Search results for: partial vibration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1991

Search results for: partial vibration

1541 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions

Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek

Abstract:

The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.

Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration

Procedia PDF Downloads 117
1540 Spatial and Time Variability of Ambient Vibration H/V Frequency Peak

Authors: N. Benkaci, E. Oubaiche, J.-L. Chatelain, R. Bensalem, K. Abbes

Abstract:

The ambient vibration H/V technique is widely used nowadays in microzonation studies, because of its easy field handling and its low cost, compared to other geophysical methods. However, in presence of complex geology or lateral heterogeneity evidenced by more than one peak frequency in the H/V curve, it is difficult to interpret the results, especially when soil information is lacking. In this work, we focus on the construction site of the Baraki 40000=place stadium, located in the north-east side of the Mitidja basin (Algeria), to identify the seismic wave amplification zones. H/V curve analysis leads to the observation of spatial and time variability of the H/V frequency peaks. The spatial variability allows dividing the studied area into three main zones: (1) one with a predominant frequency around 1,5 Hz showing an important amplification level, (2) the second exhibits two peaks at 1,5 Hz and in the 4 Hz – 10 Hz range, and (3) the third zone is characterized by a plateau between 2 Hz and 3 Hz. These H/V curve categories reveal a consequent lateral heterogeneity dividing the stadium site roughly in the middle. Furthermore, a continuous ambient vibration recording during several weeks allows showing that the first peak at 1,5 Hz in the second zone, completely disappears between 2 am and 4 am, and reaching its maximum amplitude around 12 am. Consequently, the anthropogenic noise source generating these important variations could be the Algiers Rocade Sud highway, located in the maximum amplification azimuth direction of the H/V curves. This work points out that the H/V method is an important tool to perform nano-zonation studies prior to geotechnical and geophysical investigations, and that, in some cases, the H/V technique fails to reveal the resonance frequency in the absence of strong anthropogenic source.

Keywords: ambient vibrations, amplification, fundamental frequency, lateral heterogeneity, site effect

Procedia PDF Downloads 224
1539 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: moving load, moving substructure, dynamic responses, forced vibration responses

Procedia PDF Downloads 328
1538 The Continuously Supported Infinity Rail Subjected to a Moving Complex Bogie System

Authors: Vladimir Stojanović, Marko D. Petković

Abstract:

The vibration of a complex bogie system that moves on along the high order shear deformable beam on a viscoelastic foundation is studied. The complex bogie system has been modeled by elastically connected rigid bars on an identical supports. Elastic coupling between bars is introduced to simulate rigidly or flexibly (transversal or/and rotational) connection. Identical supports are modeled as a system of attached spring and dashpot to the bar on one side and interact with the beam through the concentrated mass on the other side. It is assumed that the masses and the beam are always in contact. New analytically determined critical velocity of the system is presented. It is analyzed the case when the complex bogie system exceeds the minimum phase velocity of waves in the beam when the vibration of the system may become unstable. Effect of an elastic coupling between bars on the stability of the system has been analyzed. The instability regions are found for the complex bogie system by applying the principle of the argument and D-decomposition method.

Keywords: Reddy-Bickford beam, D-decomposition method, principle of argument, critical velocity

Procedia PDF Downloads 283
1537 Application of Freeze Desalination for Tace elements Removal from Water

Authors: Fekadu Melak, Tsegaye Girma Asere

Abstract:

Trace element ions, such as Cr(VI) and F−, are of particular interest due to their environmental impact. Both ions exhibit an anionic nature in water that can show similar removal tendencies except for their significant differences in ionic radius. Accordingly, partial freezing was performed to examine freeze separation efficiencies of Cr(VI) and F– from aqueous solutions. Real groundwater and simulated wastewater were included to test effeciency of F– and Cr(VI), respectively. Parameters such as initial ion concentration, salt addition, and freeze duration were explored. Under optimal operating conditions, freeze separation efficiencies of 90 ± 0.12 to 97 ± 0.54% and 58 ± 0.23% to 60 ± 0.34% from 5 mg/L of Cr(VI) and F–, respectively, were demonstrated. The F– ion intercalation into the ice, initiating the decrement of freeze separation efficiency was observed in the salt addition processes. The influences of structuring-destructuring (kosmotropicity-chaotropicity) and the size-exclusion nature of ice crystals were used to explain the plausible mechanism in freeze separation efficiency trace elemental ions.

Keywords: Cr(VI), F-, partial freezing, size exclusion

Procedia PDF Downloads 60
1536 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection

Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu

Abstract:

Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.

Keywords: mucus, flow control, noise control, flow-induced noise

Procedia PDF Downloads 113
1535 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease

Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove

Abstract:

Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.

Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease

Procedia PDF Downloads 80
1534 Influence of the Substitution of C for Mg and Ni on the Microstructure and Hydrogen Storage Characteristics of Mg2Ni Alloys

Authors: Sajad Haghanifar, Seyed-Farshid Kashani Bozorg

Abstract:

Nano-crystalline Mg2Ni-based powder was produced by mechanical alloying technique using binary and ternary powder mixtures with stoichiometric compositions of Mg2Ni, Mg1.9C0.1Ni and Mg2C0.1Ni0.9. The structures and morphologies of the milled products were studied by XRD, SEM and HRTEM. Their electrochemical hydrogen storage characteristics were investigated in 6 M KOH solution. X-Ray diffraction, scanning and transmission electron microscopy of the milled products showed the formation of Mg2Ni-based nano-crystallites after 5, 15 and 30 h of milling using the initial powder mixtures of Mg1.9C0.1Ni, Mg2Ni and Mg2C0.1Ni0.9, respectively. It was found that partial substitution of C for Mg has beneficial effect on the formation kinetic of nano-crystalline Mg2Ni. Contrary to this, partial substitution of C for Ni was resulted in retardation of formation kinetic of nano-crystalline Mg2Ni. In addition, the negative electrode made from Mg1.9C0.1Ni ternary milled product after 30 hour of milling exhibited the highest initial discharge capacity and longest discharge life. Thus, partial substitution of C for Mg is beneficial to electrode properties of the Mg2Ni-based crystallites. The relation between the discharge capacity and cycling number of mechanically alloyed products was proposed on the basis of the fact that the degradation of discharge capacity was mainly caused by the oxidation of magnesium and nickel. The experimental data fitted the deduced equation well.

Keywords: Mg2Ni, hydrogen absorbing materials, electrochemical properties, nano-crystalline, amorphous, mechanical alloying, carbon

Procedia PDF Downloads 412
1533 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate

Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad

Abstract:

CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.

Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory

Procedia PDF Downloads 90
1532 Technical and Economic Potential of Partial Electrification of Railway Lines

Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong

Abstract:

Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.

Keywords: electrification, hybrid, railway, storage

Procedia PDF Downloads 406
1531 Microstructure, Compressive Strength and Transport Properties of High Strength Self-Compacting Concretes Containing Natural Pumice and Zeolite

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

Due to the difficult placement and vibration between reinforcements of reinforced concrete and the defects that it may cause, the use of self-compacting concrete (SCC) is becoming more widespread. Ordinary Portland Cement (OPC) is the most widely used binder in the construction industry. However, the manufacture of this cement results in a significant amount of CO2 being released, which is detrimental to the environment. Thus, an alternative to reduce the cost of SCC is the use of more economical and environmental mineral additives in partial or total substitution of Portland cement. Our study is in this context and aims to develop SCCs both economic and ecological. Two natural pozzolans such as pumice and zeolite are chosen in this research. This research tries to answer questions including the microstructure of the two types of natural pozzolan and their influence on the mechanical properties as well as on the transport property of SCC. Based on the findings of this study, the studied zeolite is a clinoptilolite that presents higher pozzolan activity compared to pumice. However, the use of zeolite decreases the compressive strength of SCC composites. On the contrary, the compressive strength in SCC containing of pumice increases at both early and long term ages with a remarkable increase at long term. A correlation is obtained between the compressive strength with permeable pore and capillary absorption. Also, the results concerning compressive strength and transport property are well justified by evaporable and non-evaporable water content measurement. This paper shows that the substitution of Portland cement by 15% of pumice or 10% of zeolite in HSSCC is suitable in all aspects. 

Keywords: concrete, durability, pumice, SCC, transport, zeolite

Procedia PDF Downloads 165
1530 Identification of Impact Load and Partial System Parameters Using 1D-CNN

Authors: Xuewen Yu, Danhui Dan

Abstract:

The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.

Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem

Procedia PDF Downloads 79
1529 Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method

Authors: Kadda Boumediene, Mohamed Ziani

Abstract:

Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results.

Keywords: composite beam, mortar/ natural mineral fiber, mechanical characteristics, natural frequencies, mode shape

Procedia PDF Downloads 331
1528 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 195
1527 Partial Replacement of Lateritic Soil with Crushed Rock Sand (Stone Dust) in Compressed Earth Brick Production

Authors: A. M. Jungudo, M. A. Lasan

Abstract:

Affordable housing has long been one of the basic necessities of life to man. The ever rising prices of building materials are one of the major causes of housing shortage in many developing countries. Breaching the gap of housing needs in developing countries like Nigeria is an awaiting task longing for attention. This is due to lack of research in the development of local materials that will suit the troubled economies of these countries. The use of earth material to meet the housing needs is a sustainable option and its material is freely available universally. However, people are doubtful of using the earth material due to its modest outlook and uncertain durability. This research aims at enhancing the durability of Compressed Earth Bricks (CEBs) using stone dust as a stabilizer. The result indicates that partial replacement of lateritic soil with stone dust at 30% improves its compressive strength along with abrasive resistance.

Keywords: earth construction, durability, stone dust, sustainable

Procedia PDF Downloads 109
1526 PM Electrical Machines Diagnostic: Methods Selected

Authors: M. Barański

Abstract:

This paper presents a several diagnostic methods designed to electrical machines especially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives. Those methods are preferred by the author in periodic diagnostic of electrical machines. The special attention should be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methods were created in Institute of Electrical Drives and Machines Komel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.

Keywords: electrical vehicle, generator, main insulation, permanent magnet, thermography, turn-to-traction drive, turn insulation, vibrations

Procedia PDF Downloads 373
1525 Pricing European Continuous-Installment Options under Regime-Switching Models

Authors: Saghar Heidari

Abstract:

In this paper, we study the valuation problem of European continuous-installment options under Markov-modulated models with a partial differential equation approach. Due to the opportunity for continuing or stopping to pay installments, the valuation problem under regime-switching models can be formulated as coupled partial differential equations (CPDE) with free boundary features. To value the installment options, we express the truncated CPDE as a linear complementarity problem (LCP), then a finite element method is proposed to solve the resulted variational inequality. Under some appropriate assumptions, we establish the stability of the method and illustrate some numerical results to examine the rate of convergence and accuracy of the proposed method for the pricing problem under the regime-switching model.

Keywords: continuous-installment option, European option, regime-switching model, finite element method

Procedia PDF Downloads 117
1524 Full-Potential Investigation of the Electronic and Magnetic Properties of CdCoTe and CdMnTe Diluted Magnetic Semiconductors

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid

Abstract:

We investigate the structural, electronic and magnetic properties of the diluted magnetic semiconductors (DMSs) CdCoTe and CdMnTe in the zinc blende phase with 25% of Co and Mn. The calculations are performed by the recent ab initio full potential augmented plane waves (FP_L/APW) method within the spin polarized density-functional theory (DFT) and the generalized gradient approximation GGA. Structural properties are determined from the total energy calculations and we found that these compounds are stable in the ferromagnetic phase. We discuss the electronic structures, total and partial densities of states and total magnetic moments. The calculated densities of states presented in this study identify the half-metallic of CdCoTe and CdMnTe.

Keywords: electronic structure, half-metallic, magnetic moment, total and partial densities of states

Procedia PDF Downloads 474
1523 The Study on Life of Valves Evaluation Based on Tests Data

Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu

Abstract:

Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.

Keywords: censored data, temperature tests, valves, vibration tests

Procedia PDF Downloads 314
1522 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil

Authors: Suwarno, M. Helmi Prakoso

Abstract:

Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.

Keywords: dielectric properties, high voltage transformer, mineral oil, water content

Procedia PDF Downloads 378
1521 Maryland Restoration of Anterior Tooth Loss as a Minimal Invasive Dentistry: An Alternative Treatment

Authors: B. Oral, C. Bal, M. S. Kar, A. Akgürbüz

Abstract:

Loss of maxillary central incisors occurs in many patients, and the treatment of young adults with this problem is a challenge for both prosthodontists and orthodontists. Common treatment alternatives are distalization of adjacent teeth and fabrication of a conventional 3-unit fixed partial denture, a single implant supported crown restoration or a resin-bonded fixed partial denture. This case report describes the indication of a resin-bonded fixed partial denture, preparation of the abutment teeth and the prosthetic procedures. The technique described here represents a conservative, esthetically pleasing and rapid solution for the missing maxillary central incisor when implant placement and/or guided bone regeneration techniques are not feasible because of financial, social or time restrictions. In this case a 16 year-old female patient who lost her maxillary left central incisor six years ago in a bicycle accident applied to our clinic with a major complaint of her unaesthetic appearance associated with the loss of her maxillary left central incisor. Although there was an indication for orthodontic treatment because of the limited space at the traumatized area, the patient did not accept to receive any orthodontic procedure. That is why an implant supported restoration could not be an option for the narrow area. Therefore maryland bridge as a minimal invasive dental therapy was preferred as a retention appliance so the patient's aesthetic appearance was restored.

Keywords: Maryland bridge, single tooth restoration, aesthetics, maxillary central incisors

Procedia PDF Downloads 340
1520 Experimental Studies on the Effect of Premixing Methods in Anaerobic Digestor with Corn Stover

Authors: M. Sagarika, M. Chandra Sekhar

Abstract:

Agricultural residues are producing in large quantities in India and account for abundant but underutilized source of renewable biomass in agriculture. In India, the amount of crop residues available is estimated to be approximately 686 million tons. Anaerobic digestion is a promising option to utilize the surplus agricultural residues and can produce biogas and digestate. Biogas is mainly methane (CH4), which can be utilized as an energy source in replacement for fossil fuels such as natural gas, oil, in other hand, digestate contains high amounts of nutrients, can be employed as fertilizer. Solid state anaerobic digestion (total solids ≥ 15%) is suitable for agricultural residues, as it reduces the problems like stratification and floating issues that occur in liquid anaerobic digestion (total solids < 15%). The major concern in solid-state anaerobic digestion is the low mass transfer of feedstock and inoculum that resulting in low performance. To resolve this low mass transfer issue, effective mixing of feedstock and inoculum is required. Mechanical mixing using stirrer at the time of digestion process can be done, but it is difficult to operate the stirring of feedstock with high solids percentage and high viscosity. Complete premixing of feedstock and inoculum is an alternative method, which is usual in lab scale studies but may not be affordable due to high energy demand in large-scale digesters. Developing partial premixing methods may reduce this problem. Current study is to improve the performance of solid-state anaerobic digestion of corn stover at feedstock to inoculum ratios 3 and 5, by applying partial premixing methods and to compare the complete premixing method with two partial premixing methods which are two alternative layers of feedstock and inoculum and three alternative layers of feedstock and inoculum where higher inoculum ratios in the top layers. From experimental studies it is observed that, partial premixing method with three alternative layers of feedstock and inoculum yielded good methane.

Keywords: anaerobic digestion, premixing methods, methane yield, corn stover, volatile solids

Procedia PDF Downloads 215
1519 Development of an Index for Asset Class in Ex-Ante Portfolio Management

Authors: Miang Hong Ngerng, Noor Diyana Jasme, May Jin Theong

Abstract:

Volatile market environment is inevitable. Fund managers are struggling to choose the right strategy to survive and overcome uncertainties and adverse market movement. Therefore, finding certainty in the mist of uncertainty future is one of the key performance objectives for fund managers. Current available theoretical results are not practical due to strong reliance on the investment assumption made. This paper is to identify the component that can be forecasted in Ex-ante setting which is the realistic situation facing a fund manager in the actual execution of asset allocation in portfolio management. Partial lease square method was used to generate an index with 10 years accounting data from 191 companies listed in KLSE. The result shows that the index reflects the inner nature of the business and up to 30% of the stock return can be explained by the index.

Keywords: active portfolio management, asset allocation ex-ante investment, asset class, partial lease square

Procedia PDF Downloads 252
1518 Dynamic Stability of a Wings for Drone Aircraft Subjected to Parametric Excitation

Authors: Iyd Eqqab Maree, Habil Jurgen Bast

Abstract:

Vibration control of machines and structures incorporating viscoelastic materials in suitable arrangement is an important aspect of investigation. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. Multilayered cantilever sandwich beam like structures can be used in aircrafts and other applications such as robot arms for effective vibration control. These members may experience parametric instability when subjected to time dependant forces. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. The purpose of the present work is to investigate the dynamic stability of a three layered symmetric sandwich beam (Drone Aircraft wings ) subjected to an end periodic axial force . Equations of motion are derived using finite element method (MATLAB software). It is observed that with increase in core thickness parameter fundamental buckling load increases. The fundamental resonant frequency and second mode frequency parameter also increase with increase in core thickness parameter. Fundamental loss factor and second mode loss factor also increase with increase in core thickness parameter. Increase in core thickness parameter enhances the stability of the beam. With increase in core loss factor also the stability of the beam enhances. There is a very good agreement of the experimental results with the theoretical findings.

Keywords: steel cantilever beam, viscoelastic material core, loss factor, transition region, MATLAB R2011a

Procedia PDF Downloads 454
1517 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms

Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour

Abstract:

This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.

Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks

Procedia PDF Downloads 678
1516 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program

Authors: Ming Wen, Nasim Nezamoddini

Abstract:

Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.

Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM

Procedia PDF Downloads 92
1515 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 323
1514 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 367
1513 Study and Solving High Complex Non-Linear Differential Equations Applied in the Engineering Field by Analytical New Approach AGM

Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili

Abstract:

In this paper, three complicated nonlinear differential equations(PDE,ODE) in the field of engineering and non-vibration have been analyzed and solved completely by new method that we have named it Akbari-Ganji's Method (AGM) . As regards the previous published papers, investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by Numerical Method. Based on the comparisons which have been made between the gained solutions by AGM and Numerical Method (Runge-Kutta 4th), it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. Furthermore, It is necessary to mention that a summary of the excellence of this method in comparison with the other approaches can be considered as follows: It is noteworthy that these results have been indicated that this approach is very effective and easy therefore it can be applied for other kinds of nonlinear equations, And also the reasons of selecting the mentioned method for solving differential equations in a wide variety of fields not only in vibrations but also in different fields of sciences such as fluid mechanics, solid mechanics, chemical engineering, etc. Therefore, a solution with high precision will be acquired. With regard to the afore-mentioned explanations, the process of solving nonlinear equation(s) will be very easy and convenient in comparison with the other methods. And also one of the important position that is explored in this paper is: Trigonometric and exponential terms in the differential equation (the method AGM) , is no need to use Taylor series Expansion to enhance the precision of the result.

Keywords: new method (AGM), complex non-linear partial differential equations, damping ratio, energy lost per cycle

Procedia PDF Downloads 444
1512 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete

Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali

Abstract:

Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.

Keywords: compressive strength, deflection, induction furnace slag, workability

Procedia PDF Downloads 275