Search results for: garlic powder
543 Fe-Doped Graphene Nanoparticles for Gas Sensing Applications
Authors: Shivani A. Singh, Pravin S. More
Abstract:
In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.Keywords: chemical doping, graphene, gas sensing, sensing
Procedia PDF Downloads 217542 Rheological Evaluation of Various Indigenous Gums
Authors: Yogita Weikey, Shobha Lata Sinha, Satish Kumar Dewangan
Abstract:
In the present investigation, rheology of the three different natural gums has been evaluated experimentally using MCR 102 rheometer. Various samples based on the variation of the concentration of the solid gum powder have been prepared. Their non-Newtonian behavior has been observed by the consistency plots and viscosity variation plots with respect to different solid concentration. The viscosity-shear rate curves of gums are similar and the behavior is shear thinning. Gums are showing pseudoplastic behavior. The value of k and n are calculated by using various models. Results show that the Herschel–Bulkley rheological model is reliable to describe the relationship of shear stress as a function of shear rate. R² values are also calculated to support the choice of gum selection.Keywords: bentonite, Indian gum, non-Newtonian model, rheology
Procedia PDF Downloads 309541 Synthesis Characterisation and Evaluation of Co-Processed Wax Matrix Excipient for Controlled Release Tablets Formulation
Authors: M. Kalyan Raj, Vinay Umesh Rao, M. Sudhakar
Abstract:
The work focuses on the development of a directly compressible controlled release co-processed excipient using melt granulation technique. Erodible wax matrix systems are fabricated in which three different types of waxes are co processed separately with Maize starch in different ratios by melt granulation. The resultant free flowing powder is characterized by FTIR, NMR, Mass spectrophotometer and gel permeation chromatography. Also, controlled release tablets of Aripiprazole were formulated and dissolution profile was compared with that of the target product profile given in Zysis patent (Patent no. 20100004262) for Aripiprazole once a week formulation.Keywords: co-processing, hot melt extrusion, direct compression, maize starch, stearic acid, aripiprazole
Procedia PDF Downloads 408540 Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M
Authors: A. Yönetken, A. Erol, A. Yakar, G. Peşmen
Abstract:
The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.Keywords: composite, electroless nickel plating, powder metallurgy, sintering
Procedia PDF Downloads 277539 Powdered Beet Red Roots Using as Adsorbent to Removal of Methylene Blue Dye from Aqueous Solutions
Authors: Abdulali Bashir Ben Saleh
Abstract:
The powdered beet red roots (PBRR) were used as an adsorbent to remove dyes namely methylene blue dye (as a typical cationic or basic dye) from aqueous solutions. The present study shows that used beet red roots powder exhibit adsorption trend for the dye. The adsorption processes were carried out at various conditions of concentrations, processing time and a wide range of pH between 2.5-11. Adsorption isotherm equations such as Freundlich, and Langmuir were applied to calculate the values of respective constants. Adsorption study was found that the currently introduced adsorbent can be used to remove cationic dyes such as methylene blue from aqueous solutions.Keywords: beet red root, removal of deys, methylene blue, adsorption
Procedia PDF Downloads 333538 Influence of Silica Fume on Ultrahigh Performance Concrete
Authors: Vitoldas Vaitkevičius, Evaldas Šerelis
Abstract:
Silica fume, also known as microsilica (MS) or condensed silica fume is a by-product of the production of silicon metal or ferrosilicon alloys. Silica fume is one of the most effective pozzolanic additives which could be used for ultrahigh performance and other types of concrete. Despite the fact, however is not entirely clear, which amount of silica fume is most optimal for UHPC. Main objective of this experiment was to find optimal amount of silica fume for UHPC with and without thermal treatment, when different amount of quartz powder is substituted by silica fume. In this work were investigated four different composition of UHPC with different amount of silica fume. Silica fume were added 0, 10, 15 and 20% of cement (by weight) to UHPC mixture. Optimal amount of silica fume was determined by slump, viscosity, qualitative and quantitative XRD analysis and compression strength tests methods.Keywords: compressive strength, silica fume, ultrahigh performance concrete, XRD
Procedia PDF Downloads 294537 Screening for Larvicidal Activity of Aqueous and Ethanolic Extracts of Fourteen Selected Plants and Formulation of a Larvicide against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) Larvae
Authors: Michael Russelle S. Alvarez, Noel S. Quiming, Francisco M. Heralde
Abstract:
This study aims to: a) obtain ethanolic (95% EtOH) and aqueous extracts of Selaginella elmeri, Christella dentata, Elatostema sinnatum, Curculigo capitulata, Euphorbia hirta, Murraya koenigii, Alpinia speciosa, Cymbopogon citratus, Eucalyptus globulus, Jatropha curcas, Psidium guajava, Gliricidia sepium, Ixora coccinea and Capsicum frutescens and screen them for larvicidal activities against Aedes aegypti (Linn.) and Aedes albopictus (Skuse) larvae; b) to fractionate the most active extract and determine the most active fraction; c) to determine the larvicidal properties of the most active extract and fraction against by computing their percentage mortality, LC50, and LC90 after 24 and 48 hours of exposure; and d) to determine the nature of the components of the active extracts and fractions using phytochemical screening. Ethanolic (95% EtOH) and aqueous extracts of the selected plants will be screened for potential larvicidal activity against Ae. aegypti and Ae. albopictus using standard procedures and 1% malathion and a Piper nigrum based ovicide-larvicide by the Department of Science and Technology as positive controls. The results were analyzed using One-Way ANOVA with Tukey’s and Dunnett’s test. The most active extract will be subjected to partial fractionation using normal-phase column chromatography, and the fractions subsequently screened to determine the most active fraction. The most active extract and fraction were subjected to dose-response assay and probit analysis to determine the LC50 and LC90 after 24 and 48 hours of exposure. The active extracts and fractions will be screened for phytochemical content. The ethanolic extracts of C. citratus, E. hirta, I. coccinea, G. sepium, M. koenigii, E globulus, J. curcas and C. frutescens exhibited significant larvicidal activity, with C. frutescens being the most active. After fractionation, the ethyl acetate fraction was found to be the most active. Phytochemical screening of the extracts revealed the presence of alkaloids, tannins, indoles and steroids. A formulation using talcum powder–300 mg fraction per 1 g talcum powder–was made and again tested for larvicidal activity. At 2 g/L, the formulation proved effective in killing all of the test larvae after 24 hours.Keywords: larvicidal activity screening, partial purification, dose-response assay, capsicum frutescens
Procedia PDF Downloads 329536 Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering
Authors: Paul Stonaha, Mariia Romashchenko, Xaio Xu
Abstract:
Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties.Keywords: neutron scattering, vibrational dynamics, computational physics, material science
Procedia PDF Downloads 32535 Proximate Composition and Mineral Contents of Ocimum gratissimum Leaves (African Basil)
Authors: Adebola Ajayi
Abstract:
Ocimum gratissimum belongs to the Lamiaceae family and is know generally as African Basil. Ocimum gratissimum leaves are widely used as local condiments in diets. The leaves were destalked sorted, washed with potable water to remove dirts, air dried for 14 days under ambient temperature and milled into powder. The proximate composition and mineral contents of Ocimum gratissimum leaves were investigated. The proximate analysis showed the moisture, crude, protein, total ash, crude fiber, crude lipid and total carbohydrate contents were 10.72±0.01%, 12.98±0.10%, 10.95±0.42, 10.21±0.04%, 4.81±0.04% and 49.01±0.25% respectively. The results of the analysis showed that Ocimum gratissimum could be a good source of important food nutrients.Keywords: African Basil, drying, Ocimum gratissimum, proximate
Procedia PDF Downloads 200534 Effect of Antioxidant-Rich Nutraceutical on Serum Glucose, Lipid Profile and Oxidative Stress Markers of Salt-Induced Metabolic Syndrome in Rats
Authors: Nura Lawal, Lawal Suleiman Bilbis, Rabiu Aliyu Umar, Anas A. Sabir
Abstract:
Metabolic syndrome (MS) a high-risk condition involving obesity, dyslipidemia, hypertension, and diabetes mellitus is prevalent in Nigeria. The study aims to formulate an antioxidant-rich nutraceutical from locally available foodstuff (onion, garlic, ginger, tomato, lemon, palm oil, watermelon seeds) and investigate their effects on blood pressure, body weight, serum glucose, lipid profile, insulin and oxidative stress markers in salt-induced rats. The rats were placed on 8% salt diet for 6 weeks and then supplementation and treatment with nutraceutical and nifedipine in the presence of salt diet for additional 4 weeks. Feeding rats with salt diet for 6 weeks increased blood pressure and body weight of the salt-loaded rats relative to control. Significant (P < 0.001) increase in serum blood glucose and lipid profile, and the decrease in high-density lipoprotein-cholesterol (HDL-C) was observed in salt-loaded rats as compared with control. Both supplementation and treatment (nifedipine) lowered the blood pressure but the only supplementation lowered the body weight. Supplementation with nutraceutical resulted in significant (P < 0.001) decrease in the serum blood glucose, lipid profile, malonyldialdehyde (MDA), insulin levels, insulin resistance, and increased HDL-C and antioxidant indices. The percentage protection against atherogenesis was 76.5±2.13%. There is strong positive correlation between blood pressure, body weight and serum blood glucose, lipid profile, markers of oxidative stress and strong negative correlation with HDL-C and antioxidant status. The results suggest that the nutraceuticals are useful in reversing most of the component of metabolic syndrome and might be beneficial in the treatment of patients with metabolic syndrome.Keywords: metabolic syndrome, hypertension, diabetes mallitus, obesity
Procedia PDF Downloads 249533 Efficacy of Some Plant Extract against Larvae and Pupae of American Bollworm (Helicoverpa armigera) including the Effect on Peritropme Membrane
Authors: Deepali Lal, Sudha Summerwar, Jyoutsna Pandey
Abstract:
The resistance of pesticide by the pest is an important matter of concern.The pesticide of plant origin having nontoxic biodegradable and environmentally friendly qualities. The frequent spraying of toxic chemicals is developing resistance to the pesticide. Leaf powder of the plants like Argimone mexicana and Calotropis procera is prepared, Different doses of these plant extracts are given to the Fourth in star stages of Helicoverpa armigera through feeding methods, to find their efficacy the experimental findings will be put under analysis using various parameters. The effect on paritrophic membrane is also studied.Keywords: distillation plant, acetone, alcohol, pipette, castor leaves, grams pods, larvae of helicoverpa armigera, plant extract, vails, jars, cotton
Procedia PDF Downloads 317532 Development and Validation of a Green Analytical Method for the Analysis of Daptomycin Injectable by Fourier-Transform Infrared Spectroscopy (FTIR)
Authors: Eliane G. Tótoli, Hérida Regina N. Salgado
Abstract:
Daptomycin is an important antimicrobial agent used in clinical practice nowadays, since it is very active against some Gram-positive bacteria that are particularly challenges for the medicine, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The importance of environmental preservation has receiving special attention since last years. Considering the evident need to protect the natural environment and the introduction of strict quality requirements regarding analytical procedures used in pharmaceutical analysis, the industries must seek environmentally friendly alternatives in relation to the analytical methods and other processes that they follow in their routine. In view of these factors, green analytical chemistry is prevalent and encouraged nowadays. In this context, infrared spectroscopy stands out. This is a method that does not use organic solvents and, although it is formally accepted for the identification of individual compounds, also allows the quantitation of substances. Considering that there are few green analytical methods described in literature for the analysis of daptomycin, the aim of this work was the development and validation of a green analytical method for the quantification of this drug in lyophilized powder for injectable solution, by Fourier-transform infrared spectroscopy (FT-IR). Method: Translucent potassium bromide pellets containing predetermined amounts of the drug were prepared and subjected to spectrophotometric analysis in the mid-infrared region. After obtaining the infrared spectrum and with the assistance of the IR Solution software, quantitative analysis was carried out in the spectral region between 1575 and 1700 cm-1, related to a carbonyl band of the daptomycin molecule, and this band had its height analyzed in terms of absorbance. The method was validated according to ICH guidelines regarding linearity, precision (repeatability and intermediate precision), accuracy and robustness. Results and discussion: The method showed to be linear (r = 0.9999), precise (RSD% < 2.0), accurate and robust, over a concentration range from 0.2 to 0.6 mg/pellet. In addition, this technique does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. Conclusion: The validated method proved to be adequate to quantify daptomycin in lyophilized powder for injectable solution and can be used for its routine analysis in quality control. In addition, the proposed method is environmentally friendly, which is in line with the global trend.Keywords: daptomycin, Fourier-transform infrared spectroscopy, green analytical chemistry, quality control, spectrometry in IR region
Procedia PDF Downloads 381531 Investigation on the Acoustical Transmission Path of Additive Printed Metals
Authors: Raphael Rehmet, Armin Lohrengel, Prof Dr-Ing
Abstract:
In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens.Keywords: 3D-printed, acoustics, dynamics, impedance
Procedia PDF Downloads 207530 Synthesis, Characterization and Gas Sensing Applications of Perovskite CaZrO3 Nanoparticles
Authors: B. M. Patil
Abstract:
Calcium Zirconate (CaZrO3) has high protonic conductivities at elevated temperature in water or hydrogen atmosphere. Undoped calcium zirconate acts as a p-type semiconductor in air. In this paper, we reported synthesis of CaZrO3 nanoparticles via modified molecular precursor method. The precursor calcium zirconium oxalate (CZO) was synthesized by exchange reaction between freshly generated aqueous solution of sodium zirconyl oxalate and calcium acetate at room temperature. The controlled pyrolysis of CZO in air at 700°C for one hour resulted in the formation nanocrystalline CaZrO3 powder. CaZrO3 obtained by the present method was characterized by Simultaneous thermogravimetry and differential thermogravimetry (TG-DTA), X-ray diffraction (XRD), infra-red spectroscopy and transmission electron microscopy (TEM). The pellets of synthesized CaZrO3 fabricated, sintered at 1000°C for 5 hr and tested as sensors for NO2 and NH3 gases.Keywords: CaZrO3, CZO, NO2, NH3
Procedia PDF Downloads 167529 Preparation and Structural Analysis of Nano-Ciprofloxacin by Fourier Transform X-Ray Diffraction, Infra-Red Spectroscopy, and Semi Electron Microscope (SEM)
Authors: Shahriar Ghammamy, Mehrnoosh Saboony
Abstract:
Purpose: To evaluate the spectral specification (IR-XRD and SEM) of nano-ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and its characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation enhances the antibacterial property of nano-ciprofloxacin in comparison to ciprofloxacin. IR spectrum of nano-ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano-ciprofloxacin were sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano-ciprofloxacin shows the diameter of particles equal to 90.9nm. (on the basis of Scherer Equation). SEM image shows the global shape for nano-ciprofloxacin.Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM
Procedia PDF Downloads 514528 Preparation and Structural Analysis of Nano Ciprofloxacin by Fourier Transform Infra-Red Spectroscopy, X-Ray Diffraction and Semi Electron Microscope (SEM)
Authors: Shahriar Ghammamy, Mehrnoosh Saboony
Abstract:
Purpose: to evaluate the spectral specification(IR-XRD and SEM) of nano ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and it,s characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation: to enhance the antibacterial property of nano ciprofloxacin in comparison to ciprofloxacin.IR spectrum of nano ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano ciprofloxacin was sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano ciprofloxacin showes the diameter of particles equal to 90.9 nm (on the basis of scherrer equation). SEM image showes the global shape for nano ciprofloxacin.Keywords: antibiotic, ciprofloxacin, nano, IR, XRD, SEM
Procedia PDF Downloads 410527 Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)
Authors: Supatchalee Sirichokworrakit
Abstract:
Fishbone of Nile tilapia (Tilapia nilotica), waste from the frozen Nile tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p≤0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p≤0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score.Keywords: tilapia bone flour, noodles, cooking quality, calcium
Procedia PDF Downloads 402526 Insecticidal Effects of the Wettable Powder Formulations of Plant Extracts on Cotton Bollworm, Helicoverpa armigera (Lep. Noctuidae)
Authors: Reza Sadeghi, Maryam Nazarahari
Abstract:
Due to the numerous side effects of chemical pesticides, in this research, to provide the practical use of herbal compounds, the extracts of the two plants of thyme and eucalyptus were extracted by using water, 70% ethanol, and n-hexane solvents via percolation method and then formulated as wettable powders. The mortality rates of cotton bollworm (Helicoverpa armigera) were investigated under different concentrations of ethanolic, hexanic, and aqueous extracts of thyme and eucalyptus and their formulations in laboratory conditions. The results showed that the used concentrations, types of solvents, and sorts of formulations significantly affected the mortality rates of cotton bollworm larvae during the exposure period of 24 h.Keywords: cotton bollworm, eucalyptus, formulation, thyme, toxicity
Procedia PDF Downloads 84525 Epigenetic Modifying Potential of Dietary Spices: Link to Cure Complex Diseases
Authors: Jeena Gupta
Abstract:
In the today’s world of pharmaceutical products, one should not forget the healing properties of inexpensive food materials especially spices. They are known to possess hidden pharmaceutical ingredients, imparting them the qualities of being anti-microbial, anti-oxidant, anti-inflammatory and anti-carcinogenic. Further aberrant epigenetic regulatory mechanisms like DNA methylation, histone modifications or altered microRNA expression patterns, which regulates gene expression without changing DNA sequence, contribute significantly in the development of various diseases. Changing lifestyles and diets exert their effect by influencing these epigenetic mechanisms which are thus the target of dietary phytochemicals. Bioactive components of plants have been in use since ages but their potential to reverse epigenetic alterations and prevention against diseases is yet to be explored. Spices being rich repositories of many bioactive constituents are responsible for providing them unique aroma and taste. Some spices like curcuma and garlic have been well evaluated for their epigenetic regulatory potential, but for others, it is largely unknown. We have evaluated the biological activity of phyto-active components of Fennel, Cardamom and Fenugreek by in silico molecular modeling, in vitro and in vivo studies. Ligand-based similarity studies were conducted to identify structurally similar compounds to understand their biological phenomenon. The database searching has been done by using Fenchone from fennel, Sabinene from cardamom and protodioscin from fenugreek as a query molecule in the different small molecule databases. Moreover, the results of the database searching exhibited that these compounds are having potential binding with the different targets found in the Protein Data Bank. Further in addition to being epigenetic modifiers, in vitro study had demonstrated the antimicrobial, antifungal, antioxidant and cytotoxicity protective effects of Fenchone, Sabinene and Protodioscin. To best of our knowledge, such type of studies facilitate the target fishing as well as making the roadmap in drug design and discovery process for identification of novel therapeutics.Keywords: epigenetics, spices, phytochemicals, fenchone
Procedia PDF Downloads 158524 Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6
Authors: Asmaa Zaraq
Abstract:
In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m.Keywords: double perovskites, caracterisation DRX, transition de phase
Procedia PDF Downloads 522523 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.Keywords: hardness, powder metallurgy, spark plasma sintering, wear
Procedia PDF Downloads 273522 Synthesis and Evaluation of Heterogeneous Nano-Catalyst: Cr Loaded in to MCM-41
Authors: A. Salemi Golezania, A. Sharifi Fateha
Abstract:
In this study a nano-composite catalyst was synthesized by incorporation of chromium into the framework of MCM-41 as a base catalyst. Mesoporous silica molecular sieves MCM-41 were synthesized under Hydrothermal Continues pH Adjusting Path Way. Then, MCM-41 was impregnated by chromium nitrate aqueous solution for several times under water aspiration. Raw powder was cured by heat treatment in vacuum furnace at 500°C. Phase formation, morphology and gas absorption properties of resulted materials were characterized by XRD, TEM and BET analysis, respectively. The results showed that high quality hexagonal meso structure as a matrix and Cr as a second phase has been formed with a narrow size pore diameter distribution and high surface area in Cr/MCM-41 nano-composite structure. The specific surface and total volume of porosity of the synthesized nanocomposite are obtained 931m^2/gr and 1.12 cm^3/gr, respectively.Keywords: nano-catalyst, MCM-41, Cr/MCM-41, Marine Science and Engineering
Procedia PDF Downloads 386521 An Investigation of New Phase Diagram of Ag2SO4-CaSO4
Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik
Abstract:
A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.Keywords: phase diagram, Ag2SO4-CaSO4 binaries system, conductivity, XRD, DTA
Procedia PDF Downloads 625520 Filler for Higher Bitumen Adhesion
Authors: Alireza Rezagholilou
Abstract:
Moisture susceptibility of bituminous mixes directly affect the stripping of asphalt layers. The majority of relevant test methods are mechanical methods with low repeatability and consistency of results. Thus, this research aims to evaluate the physicochemical interactions of bitumen and aggregates based on the wettability concept. As such, the surface energies of components at the interface are measured by contact angle method. That gives an opportunity to investigate the adhesion properties of multiple mineral fillers at various percentages to explore the best dosage in the mix. Three types of fillers, such as hydrated lime, ground lime and rock powder, are incorporated into the bitumen mix for a series of sessile drop tests for both aggregates and binders. Results show the variation of adhesion properties versus filler (%).Keywords: adhesion, contact angle, filler, surface energy, moisture susceptibility
Procedia PDF Downloads 76519 Functional Finishing of Organic Cotton Fabric Using Vetiver Root Extract
Authors: Sakeena Naikwadi, K. Jagaluraiah Sannapapamma
Abstract:
Vetiveria zizanioides is an aromatic grass and traditionally been used in aromatherapy and ayurvedic medicine. Vetiver root is multi-functional biopolymer and has highly aromatic, antimicrobial, UV blocking, antioxidant properties suitable for textile finishing. The vetiver root (Gulabi) powder of different concentration (2, 4, 6,8 percent) were extracted by aqueous and solvent methods subjected to bioassay for antimicrobial efficiency and GCMS spectral analysis. The organic cotton fabric was finished with vetiver root extract (8 percent) by exhaust and pad dry cure methods. The finished fabric was assessed for functional properties viz., UV protective factor, antimicrobial efficiency and aroma intensity. The results revealed that Ethanol extraction showed a greater zone of inhibition compared to aqueous extract in root powder. Among the concentrations, 8 percent root extract in ethanol showed a greater zone of inhibition against gram-positive organism S. aureus and gram-negative organism E. coli. The major compounds present in vetiver root extracts were diethyl pathalate with greater percentage (87.73 %) followed by 7- Isopropyl dimethyl carboxylic acid (4.05 %), 2-butanone 4-trimethyle cyclohexen (1.21 %), phenanthrene carboxylic acid (1.03 %), naphthalene pentanoic acid (0.99 %), 1-phenanthrene carboxylic acid and 1 cyclohexenone 2-methyl oxobuty (0.89 %). The sample finished by pad dry cure method exhibited better UV protection even after 10th wash as compared to exhaust method. Vetiver extract treated samples exhibited maximum zone of inhibition against S. aureus than the E. coli organism. The vetiver root extract treated organic cotton fabric through pad dry cure method possessed good antimicrobial activity against S. aureus and E. coli even after 20th washes compared to vetiver root extract treated by exhaust method. The olfactory analysis was carried out by 30 panels of members and opined that vetiver root extract treated fabric has very good and pleasant aroma with better tactile properties that provide cooling, soothing effect and enhances the mood of the wearer. Vetiver root extract finished organic cotton fabric possessed aroma, antimicrobial and UV properties which are aptly suitable for medical and healthcare textiles viz., wound dressing, bandage gauze, surgical cloths, baby diapers and sanitary napkins. It can be used as after finishing agent for variegated garments and made-ups and can be replaced with commercial after finishing agents.Keywords: antimicrobial, olfactory analysis, UV protection factor, vetiver root extract
Procedia PDF Downloads 235518 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode
Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno
Abstract:
Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity
Procedia PDF Downloads 193517 Home-Based Care with Follow-Up at Outpatient Unit or Community-Follow-Up Center with/without Food Supplementation and/or Psychosocial Stimulation of Children with Moderate Acute Malnutrition in Bangladesh
Authors: Md Iqbal Hossain, Tahmeed Ahmed, Kenneth H. Brown
Abstract:
Objective: To assess the effect of community-based follow up, with or without food-supplementation and/or psychosocial stimulation, as an alternative to current hospital-based follow-up of children with moderate-acute-malnutrition (WHZ < -2 to -3) (MAM). Design/methods: The study was conducted at the ICDDR,B Dhaka Hospital and in four urban primary health care centers of Dhaka, Bangladesh during 2005-2007. The efficacy of five different randomly assigned interventions was compared with respect to the rate of completion of follow-up, growth and morbidity in 227 MAM children aged 6-24 months who were initially treated at ICDDR,B for diarrhea and/or other morbidities. The interventions were: 1) Fortnightly follow-up care (FFC) at the ICDDR,B’s outpatient-unit, including growth monitoring, health education, and micro-nutrient supplementation (H-C, n=49). 2) FFC at community follow-up unit (CNFU) [established in the existing urban primary health-care centers close to the residence of the child] but received the same regimen as H-C (C-C, n=53). 3) As per C-C plus cereal-based supplementary food (SF) (C-SF, n=49). The SF packets were distributed on recruitment and at every visit in CNFU [@1 packet/day for 6–11 and 2 packets/day for 12-24 month old children. Each packet contained 20g toasted rice-powder, 10g toasted lentil-powder, 5g molasses, and 3g soy bean oil, to provide a total of ~ 150kcal with 11% energy from protein]. 4) As per C-C plus psychosocial stimulation (PS) (C-PS, n=43). PS consisted of child-stimulation and parental-counseling conducted by trained health workers. 5) As per C-C plus both SF+PS (C-SF+PS, n=33). Results: A total of 227children (48.5% female), with a mean ± SD age of 12.6 ±3.8 months, and WHZ of - 2.53±0.28 enrolled. Baseline characteristics did not differ by treatment group. The rate of spontaneous attendance at scheduled follow-up visits gradually decreased in all groups. Follow-up attendance and gain in weight and length were greater in groups C-SF, C-SF+PS, and C-PS than C-C, and these indicators were observed least in H-C. Children in the H-C group more often suffered from diarrhea (25 % vs. 4-9%) and fever (28% vs. 8-11%) than other groups (p < 0.05). Children who attended at least five of the total six scheduled follow-up visits gained more in weight (median: 0.86 vs. 0.62 kg, p=0.002), length (median: 2.4 vs. 2.0 cm, p=0.009) than those who attended fewer. Conclusions: Community-based service delivery, especially including supplementary food with or without psychosocial stimulation, permits better rehabilitation of children with MAM compared to current hospital outpatients-based care. By scaling the community-based follow-up including food supplementation with or without psychosocial stimulation, it will be possible to rehabilitate a greater number of MAM children in a better way.Keywords: community-based management, moderate acute malnutrition, psychosocial stimulation, supplementary food
Procedia PDF Downloads 439516 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions
Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella
Abstract:
Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity
Procedia PDF Downloads 124515 Evaluation of Iron Application Method to Remediate Coastal Marine Sediment
Authors: Ahmad Seiar Yasser
Abstract:
Sediment is an important habitat for organisms and act as a store house for nutrients in aquatic ecosystems. Hydrogen sulfide is produced by microorganisms in the water columns and sediments, which is highly toxic and fatal to benthic organisms. However, the irons have the capacity to regulate the formation of sulfide by poising the redox sequence and to form insoluble iron sulfide and pyrite compounds. Therefore, we conducted two experiments aimed to evaluate the remediation efficiency of iron application to organically enrich and improve sediments environment. Experiments carried out in the laboratory using intact sediment cores taken from Mikawa Bay, Japan at every month from June to September 2017 and October 2018. In Experiment 1, after cores were collected, the iron powder or iron hydroxide were applied to the surface sediment with 5 g/ m2 or 5.6 g/ m2, respectively. In Experiment 2, we experimentally investigated the removal of hydrogen sulfide using (2mm or less and 2 to 5mm) of the steelmaking slag. Experiments are conducted both in the laboratory with the same boundary conditions. The overlying water were replaced with deoxygenated filtered seawater, and cores were sealed a top cap to keep anoxic condition with a stirrer to circulate the overlying water gently. The incubation experiments have been set in three treatments included the control, and each treatment replicated and were conducted with the same temperature of the in-situ conditions. Water samples were collected to measure the dissolved sulfide concentrations in the overlying water at appropriate time intervals by the methylene blue method. Sediment quality was also analyzed after the completion of the experiment. After the 21 days incubation, experimental results using iron powder and ferric hydroxide revealed that application of these iron containing materials significantly reduced sulfide release flux from the sediment into the overlying water. The average dissolved sulfides concentration in the overlying water of the treatment group was significantly decrease (p = .0001). While no significant difference was observed between the control group after 21 day incubation. Therefore, the application of iron to the sediment is a promising method to remediate contaminated sediments in a eutrophic water body, although ferric hydroxide has better hydrogen sulfide removal effects. Experiments using the steelmaking slag also clarified the fact that capping with (2mm or less and 2 to 5mm) of slag steelmaking is an effective technique for remediation of bottom sediments enriched organic containing hydrogen sulfide because it leads to the induction of chemical reaction between Fe and sulfides occur in sediments which did not occur in conditions naturally. Although (2mm or less) of slag steelmaking has better hydrogen sulfide removal effects. Because of economic reasons, the application of steelmaking slag to the sediment is a promising method to remediate contaminated sediments in the eutrophic water body.Keywords: sedimentary, H2S, iron, iron hydroxide
Procedia PDF Downloads 163514 Fabrication of Highly Roughened Zirconia Surface by a Room Temperature Spray Coating
Authors: Hyeong-Jin Kim, Jong Kook Lee
Abstract:
Zirconia has biological, mechanical and optical properties, so, it used as a dental implant material in human body. But, it is difficult to form directly bonding with living tissues after the procedure and induces the falling away from implanted parts of the body. To improve this phenomenon, it is essential to increase the surface roughness of zirconia implants and induce a forming-ability of strong bonds. In this study, we performed a room temperature spray coating on zirconia specimen to obtain a highly roughened zirconia surface. To get optimal surface roughness, we controlled the distance between the nozzle and the substrate, coating times and powder condition. Bonding microstructure, surface roughness, and chemical composition of the coating layer were observed by SEM, XRD and roughness tester.Keywords: implant, aerosoldeposition, zirconia, dental
Procedia PDF Downloads 211