagnostic tests. Presumptive non-O157 STEC positive samples were confirmed using conventional PCR and serology. STEC was detected by GDS (55% positive), BAX (85% positive), and PALLgene (93%). However, during confirmation testing only 8 of the 60 samples (13%) were found to harbour STEC. Interestingly, the presence of virulence factors in the recovered isolates was unstable and readily lost during subsequent sub-culturing. There is a low prevalence of Top 6 non-O157 STEC associated with beef although other serotypes are encountered. Yet, the instability of the virulence factors in recovered strains would question their clinical relevance.

Keywords: beef, food microbiology, shiga toxin, STEC

Procedia PDF Downloads 461
3510 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 460
3509 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 347
3508 Prediction, Production, and Comprehension: Exploring the Influence of Salience in Language Processing

Authors: Andy H. Clark

Abstract:

This research looks into the relationship between language comprehension and production with a specific focus on the role of salience in shaping these processes. Salience, our most immediate perception of what is most probable out of all possible situations and outcomes strongly affects our perception and action in language production and comprehension. This study investigates the impact of geographic and emotional attachments to the target language on the differences in the learners’ comprehension and production abilities. Using quantitative research methods (Qualtrics, SPSS), this study examines preferential choices of two groups of Japanese English language learners: those residing in the United States and those in Japan. By comparing and contrasting these two groups, we hope to gain a better understanding of how salience of linguistics cues influences language processing.

Keywords: intercultural pragmatics, salience, production, comprehension, pragmatics, action, perception, cognition

Procedia PDF Downloads 72
3507 High Pressure Processing of Jackfruit Bulbs: Effect on Color, Nutrient Profile and Enzyme Inactivation

Authors: Jyoti Kumari, Pavuluri Srinivasa Rao

Abstract:

Jackfruit (ArtocarpusheterophyllusL.) is an underutilized yet highly nutritious fruit with unique flavour, known for its therapeutic and culinary properties. Fresh jackfruit bulb has a very short shelf life due to high moisture and sugar content leading to microbial and enzymatic browning, hindering its consumer acceptability and marketability. An attempt has been made for the preservation of the ripe jackfruit bulbs, by the application of high pressure (HP) over a range of 200-500 MPa at ambient temperature for dwell times ranging from 5 to 20 min. The physicochemical properties of jackfruit bulbs such as the pH, TSS, and titrable acidity were not affected by the pressurization process. The ripening index of the fruit bulb also decreased following HP treatment. While the ascorbic acid and antioxidant activity of jackfruit bulb were well retained by high pressure processing (HPP), the total phenols and carotenoids showed a slight increase. The HPP significantly affected the colour and textural properties of jackfruit bulb. High pressure processing was highly effective in reducing the browning index of jackfruit bulbs in comparison to untreated bulbs. The firmness of the bulbs improved upon the pressure treatment with longer dwelling time. The polyphenol oxidase has been identified as the most prominent oxidative enzyme in the jackfruit bulb. The enzymatic activity of polyphenol oxidase and peroxidase were significantly reduced by up to 40% following treatment at 400 MPa/15 min. HPP of jackfruit bulbs at ambient temperatures is shown to be highly beneficial in improving the shelf stability, retaining its nutrient profile, color, and appearance while ensuring the maximum inactivation of the spoilage enzymes.

Keywords: antioxidant capacity, ascorbic acid, carotenoids, color, HPP-high pressure processing, jackfruit bulbs, polyphenol oxidase, peroxidase, total phenolic content

Procedia PDF Downloads 174
3506 The Effect of Speech-Shaped Noise and Speaker’s Voice Quality on First-Grade Children’s Speech Perception and Listening Comprehension

Authors: I. Schiller, D. Morsomme, A. Remacle

Abstract:

Children’s ability to process spoken language develops until the late teenage years. At school, where efficient spoken language processing is key to academic achievement, listening conditions are often unfavorable. High background noise and poor teacher’s voice represent typical sources of interference. It can be assumed that these factors particularly affect primary school children, because their language and literacy skills are still low. While it is generally accepted that background noise and impaired voice impede spoken language processing, there is an increasing need for analyzing impacts within specific linguistic areas. Against this background, the aim of the study was to investigate the effect of speech-shaped noise and imitated dysphonic voice on first-grade primary school children’s speech perception and sentence comprehension. Via headphones, 5 to 6-year-old children, recruited within the French-speaking community of Belgium, listened to and performed a minimal-pair discrimination task and a sentence-picture matching task. Stimuli were randomly presented according to four experimental conditions: (1) normal voice / no noise, (2) normal voice / noise, (3) impaired voice / no noise, and (4) impaired voice / noise. The primary outcome measure was task score. How did performance vary with respect to listening condition? Preliminary results will be presented with respect to speech perception and sentence comprehension and carefully interpreted in the light of past findings. This study helps to support our understanding of children’s language processing skills under adverse conditions. Results shall serve as a starting point for probing new measures to optimize children’s learning environment.

Keywords: impaired voice, sentence comprehension, speech perception, speech-shaped noise, spoken language processing

Procedia PDF Downloads 192
3505 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules

Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid

Abstract:

Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.

Keywords: biological systems, DNA multiplier, large storage, parallel processing

Procedia PDF Downloads 214
3504 Benchmarking Bert-Based Low-Resource Language: Case Uzbek NLP Models

Authors: Jamshid Qodirov, Sirojiddin Komolov, Ravilov Mirahmad, Olimjon Mirzayev

Abstract:

Nowadays, natural language processing tools play a crucial role in our daily lives, including various techniques with text processing. There are very advanced models in modern languages, such as English, Russian etc. But, in some languages, such as Uzbek, the NLP models have been developed recently. Thus, there are only a few NLP models in Uzbek language. Moreover, there is no such work that could show which Uzbek NLP model behaves in different situations and when to use them. This work tries to close this gap and compares the Uzbek NLP models existing as of the time this article was written. The authors try to compare the NLP models in two different scenarios: sentiment analysis and sentence similarity, which are the implementations of the two most common problems in the industry: classification and similarity. Another outcome from this work is two datasets for classification and sentence similarity in Uzbek language that we generated ourselves and can be useful in both industry and academia as well.

Keywords: NLP, benchmak, bert, vectorization

Procedia PDF Downloads 54
3503 A Bottleneck-Aware Power Management Scheme in Heterogeneous Processors for Web Apps

Authors: Inyoung Park, Youngjoo Woo, Euiseong Seo

Abstract:

With the advent of WebGL, Web apps are now able to provide high quality graphics by utilizing the underlying graphic processing units (GPUs). Despite that the Web apps are becoming common and popular, the current power management schemes, which were devised for the conventional native applications, are suboptimal for Web apps because of the additional layer, the Web browser, between OS and application. The Web browser running on a CPU issues GL commands, which are for rendering images to be displayed by the Web app currently running, to the GPU and the GPU processes them. The size and number of issued GL commands determine the processing load of the GPU. While the GPU is processing the GL commands, CPU simultaneously executes the other compute intensive threads. The actual user experience will be determined by either CPU processing or GPU processing depending on which of the two is the more demanded resource. For example, when the GPU work queue is saturated by the outstanding commands, lowering the performance level of the CPU does not affect the user experience because it is already deteriorated by the retarded execution of GPU commands. Consequently, it would be desirable to lower CPU or GPU performance level to save energy when the other resource is saturated and becomes a bottleneck in the execution flow. Based on this observation, we propose a power management scheme that is specialized for the Web app runtime environment. This approach incurs two technical challenges; identification of the bottleneck resource and determination of the appropriate performance level for unsaturated resource. The proposed power management scheme uses the CPU utilization level of the Window Manager to tell which one is the bottleneck if exists. The Window Manager draws the final screen using the processed results delivered from the GPU. Thus, the Window Manager is on the critical path that determines the quality of user experience and purely executed by the CPU. The proposed scheme uses the weighted average of the Window Manager utilization to prevent excessive sensitivity and fluctuation. We classified Web apps into three categories using the analysis results that measure frame-per-second (FPS) changes under diverse CPU/GPU clock combinations. The results showed that the capability of the CPU decides user experience when the Window Manager utilization is above 90% and consequently, the proposed scheme decreases the performance level of CPU by one step. On the contrary, when its utilization is less than 60%, the bottleneck usually lies in the GPU and it is desirable to decrease the performance of GPU. Even the processing unit that is not on critical path, excessive performance drop can occur and that may adversely affect the user experience. Therefore, our scheme lowers the frequency gradually, until it finds an appropriate level by periodically checking the CPU utilization. The proposed scheme reduced the energy consumption by 10.34% on average in comparison to the conventional Linux kernel, and it worsened their FPS by 1.07% only on average.

Keywords: interactive applications, power management, QoS, Web apps, WebGL

Procedia PDF Downloads 192
3502 The Impact of Post-Traumatic Stress Disorder (PTSD) on Marital Satisfaction in Iranian Couples: The Mediating Role of Sexual and Romantic Relationship Dynamics

Authors: Melika Masjedi

Abstract:

Post-Traumatic Stress Disorder (PTSD) has a significant impact on the mental health and relationship dynamics of couples, leading to decreased marital satisfaction. This study examines the mediating role of sexual and romantic relationship dynamics in relation to PTSD and marital satisfaction among Iranian couples. Using a sample of 107 participants, quantitative methods were utilized to assess variables such as relationship functioning, PTSD symptom severity, and the influence of sexual and romantic interactions. The findings demonstrate a strong correlation between heightened PTSD symptoms and reduced marital satisfaction, particularly in the domains of intimacy and emotional connection. The study highlights the importance of addressing relational dynamics to improve marital outcomes in PTSD-affected couples.

Keywords: intimacy, marital satisfaction, PTSD, relationship dynamics, trauma

Procedia PDF Downloads 15
3501 Improvement of Piezoresistive Pressure Sensor Accuracy by Means of Current Loop Circuit Using Optimal Digital Signal Processing

Authors: Peter A. L’vov, Roman S. Konovalov, Alexey A. L’vov

Abstract:

The paper presents the advanced digital modification of the conventional current loop circuit for pressure piezoelectric transducers. The optimal DSP algorithms of current loop responses by the maximum likelihood method are applied for diminishing of measurement errors. The loop circuit has some additional advantages such as the possibility to operate with any type of resistance or reactance sensors, and a considerable increase in accuracy and quality of measurements to be compared with AC bridges. The results obtained are dedicated to replace high-accuracy and expensive measuring bridges with current loop circuits.

Keywords: current loop, maximum likelihood method, optimal digital signal processing, precise pressure measurement

Procedia PDF Downloads 529
3500 Influence of Thermal Treatments on Ovomucoid as Allergenic Protein

Authors: Nasser A. Al-Shabib

Abstract:

Food allergens are most common non-native form when exposed to the immune system. Most food proteins undergo various treatments (e.g. thermal or proteolytic processing) during food manufacturing. Such treatments have the potential to impact the chemical structure of food allergens so as to convert them to more denatured or unfolded forms. The conformational changes in the proteins may affect the allergenicity of treated-allergens. However, most allergenic proteins possess high resistance against thermal modification or digestive enzymes. In the present study, ovomucoid (a major allergenic protein of egg white) was heated in phosphate-buffered saline (pH 7.4) at different temperatures, aqueous solutions and on different surfaces for various times. The results indicated that different antibody-based methods had different sensitivities in detecting the heated ovomucoid. When using one particular immunoassay‚ the immunoreactivity of ovomucoid increased rapidly after heating in water whereas immunoreactivity declined after heating in alkaline buffer (pH 10). Ovomucoid appeared more immunoreactive when dissolved in PBS (pH 7.4) and heated on a stainless steel surface. To the best of our knowledge‚ this is the first time that antibody-based methods have been applied for the detection of ovomucoid adsorbed onto different surfaces under various conditions. The results obtained suggest that use of antibodies to detect ovomucoid after food processing may be problematic. False assurance will be given with the use of inappropriate‚ non-validated immunoassays such as those available commercially as ‘Swab’ tests. A greater understanding of antibody-protein interaction after processing of a protein is required.

Keywords: ovomucoid, thermal treatment, solutions, surfaces

Procedia PDF Downloads 448
3499 Scheduling in Cloud Networks Using Chakoos Algorithm

Authors: Masoumeh Ali Pouri, Hamid Haj Seyyed Javadi

Abstract:

Nowadays, cloud processing is one of the important issues in information technology. Since scheduling of tasks graph is an NP-hard problem, considering approaches based on undeterminisitic methods such as evolutionary processing, mostly genetic and cuckoo algorithms, will be effective. Therefore, an efficient algorithm has been proposed for scheduling of tasks graph to obtain an appropriate scheduling with minimum time. In this algorithm, the new approach is based on making the length of the critical path shorter and reducing the cost of communication. Finally, the results obtained from the implementation of the presented method show that this algorithm acts the same as other algorithms when it faces graphs without communication cost. It performs quicker and better than some algorithms like DSC and MCP algorithms when it faces the graphs involving communication cost.

Keywords: cloud computing, scheduling, tasks graph, chakoos algorithm

Procedia PDF Downloads 64
3498 Twitter Sentiment Analysis during the Lockdown on New-Zealand

Authors: Smah Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2020, until April 4, 2020. Natural language processing (NLP), which is a form of Artificial intelligence, was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applying machine learning sentimental methods such as Crystal Feel and extending the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia PDF Downloads 190
3497 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus

Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui

Abstract:

With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.

Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications

Procedia PDF Downloads 5
3496 Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks

Authors: Cesar Hernández, Diego Giral, Ingrid Páez

Abstract:

This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics is used. These metrics are the accumulative average of failed handoffs, the accumulative average of handoffs performed, the accumulative average of transmission bandwidth, and the accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.

Keywords: cognitive radio, decision making, hybrid algorithm, spectrum handoff, wireless networks

Procedia PDF Downloads 541
3495 Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique

Authors: Manoj Gupta, Nirmendra Singh Bhadauria

Abstract:

Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR.

Keywords: image fusion, DWT, DT-CWT, PSNR, average image fusion, hybrid image fusion

Procedia PDF Downloads 606
3494 An Experimental Study on the Variability of Nonnative and Native Inference of Word Meanings in Timed and Untimed Conditions

Authors: Swathi M. Vanniarajan

Abstract:

Reading research suggests that online contextual vocabulary comprehension while reading is an interactive and integrative process. One’s success in it depends on a variety of factors including the amount and the nature of available linguistic and nonlinguistic cues, his/her analytical and integrative skills, schema memory (content familiarity), and processing speed characterized along the continuum of controlled to automatic processing. The experiment reported here, conducted with 30 native speakers as one group and 30 nonnative speakers as another group (all graduate students), hypothesized that while working on (24) tasks which required them to comprehend an unfamiliar word in real time without backtracking, due to the differences in the nature of their respective reading processes, the nonnative subjects would be less able to construct the meanings of the unknown words by integrating the multiple but sufficient contextual cues provided in the text but the native subjects would be able to. The results indicated that there were significant inter-group as well as intra-group differences in terms of the quality of definitions given. However, when given additional time, while the nonnative speakers could significantly improve the quality of their definitions, the native speakers in general would not, suggesting that all things being equal, time is a significant factor for success in nonnative vocabulary and reading comprehension processes and that accuracy precedes automaticity in the development of nonnative reading processes also.

Keywords: reading, second language processing, vocabulary comprehension

Procedia PDF Downloads 166
3493 Perceiving Text-Worlds as a Cognitive Mechanism to Understand Surah Al-Kahf

Authors: Awatef Boubakri, Khaled Jebahi

Abstract:

Using Text World Theory (TWT), we attempted to understand how mental representations (text worlds) and perceptions can be construed by readers of Quranic texts. To this end, Surah Al-Kahf was purposefully selected given the fact that while each of its stories is narrated, different levels of discourse intervene, which might result in a confused reader who might find it hard to keep track of which discourse he or she is processing. This surah was studied using specifically-designed text-world diagrams. The findings suggest that TWT can be used to help solve problems of ambiguity at the level of discourse in Quranic texts and to help construct a thinking reader whose cognitive constructs (text worlds / mental representations) are built through reflecting on the various and often changing components of discourse world, text world, and sub-worlds.

Keywords: Al-Kahf, Surah, cognitive, processing, discourse

Procedia PDF Downloads 88
3492 Computational Aided Approach for Strut and Tie Model for Non-Flexural Elements

Authors: Mihaja Razafimbelo, Guillaume Herve-Secourgeon, Fabrice Gatuingt, Marina Bottoni, Tulio Honorio-De-Faria

Abstract:

The challenge of the research is to provide engineering with a robust, semi-automatic method for calculating optimal reinforcement for massive structural elements. In the absence of such a digital post-processing tool, design office engineers make intensive use of plate modelling, for which automatic post-processing is available. Plate models in massive areas, on the other hand, produce conservative results. In addition, the theoretical foundations of automatic post-processing tools for reinforcement are those of reinforced concrete beam sections. As long as there is no suitable alternative for automatic post-processing of plates, optimal modelling and a significant improvement of the constructability of massive areas cannot be expected. A method called strut-and-tie is commonly used in civil engineering, but the result itself remains very subjective to the calculation engineer. The tool developed will facilitate the work of supporting the engineers in their choice of structure. The method implemented consists of defining a ground-structure built on the basis of the main constraints resulting from an elastic analysis of the structure and then to start an optimization of this structure according to the fully stressed design method. The first results allow to obtain a coherent return in the first network of connecting struts and ties, compared to the cases encountered in the literature. The evolution of the tool will then make it possible to adapt the obtained latticework in relation to the cracking states resulting from the loads applied during the life of the structure, cyclic or dynamic loads. In addition, with the constructability constraint, a final result of reinforcement with an orthogonal arrangement with a regulated spacing will be implemented in the tool.

Keywords: strut and tie, optimization, reinforcement, massive structure

Procedia PDF Downloads 141
3491 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
3490 A Pull-Out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites, the Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find a molding temperature of 183°C leads to better interface properties. Above or below this temperature the interface strength is reduced.

Keywords: composite, hemp, interface, pull-out, processing, polypropylene, temperature

Procedia PDF Downloads 392