Search results for: parameter identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4886

Search results for: parameter identification

4436 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.

Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis

Procedia PDF Downloads 418
4435 The Impact of a Model's Skin Tone and Ethnic Identification on Consumer Decision Making

Authors: Shanika Y. Koreshi

Abstract:

Sri Lanka housed the lingerie product development and manufacturing subsidiary to renowned brands such as La Senza, Marks & Spencer, H&M, Etam, Lane Bryant, and George. Over the last few years, they have produced local brands such as Amante to cater to the local and regional customers. Past research has identified factors such as quality, price, and design to be vital when marketing lingerie to consumers. However, there has been minimum research that looks into the ethnically targeted market and skin colour within the Asian population. Therefore, the main aim of the research was to identify whether consumer preference for lingerie is influenced by the skin tone of the model wearing it. Moreover, the secondary aim was to investigate if the consumer preference for lingerie is influenced by the consumer’s ethnic identification with the skin tone of the model. An experimental design was used to explore the above aims. The participants constituted of 66 females residing in the western province of Sri Lanka and were gathered via convenience sampling. Six computerized images of a real model were used in the study, and her skin tone was digitally manipulated to express three different skin tones (light, tan and dark). Consumer preferences were measured through a ranking order scale that was constructed via a focus group discussion and ethnic identity was measured by the Multigroup Ethnic Identity Measure-Revised. Wilcoxon signed-rank test, Friedman test, and chi square test of independence were carried out using SPSS version 20. The results indicated that majority of the consumers ethnically identified and preferred the tan skin over the light and dark skin tones. The findings support the existing literature that states there is a preference among consumers when models have a medium skin tone over a lighter skin tone. The preference for a tan skin tone in a model is consistent with the ethnic identification of the Sri Lankan sample. The study implies that lingerie brands should consider the model's skin tones when marketing the brand to different ethnic backgrounds.

Keywords: consumer preference, ethnic identification, lingerie, skin tone

Procedia PDF Downloads 259
4434 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions

Authors: Jose Juan Peña, J. Morales, J. García-Ravelo

Abstract:

In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.

Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials

Procedia PDF Downloads 185
4433 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy

Authors: Ingrid Argote, John Archila, Marcelo Becker

Abstract:

In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.

Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.

Procedia PDF Downloads 229
4432 Modern State of the Universal Modeling for Centrifugal Compressors

Authors: Y. Galerkin, K. Soldatova, A. Drozdov

Abstract:

The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi three-dimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.

Keywords: compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient

Procedia PDF Downloads 412
4431 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 370
4430 Stepping in Sustainability: Walkability an Upcoming Design Parameter for Transit Based Communities in Lahore, Pakistan

Authors: Sadaf Saeed

Abstract:

The consideration of walkability as an urban design parameter in conjunction with transit-oriented development is an established trend in the developed countries but an upcoming trend in developing countries. In Pakistan, the first Bus Rapid Transit (locally called as Metro Bus) has been introduced in the city of Lahore in 2013 where around 40 percent of the riders access to transit stations by walking. To what extent the aspect of walkability has been considered in the local scenario? To address this question, this paper presents an account of urban design parameters regarding pedestrian provisions and quality of walking environment between Metro Bus stations and users’ destination in the transit neighbourhoods (areas up to 500-meter radius). The primary and secondary data for objective and subjective walkability measurements has been used for neighbourhoods of five selected transit stations ranked against the predefined critical assessed factors (CAF). The multi-criteria approach including visual and geospatially-based parameters at street level, along with walkability index score at selected sites linked with CAF evaluation were the selected methods for this study. The acceptability of walkability as an urban design parameter for transit planning in terms of connectivity and social implications of the concept has also been analysed in the local context. The paper highlights that the aspect of walkability in Lahore is being derelict owing to the focus of government on other initiatives such as park and ride and feeder bus services for mobility of passengers. However, the pedestrian-friendly design parameters as a part of future transit planning can enhance social, liveable and interactive walking environment within transit neighbourhoods.

Keywords: walkability, sustainability, transit neighborhoods, social communities

Procedia PDF Downloads 245
4429 Disaster Victim Identification: A Social Science Perspective

Authors: Victor Toom

Abstract:

Albeit it is never possible to anticipate the full range of difficulties after a catastrophe, efforts to identify victims of mass casualty events have become institutionalized and standardized with the aim of effectively and efficiently addressing the many challenges and contingencies. Such ‘disaster victim identification’ (DVI) practices are dependent on the forensic sciences, are subject of national legislation, and are reliant on technical and organizational protocols to mitigate the many complexities in the wake of catastrophe. Apart from such technological, legal and bureaucratic elements constituting a DVI operation, victims’ families and their emotions are also part and parcel of any effort to identify casualties of mass human fatality incidents. Take for example the fact that forensic experts require (antemortem) information from the group of relatives to make identification possible. An identified body or body part is also repatriated to kin. Relatives are thus main stakeholders in DVI operations. Much has been achieved in years past regarding facilitating victims’ families’ issues and their emotions. Yet, how families are dealt with by experts and authorities is still considered a difficult topic. Due to sensitivities and required emphatic interaction with families on the one hand, and the rationalized DVI efforts, on the other hand, there is still scope for improving communication, providing information and meaningful inclusion of relatives in the DVI effort. This paper aims to bridge the standardized world of DVI efforts and families’ experienced realities and makes suggestions to further improve DVI efforts through inclusion of victims’ families. Based on qualitative interviews, the paper narrates involvement and experiences of inter alia DVI practitioners, victims’ families, advocates and clergy in the wake of the 1995 Srebrenica genocide which killed approximately 8,000 men, and the 9/11 in New York City with 2,750 victims. The paper shows that there are several models of including victims’ families into a DVI operation, and it argues for a model of where victims’ families become a partner in DVI operations.

Keywords: disaster victim identification (DVI), victims’ families, social science (qualitative), 9/11 attacks, Srebrenica genocide

Procedia PDF Downloads 232
4428 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition

Procedia PDF Downloads 177
4427 Selection the Most Suitable Method for DNA Extraction from Muscle of Iran's Canned Tuna by Comparison of Different DNA Extraction Methods

Authors: Marjan Heidarzadeh

Abstract:

High quality and purity of DNA isolated from canned tuna is essential for species identification. In this study, the efficiency of five different methods for DNA extraction was compared. Method of national standard in Iran, the CTAB precipitation method, Wizard DNA Clean Up system, Nucleospin and GenomicPrep were employed. DNA was extracted from two different canned tuna in brine and oil of the same tuna species. Three samples of each type of product were analyzed with the different methods. The quantity and quality of DNA extracted was evaluated using the 260 nm absorbance and ratio A260/A280 by spectrophotometer picodrop. Results showed that the DNA extraction from canned tuna preserved in different liquid media could be optimized by employing a specific DNA extraction method in each case. Best results were obtained with CTAB method for canned tuna in oil and with Wizard method for canned tuna in brine.

Keywords: canned tuna PCR, DNA, DNA extraction methods, species identification

Procedia PDF Downloads 657
4426 Molecular Identification and Genotyping of Human Brucella Strains Isolated in Kuwait

Authors: Abu Salim Mustafa

Abstract:

Brucellosis is a zoonotic disease endemic in Kuwait. Human brucellosis can be caused by several Brucella species with Brucella melitensis causing the most severe and Brucella abortus the least severe disease. Furthermore, relapses are common after successful chemotherapy of patients. The classical biochemical methods of culture and serology for identification of Brucellae provide information about the species and serotypes only. However, to differentiate between relapse and reinfection/epidemiological investigations, the identification of genotypes using molecular methods is essential. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-16] were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. The 16S rRNA gene sequencing suggested that all the strains were B. melitensis and real-time PCR confirmed their species identity as B. melitensis. The ERIC-PCR band profiles produced a dendrogram of 75 branches suggesting each strain to be of a unique type. The cluster classification, based on ~ 80% similarity, divided all the ERIC genotypes into two clusters, A and B. Cluster A consisted of 9 ERIC genotypes (A1-A9) corresponding to 9 individual strains. Cluster B comprised of 13 ERIC genotypes (B1-B13) with B5 forming the largest cluster of 51 strains. MLVA-16 identified all isolates as B. melitensis and divided them into 71 MLVA-types. The cluster analysis of MLVA-16-types suggested that most of the strains in Kuwait originated from the East Mediterranean Region, a few from the African group and one new genotype closely matched with the West Mediterranean region. In conclusion, this work demonstrates that B. melitensis, the most pathogenic species of Brucella, is prevalent in Kuwait. Furthermore, MLVA-16 is the best molecular method, which can identify the Brucella species and genotypes as well as determine their origin in the global context. Supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13.

Keywords: Brucella, ERIC-PCR, MLVA-16, RT-PCR, 16S rRNA gene sequencing

Procedia PDF Downloads 391
4425 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio

Authors: O. S. Omorogiuwa, E. J. Omozusi

Abstract:

The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.

Keywords: spectrum, interference, telecommunication, cognitive radio, frequency

Procedia PDF Downloads 224
4424 Object-Oriented Program Comprehension by Identification of Software Components and Their Connexions

Authors: Abdelhak-Djamel Seriai, Selim Kebir, Allaoua Chaoui

Abstract:

During the last decades, object oriented program- ming has been massively used to build large-scale systems. However, evolution and maintenance of such systems become a laborious task because of the lack of object oriented programming to offer a precise view of the functional building blocks of the system. This lack is caused by the fine granularity of classes and objects. In this paper, we use a post object-oriented technology namely software components, to propose an approach based on the identification of the functional building blocks of an object oriented system by analyzing its source code. These functional blocks are specified as software components and the result is a multi-layer component based software architecture.

Keywords: software comprehension, software component, object oriented, software architecture, reverse engineering

Procedia PDF Downloads 412
4423 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks

Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang

Abstract:

For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.

Keywords: high-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network

Procedia PDF Downloads 435
4422 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: piecewise regression, bayesian, reversible jump MCMC, segmentation

Procedia PDF Downloads 373
4421 Seismic Response and Sensitivity Analysis of Circular Shallow Tunnels

Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed

Abstract:

Underground tunnels are one of the most popular public facilities for various applications such as transportation, water transfer, network utilities and etc. Experience from the past earthquake reveals that the underground tunnels also become vulnerable components and may damage at certain percentage depending on the level of ground shaking and induced phenomena. In this paper a numerical analysis is conducted in evaluating the sensitivity of two types of circular shallow tunnel lining models to wide ranging changes in the geotechnical design parameter. Critical analysis has been presented about the current methods of analysis, structural typology, ground motion characteristics, effect of soil conditions and associated uncertainties on the tunnel integrity. The response of the tunnel is evaluated through 2D non-linear finite element analysis, which critically assesses the impact of increasing levels of seismic loads. The finding from this study offer significant information on improving methods to assess the vulnerability of underground structures.

Keywords: geotechnical design parameter, seismic response, sensitivity analysis, shallow tunnel

Procedia PDF Downloads 441
4420 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: EDM, electrode, MRR, RSM, ANOVA

Procedia PDF Downloads 305
4419 Little RAGNER: Toward Lightweight, Generative, Named Entity Recognition through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models for Generative Named Entity Recognition (GNER). Alongside Retrieval Augmented Generation (RAG), and supported by task-specific prompting, our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self-verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 47
4418 Effects of Dispersion on Peristaltic Flow of a Micropolar Fluid Through a Porous Medium with Wall Effects in the Presence of Slip

Authors: G. Ravi Kiran, G. Radhakrishnamacharya

Abstract:

This paper investigates the effects of slip boundary condition and wall properties on the dispersion of a solute matter in peristaltic flow of an incompressible micropolar fluid through a porous medium. Long wavelength approximation, Taylor's limiting condition and dynamic boundary conditions at the flexible walls are used to obtain the average effective dispersion coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. The effects of various pertinent parameters on the effective dispersion coefficient are discussed. It is observed that peristalsis enhances dispersion. It also increases with micropolar parameter, cross viscosity coefficient, Darcy number, slip parameter and wall parameters. Further, dispersion decreases with homogenous chemical reaction rate and heterogeneous chemical reaction rate.

Keywords: chemical reaction, dispersion, peristalsis, slip condition, wall properties

Procedia PDF Downloads 467
4417 Calibration of Discrete Element Method Parameters for Modelling DRI Pellets Flow

Authors: A. Hossein Madadi-Najafabadi, Masoud Nasiri

Abstract:

The discrete element method is a powerful technique for numerical modeling the flow of granular materials such as direct reduced iron. It would enable us to study processes and equipment related to the production and handling of the material. However, the characteristics and properties of the granules have to be adjusted precisely to achieve reliable results in a DEM simulation. The main properties for DEM simulation are size distribution, density, Young's modulus, Poisson's ratio and the contact coefficients of restitution, rolling friction and sliding friction. In the present paper, the mentioned properties are determined for DEM simulation of DRI pellets. A reliable DEM simulation would contribute to optimizing the handling system of DRIs in an iron-making plant. Among the mentioned properties, Young's modulus is the most important parameter, which is usually hard to get for particulate solids. Here, an especial method is utilized to precisely determine this parameter for DRI.

Keywords: discrete element method, direct reduced iron, simulation parameters, granular material

Procedia PDF Downloads 180
4416 System Identification of Building Structures with Continuous Modeling

Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab

Abstract:

This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.

Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction

Procedia PDF Downloads 233
4415 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 129
4414 Structuring of Multilayer Aluminum Nickel by Lift-off Process Using Cheap Negative Resist

Authors: Muhammad Talal Asghar

Abstract:

The lift-off technique of the photoresist for metal patterning in integrated circuit (IC) packaging has been widely utilized in the field of microelectromechanical systems and semiconductor component manufacturing. The main advantage lies in cost-saving, reduction in complexity, and maturity of the process. The selection of photoresist depends upon many factors such as cost, the thickness of the resist, comfortable and valuable parameters extraction. In the present study, an extremely cheap dry film photoresist E8015 of thickness 38-micrometer is processed for the first time for edge profiling, according to the author's best knowledge. Successful extraction of the helpful parameter range for resist processing is performed. An undercut angle of 66 to 73 degrees is realized by parameter variation like exposure energy and development time. Finally, 10-micrometer thick metallic multilayer aluminum nickel is lifted off on the plain silicon wafer. Possible applications lie in controlled self-propagating reactions within structured metallic multilayer that may be utilized for IC packaging in the future.

Keywords: lift-off, IC packaging, photoresist, multilayer

Procedia PDF Downloads 212
4413 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 285
4412 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge

Authors: Fan Yang, Ye-Lu Wang, Yang Zhao

Abstract:

The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.

Keywords: continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling

Procedia PDF Downloads 159
4411 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry

Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar

Abstract:

State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.

Keywords: active power tuning, database modelling, reactive power, state estimator

Procedia PDF Downloads 7
4410 Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle

Authors: Raymond Yudhi Purba, Levy Olivia Nur, Radial Anwar

Abstract:

This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB.

Keywords: skew planar wheel, cloverleaf, first-person view, unmanned aerial vehicle, parameter sweep

Procedia PDF Downloads 216
4409 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame

Authors: Ardalan Sabamehr, Ashutosh Bagchi

Abstract:

Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.

Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform

Procedia PDF Downloads 296
4408 Impact of VARK Learning Model at Tertiary Level Education

Authors: Munazza A. Mirza, Khawar Khurshid

Abstract:

Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.

Keywords: learning style, VARK, sensory preferences, identification model, didactic practices

Procedia PDF Downloads 278
4407 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture

Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf

Abstract:

Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.

Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer

Procedia PDF Downloads 118