Search results for: flavouring agents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1535

Search results for: flavouring agents

1085 Effect of Different Local Anesthetic Agents on Physiological Parameters and Vital Signs during Extraction in Children

Authors: Rasha F. Sharaf

Abstract:

Administration of local anesthesia for a child is considered a painful procedure, which affects his vital signs, physiological parameters, and his further attitude in the dental clinic. During the extraction of mandibular molars, the nerve block technique is the most commonly used for the administration of local anesthesia; however, this technique requires deep penetration of the needle, which causes pain and discomfort for the child. Therefore, the inferior alveolar nerve block technique can be substituted with an infiltration technique which is not painful if a potent anesthetic solutions will be used. In the current study, the effect of Articaine 4% will be compared to Mepivacaine 2%, and their influence on the vital signs of the child, as well as their ability to control pain during extraction, will be assessed.

Keywords: anesthesia, articaine, pain control, extraction

Procedia PDF Downloads 122
1084 DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)

Authors: Mohamed Tamer, Wink Michael

Abstract:

DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control.

Keywords: alkaloids, Chelidonium majus, DNA intercalation, Tm

Procedia PDF Downloads 501
1083 A Therapeutic Approach for Bromhidrosis with Glycopyrrolate 2% Cream: Clinical Study of 20 Patients

Authors: Vasiliki Markantoni, Eftychia Platsidaki, Georgios Chaidemenos, Georgios Kontochristopoulos

Abstract:

Introduction: Bromhidrosis, also known as osmidrosis, is a common distressing condition with a significant negative effect on patient’s quality of life. Its etiology is multifactorial. It usually affects axilla, genital skin, breasts and soles, areas where apocrine glands are mostly distributed. Therapeutic treatments include topical antibacterial agents, antiperspirants and neuromuscular blocker agents-toxins. In this study, we aimed to evaluate the efficacy and possible complications of topical glycopyrrolate, an anticholinergic agent, for treatment of bromhidrosis. Glycopyrrolate, applied topically as a cream, solution or spray at concentrations between 0,5% and 4%, has been successfully used to treat different forms of focal hyperhidrosis. Materials and Methods: Twenty patients, six males and fourteen females, meeting the criteria for bromhidrosis were treated with topical glycopyrrolate for two months. The average age was 36. Eleven patients had bromhidrosis located to the axillae, four to the soles, four to both axillae and soles and one to the genital folds. Glycopyrrolate was applied topically as a cream at concentration 2%, formulated in Fitalite. During the first month, patients were using the cream every night and thereafter twice daily. The degree of malodor was assessed subjectively by patients and scaled averagely as ‘none’, ‘mild’, ‘moderate’, and ‘severe’ with corresponding scores of 0, 1, 2, and 3, respectively. The modified Dermatology Life Quality Index (DLQI) was used to assess the quality of life. The clinical efficacy was graded by the patient scale of excellent, good, fair and poor. In the end, patients were given the power to evaluate whether they were totally satisfied with, partially satisfied or unsatisfied and possible side effects during the treatment were recorded. Results: All patients were satisfied at the end of the treatment. No patient defined the response as no improvement. The subjectively assessed score level of bromhidrosis was remarkably improved after the first month of treatment and improved slightly more after the second month. DLQI score was also improved to all patients. Adverse effects were reported in 2 patients. In the first case, topical irritation was reported. This was classed as mild (erythema and desquamation), appeared during the second month of treatment and was treated with low-potency topical corticosteroids. In the second case, mydriasis was reported, that recovered without specific treatment, as soon as we insisted to the importance of careful hygiene after cream application so as not to contaminate the periocular skin or ocular surface. Conclusions: Dermatologists often encounter patients with bromhidrosis, therefore should be aware of treatment options. To the best of our knowledge, this is the first study to evaluate the use of topical glycopyrrolate as a therapeutic approach for bromhidrosis. Our findings suggest that topical glycopyrrolate has an excellent safety profile and demonstrate encouraging results for the management of this distressful condition.

Keywords: Bromhidrosis, glycopyrrolate, topical treatment, osmidrosis

Procedia PDF Downloads 167
1082 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity

Procedia PDF Downloads 505
1081 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites

Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.

Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers

Procedia PDF Downloads 620
1080 Umbrella Reinforcement Learning – A Tool for Hard Problems

Authors: Egor E. Nuzhin, Nikolay V. Brilliantov

Abstract:

We propose an approach for addressing Reinforcement Learning (RL) problems. It combines the ideas of umbrella sampling, borrowed from Monte Carlo technique of computational physics and chemistry, with optimal control methods, and is realized on the base of neural networks. This results in a powerful algorithm, designed to solve hard RL problems – the problems, with long-time delayed reward, state-traps sticking and a lack of terminal states. It outperforms the prominent algorithms, such as PPO, RND, iLQR and VI, which are among the most efficient for the hard problems. The new algorithm deals with a continuous ensemble of agents and expected return, that includes the ensemble entropy. This results in a quick and efficient search of the optimal policy in terms of ”exploration-exploitation trade-off” in the state-action space.

Keywords: umbrella sampling, reinforcement learning, policy gradient, dynamic programming

Procedia PDF Downloads 21
1079 Salmon Diseases Connectivity between Fish Farm Management Areas in Chile

Authors: Pablo Reche

Abstract:

Since 1980’s aquaculture has become the biggest economic activity in southern Chile, being Salmo salar and Oncorhynchus mykiss the main finfish species. High fish density makes both species prone to contract diseases, what drives the industry to big losses, affecting greatly the local economy. Three are the most concerning infective agents, the infectious salmon anemia virus (ISAv), the bacteria Piscirickettsia salmonis and the copepod Caligus rogercresseyi. To regulate the industry the government arranged the salmon farms within management areas named as barrios, which coordinate the fallowing periods and antibiotics treatments of their salmon farms. In turn, barrios are gathered into larger management areas, named as macrozonas whose purpose is to minimize the risk of disease transmission between them and to enclose the outbreaks within their boundaries. However, disease outbreaks still happen and transmission to neighbor sites enlarges the initial event. Salmon disease agents are mostly transported passively by local currents. Thus, to understand how transmission occurs it must be firstly studied the physical environment. In Chile, salmon farming takes place in the inner seas of the southernmost regions of western Patagonia, between 41.5ºS-55ºS. This coastal marine system is characterised by western winds, latitudinally modulated by the position of the South-Eats Pacific high-pressure centre, high precipitation rates and freshwater inflows from the numerous glaciers (including the largest ice cap out of Antarctic and Greenland). All of these forcings meet in a complex bathymetry and coastline system - deep fjords, shallow sills, narrow straits, channels, archipelagos, inlets, and isolated inner seas- driving an estuarine circulation (fast outflows westwards on surface and slow deeper inflows eastwards). Such a complex system is modelled on the numerical model MIKE3, upon whose 3D current fields particle-track-biological models (one for each infective agent) are decoupled. Each agent biology is parameterized by functions for maturation and mortality (reproduction not included). Such parameterizations are depending upon environmental factors, like temperature and salinity, so their lifespan will depend upon the environmental conditions those virtual agents encounter on their way while passively transported. CLIC (Connectivity-Langrangian–IFOP-Chile) is a service platform that supports the graphical visualization of the connectivity matrices calculated from the particle trajectories files resultant of the particle-track-biological models. On CLIC users can select, from a high-resolution grid (~1km), the areas the connectivity will be calculated between them. These areas can be barrios and macrozonas. Users also can select what nodes of these areas are allowed to release and scatter particles from, depth and frequency of the initial particle release, climatic scenario (winter/summer) and type of particle (ISAv, Piscirickettsia salmonis, Caligus rogercresseyi plus an option for lifeless particles). Results include probabilities downstream (where the particles go) and upstream (where the particles come from), particle age and vertical distribution, all of them aiming to understand how currently connectivity works to eventually propose a minimum risk zonation for aquaculture purpose. Preliminary results in Chiloe inner sea shows that the risk depends not only upon dynamic conditions but upon barrios location with respect to their neighbors.

Keywords: aquaculture zonation, Caligus rogercresseyi, Chilean Patagonia, coastal oceanography, connectivity, infectious salmon anemia virus, Piscirickettsia salmonis

Procedia PDF Downloads 155
1078 Role of Interleukin-36 in Response to Pseudomonas aeruginosa Infection

Authors: Muslim Idan Mohsin, Mohammed Jasim Al-Shamarti, Rusul Idan Mohsin, Ali A. Majeed

Abstract:

One of the causative agents of the lower respiratory tract (LRT) is Pseudomonas aeruginosa, which can lead to severe infection associated with a lung infection. There are many cytokines that are secreted in response to bacterial infection, in particular interleukin IL-36 cytokine in response to P. aeruginosa infection. The involvement of IL-36 in the P. aeruginosa infection could be a clue to find a specific way for treatments of different inflammatory and degenerative lung diseases. IL36 promotes primary immune response via binding to the IL-36 receptor (IL-36R). Indeed, an overactivity of IL-36 might be an initiating factor for many immunopathologic sceneries in pneumonia. Here we demonstrate if the IL-36 cytokine increases in response P. aeruginosa infection that is isolated from lower respiratory tract infection (LRT). We demonstrated that IL-36 expression significantly unregulated in human lung epithelial (A549) cells after infected by P. aeruginosa at mRNA level.

Keywords: IL36, Pseudomonas aeruginosa, LRT infection, A549 cells

Procedia PDF Downloads 232
1077 The Symbolic Power of the IMF: Looking through Argentina’s New Period of Indebtedness

Authors: German Ricci

Abstract:

The research aims to analyse the symbolic power of the International Monetary Fund (IMF) in its relationship with a borrowing country, drawing upon Pierre Bourdieu’s Field Theory. This theory of power, typical of constructivist structuralism, has been minor used in international relations. Thus, selecting this perspective offers a new understanding of how the IMF's power operates and is structured. The IMF makes periodic economic reviews in which the staff evaluates the Government's performance. It also offers “last instance” loans when private external credit is not accessible. This relationship generates great expectations in financial agents because the IMF’s statements indicate the capacity of the Nation-State to meet its payment obligations (or not). Therefore, it is argued that the IMF is a legitimate actor for financial agents concerned about a government facing an economic crisis both for the effects of its immediate economic contribution through loans and the promotion of adjustment programs, helpful to guarantee the payment of the external debt. This legitimacy implies a symbolic power relationship in addition to the already known economic power relationship. Obtaining the IMF's consent implies that the government partially puts its political-economic decisions into play since the monetary policy must be agreed upon with the Fund. This has consequences at the local level. First, it implies that the debtor state must establish a daily relationship with the Fund. This everyday interaction with the Fund influences how officials and policymakers internalize the meaning of political management. On the other hand, if the Government has access to the IMF's seal of approval, the State will be again in a position to re-enter the financial market and go back into debt to face external debt. This means that private creditors increase the chances of collecting the debt and, again, grant credits. Thus, it is argued that the borrowing country submits to the relationship with the IMF in search of the latter's economic and symbolic capital. Access to this symbolic capital has objective and subjective repercussions at the national level that might tend to reproduce the relevance of the financial market and legitimizes the IMF’s intervention during economic crises. The paper has Argentina as its case study, given its historical relationship with the IMF and the relevance of the current indebtedness period, which remains largely unexplored. Argentina’s economy is characterized by recurrent financial crises, and it is the country to which the Fund has lent the most in its entire history. It surpasses more than three times the second, Egypt. In addition, Argentina is currently the country that owes the most to the Fund after receiving the largest loan ever granted by the IMF in 2018, and a new agreement in 2022. While the historical strong association with the Fund culminated in the most acute economic and social crisis in the country’s contemporary history, producing an unprecedented political and institutional crisis in 2001, Argentina still recognized the IMF as the only way out during economic crises.

Keywords: IMF, fields theory, symbolic power, Argentina, Bourdieu

Procedia PDF Downloads 71
1076 Preparation and Quality Control of a New Radiolabelled Complex of Spion

Authors: H. Yousefnia, SJ. Ahmadi, S. Sajadi, S. Zolghadri, A. Bahrami-Samani, M. Bagherzadeh

Abstract:

Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) as the multitask agents have showed advantageous characteristics. The aim of this study was the preparation and quality control of 153Sm-DTPA-DA-SPION complex. Samarium-153 was produced by neutron irradiation of the enriched 152Sm2O3 in a research reactor for 5 d. For radiolabeling purposes, 8 mg of the ligand was added to the vial containing 153SmCl3 and the mixture was sonicated 30 min, while pH was adjusted to 7-8. The radiochemical purity of the complex was checked by the ITLC method using NH4OH:MeOH:H2O (0.2:2:4) as the mobile phase. This new radiolabeled complex was prepared with a radiochemical purity of higher than 98% in 30 min at the optimized condition. The complex was kept at room temperature and in human serum at 37 °C for 48 h, showed no loss of 153Sm from the complex. Considering all of these features, this new radiolabeled complex can be considered as a good therapeutic agent; however, further studies on its biological behavior are still needed.

Keywords: iron nanoparticles, preparation, quality control, 153Sm

Procedia PDF Downloads 330
1075 Efficacy Testing of a Product in Reducing Facial Hyperpigmentation and Photoaging after a 12-Week Use

Authors: Nalini Kaul, Barrie Drewitt, Elsie Kohoot

Abstract:

Hyperpigmentation is the third most common pigmentary disorder where dermatologic treatment is sought. It affects all ages resulting in skin darkening because of melanin accumulation. An uneven skin tone because of either exposure to the sun (solar lentigos/age spots/sun spots or skin disruption following acne, or rashes (post-inflammatory hyperpigmentation -PIH) or hormonal changes (melasma) can lead to significant psychosocial impairment. Dyschromia is a result of various alterations in biochemical processes regulating melanogenesis. Treatments include the daily use of sunscreen with lightening, brightening, and exfoliating products. Depigmentation is achieved by various depigmenting agents: common examples are hydroquinone, arbutin, azelaic acid, aloesin, mulberry, licorice extracts, kojic acid, niacinamide, ellagic acid, arbutin, green tea, turmeric, soy, ascorbic acid, and tranexamic acid. These agents affect pigmentation by interfering with mechanisms before, during, and after melanin synthesis. While immediate correction is much sought after, patience and diligence are key. Our objective was to assess the effects of a facial product with pigmentation treatment and UV protection in 35 healthy F (35-65y), meeting the study criteria. Subjects with mild to moderate hyperpigmentation and fine lines with no use of skin-lightening products in the last six months or any dermatological procedures in the last twelve months before the study started were included. Efficacy parameters included expert clinical grading for hyperpigmentation, radiance, skin tone & smoothness, fine lines, and wrinkles bioinstrumentation (Corneometer®, Colorimeter®), digital photography and imaging (Visia-CR®), and self-assessment questionnaires. Safety included grading for erythema, edema, dryness & peeling and self-assessments for itching, stinging, tingling, and burning. Our results showed statistically significant improvement in clinical grading scores, bioinstrumentation, and digital photos for hyperpigmentation-brown spots, fine lines/wrinkles, skin tone, radiance, pores, skin smoothness, and overall appearance compared to baseline. The product was also well-tolerated and liked by subjects. Conclusion: Facial hyperpigmentation is of great concern, and treatment strategies are increasingly sought. Clinical trials with both subjective and objective assessments, imaging analyses, and self-perception are essential to distinguish evidence-based products. The multifunctional cosmetic product tested in this clinical study showed efficacy, tolerability, and subject satisfaction in reducing hyperpigmentation and global photoaging.

Keywords: hyperpigmentation; photoaging, clinical testing, expert visual evaluations, bio-instruments

Procedia PDF Downloads 77
1074 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 117
1073 A Thermosensitive Polypeptide Hydrogel for Biomedical Application

Authors: Chih-Chi Cheng, Ji-Yu Lin, I-Ming Chu

Abstract:

In this study, we synthesized a thermosensitive polypeptide hydrogel by copolymerizing poloxamer (PLX) and poly(ʟ-alanine) with ʟ-lysine segments at the both ends to form PLX-b-poly(ʟ-alanine-lysine) (Lys-Ala-PLX-Ala-Lys) copolymers. Poly(ʟ-alanine) is the hydrophobic chain of Lys-Ala-PLX-Ala-Lys copolymers which was designed to capture the hydrophobic agents. The synthesis was examined by 1H NMR and showed that Lys-Ala-PLX-Ala-Lys copolymers were successfully synthesized. At the concentration range of 3-7 wt%, the aqueous copolymer solution underwent sol-gel transition near the physiological temperature and exhibited changes in its secondary structure content, as evidenced by FTIR. The excellent viability of cells cultured within the scaffold was observed after 72 hr of incubation. Also, negatively charged bovine serum albumin was incorporated into the hydrogel without diminishing material integrity and shows good release profile. In the animal study, the results also indicated that Lys-Ala-PLX-Ala-Lys hydrogel has high potential in wound dressing.

Keywords: polypeptide thermosensitive hydrogel, tacrolimus, vascularized composite allotransplantation, sustain release

Procedia PDF Downloads 292
1072 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 99
1071 Synthesis and Characterization of Model Amines for Corrosion Applications

Authors: John Vergara, Giuseppe Palmese

Abstract:

Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.

Keywords: building block, amine, synthesis, characterization

Procedia PDF Downloads 540
1070 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach

Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh

Abstract:

Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.

Keywords: frequency control, islanded microgrid, multi-agent system, load shedding

Procedia PDF Downloads 463
1069 Fatty Acid Extracts of Sea Pen (Virgularia gustaviana) and Their Potential Applications as Antibacterial, Antifungal, and Anti-Inflammatory Agents

Authors: Sharareh Sharifi

Abstract:

In this study, the crude extracts of Virgularia gustavina were examined as antibacterial, antifungal and anti-inflammatory agent. To assess inflammation, Xylene was applied to the ear of mice. The mice of the experimental group were fed with doses of 10 mg/kg, 20 mg/kg, and 40 mg/kg of lipid extract of chloroform and hexane as a separate group and then statistical analysis was performed on the results. Chloroform and hexane extracts of sea pen have strong anti-inflammatory effects even at low doses which is probably due to 54% arachidonic acid. Antibacterial and antifungal effects of hexane and chloroform extracts were measured with MIC and MBC methods and it is shown that chloroform extract has best activity against Staphylococcus aureus on 125 µg/ml doze in MIC method.

Keywords: sea pen (virgularia gustaviana), lipid extract, anti-inflammatory and anti-bacterial activities, fatty acid

Procedia PDF Downloads 268
1068 The Role of Anti-corruption Clauses in the Fight Against Corruption in Petroleum Sector

Authors: Azar Mahmoudi

Abstract:

Despite the rise of global anti-corruption movements and the strong emergence of international and national anti-corruption laws, corrupt practices are still prevalent in most places, and countries still struggle to translate these laws into practice. On the other hand, in most countries, political and economic elites oppose anti-corruption reforms. In such a situation, the role of external actors, like the other States, international organizations, and transnational actors, becomes essential. Among them, Transnational Corporations [TNCs] can develop their own regime-like framework to govern their internal activities, and through this, they can contribute to the regimes established by State actors to solve transnational issues. Among various regimes, TNCs may choose to comply with the transnational anti-corruption legal regime to avoid the cost of non-compliance with anti-corruption laws. As a result, they decide to strenghen their anti-corruption compliance as they expand into new overseas markets. Such a decision extends anti-corruption standards among their employees and third-party agents and within their projects across countries. To better address the challenges posed by corruption, TNCs have adopted a comprehensive anti-corruption toolkit. Among the various instruments, anti-corruption clauses have become one of the most anti-corruption means in international commercial agreements. Anti-corruption clauses, acting as a due diligence tool, can protect TNCs against the engagement of third-party agents in corrupt practices and further promote anti-corruption standards among businesses operating across countries. An anti-corruption clause allows parties to create a contractual commitment to exclude corrupt practices during the term of their agreement, including all levels of negotiation and implementation. Such a clause offers companies a mechanism to reduce the risk of potential corruption in their dealings with third parties while avoiding civil and administrative penalties. There have been few attempts to examine the role of anti-corruption clauses in the fight against corruption; therefore, this paper aims to fill this gap and examine anti-corruption clauses in a specific sector where corrupt practices are widespread and endemic, i.e., the petroleum industry. This paper argues that anti-corruption clauses are a positive step in ensuring that the petroleum industry operates in an ethical and transparent manner, helping to reducing the risk of corruption and promote integrity in this sector. Contractual anti-corruption clauses vary in terms of the types commitment, so parties have a wide range of options to choose from for their preferred clauses incorporated within their contracts. This paper intends to propose a categorization of anti-corruption clauses in the petroleum sector. It examines particularly the anti-corruption clauses incorporated in transnational hydrocarbon contracts published by the Resource Contract Portal, an online repository of extractive contracts. Then, this paper offers a quantitative assessment of anti-corruption clauses according to the types of contract, the date of conclusion, and the geographical distribution.

Keywords: anti-corruption, oil and gas, transnational corporations, due diligence, contractual clauses, hydrocarbon, petroleum sector

Procedia PDF Downloads 131
1067 Application of Nanoparticles in Biomedical and MRI

Authors: Raziyeh Mohammadi

Abstract:

At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible.

Keywords: nanoparticles, MRI, biomedical, iron oxide, spions

Procedia PDF Downloads 215
1066 Global Analysis in a Growth Economic Model with Perfect-Substitution Technologies

Authors: Paolo Russu

Abstract:

The purpose of the present paper is to highlight some features of an economic growth model with environmental negative externalities, giving rise to a three-dimensional dynamic system. In particular, we show that the economy, which is based on a Perfect-Substitution Technologies function of production, has no neither indeterminacy nor poverty trap. This implies that equilibrium select by economy depends on the history (initial values of state variable) of the economy rather than on expectations of economies agents. Moreover, by contrast, we prove that the basin of attraction of locally equilibrium points may be very large, as they can extend up to the boundary of the system phase space. The infinite-horizon optimal control problem has the purpose of maximizing the representative agent’s instantaneous utility function depending on leisure and consumption.

Keywords: Hopf bifurcation, open-access natural resources, optimal control, perfect-substitution technologies, Poincarè compactification

Procedia PDF Downloads 172
1065 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics

Authors: F. Lhafiane, A. Elbyed, M. Bouchoum

Abstract:

The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.

Keywords: reverse logistics, multi agent system, prometheus methodology

Procedia PDF Downloads 471
1064 A Review on the Use of Plastic Waste with Viable Materials in Composite Construction Block

Authors: Mohan T. Harish, Masson Lauriane, Sreevalsa Kolathayar

Abstract:

Environmental issues raise alarm in the constructional field which implies a need for exploring new construction materials derived from the waste and residual products. This paper presents a detailed review of the alternatives approaches employed in the construction field using plastic waste in mixture with mixed with fillers. A detailed analysis of the plastic waste used in concrete, with soil, sand, clay and natural residues like sawdust, rice husk etc are presented. The different process carried forward was also discussed along with the scrutiny of the change in mechanical properties. The effect of coupling agents in the proposed mixture has been appraised in detail which gives implications for its future application in the field of plastic waste with viable materials in composite construction blocks.

Keywords: plastic waste, composite materials, construction block, concrete, natural residue, coupling agent

Procedia PDF Downloads 252
1063 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 66
1062 Phytochemical and Antibacterial Activity of Chrysanthellum indicum (Linn) Extracts

Authors: I. L. Ibrahim, A. Mann, B. M. Abdullahi

Abstract:

Infectious diseases are prevalent in developing countries and plant extracts are known to contained bioactive compounds that can be used in the management of these diseases. The entire plant of Chrysanthellum indicum (Linn) was air-dried and pulverized into fine powder and then percolated to give ethanol and aqueous extracts. These extracts were phytochemically screened for metabolites and evaluated antibacterial activity against some pathogenic organisms Klebsilla, pneumonia, Bacillus subtilis, and Pseudomonas aeruginosa using agar dilution method. It was found that crude extracts of C. indicum revealed the presence of saponins, tannins, alkaloids, steroidal nucleus, cardiac glycosides, and coumarin while flavonoids and anthraquinones were absent. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the active extract of C. indicum shows that the extract could be a potential source of antibacterial agents.

Keywords: antibacterial activity, Chrysanthellum indicum, infectious diseases, phytochemical screening

Procedia PDF Downloads 525
1061 Multi-Agent Coverage Control with Bounded Gain Forgetting Composite Adaptive Controller

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we present an adaptive controller for decentralized coordination problem of multiple non-holonomic agents. The performance of the presented Multi-Agent Bounded Gain Forgetting (BGF) Composite Adaptive controller is compared against the tracking error criterion with a Feedback Linearization controller. By using the method, the sensor nodes move and reconfigure themselves in a coordinated way in response to a sensed environment. The multi-agent coordination is achieved through Centroidal Voronoi Tessellations and Coverage Control. Also, a consensus protocol is used for synchronization of the parameter vectors. The two controllers are given with their Lyapunov stability analysis and their stability is verified with simulation results. The simulations are carried out in MATLAB and ROS environments. Better performance is obtained with BGF Adaptive Controller.

Keywords: adaptive control, centroidal voronoi tessellations, composite adaptation, coordination, multi robots

Procedia PDF Downloads 348
1060 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 123
1059 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 169
1058 Mapping Protein Selectivity Landscapes

Authors: Niv Papo

Abstract:

Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a distinct and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein–protein interactions.

Keywords: drug design, directed evolution, protein engineering, protease inhibition.

Procedia PDF Downloads 24
1057 Mathematical Modelling of Bacterial Growth in Products of Animal Origin in Storage and Transport: Effects of Temperature, Use of Bacteriocins and pH Level

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cordova

Abstract:

The pathogen growth in animal source foods is a common problem in the food industry, causing monetary losses due to the spoiling of products or food intoxication outbreaks in the community. In this sense, the quality of the product is reflected by the population of deteriorating agents present in it, which are mainly bacteria. The factors which are likely associated with freshness in animal source foods are temperature and processing, storage, and transport times. However, the level of deterioration of products depends, in turn, on the characteristics of the bacterial population, causing the decomposition or spoiling, such as pH level and toxins. Knowing the growth dynamics of the agents that are involved in product contamination allows the monitoring for more efficient processing. This means better quality and reasonable costs, along with a better estimation of necessary time and temperature intervals for transport and storage in order to preserve product quality. The objective of this project is to design a secondary model that allows measuring the impact on temperature bacterial growth and the competition for pH adequacy and release of bacteriocins in order to describe such phenomenon and, thus, estimate food product half-life with the least possible risk of deterioration or spoiling. In order to achieve this objective, the authors propose an analysis of a three-dimensional ordinary differential which includes; logistic bacterial growth extended by the inhibitory action of bacteriocins including the effect of the medium pH; change in the medium pH levels through an adaptation of the Luedeking-Piret kinetic model; Bacteriocin concentration modeled similarly to pH levels. These three dimensions are being influenced by the temperature at all times. Then, this differential system is expanded, taking into consideration the variable temperature and the concentration of pulsed bacteriocins, which represent characteristics inherent of the modeling, such as transport and storage, as well as the incorporation of substances that inhibit bacterial growth. The main results lead to the fact that temperature changes in an early stage of transport increased the bacterial population significantly more than if it had increased during the final stage. On the other hand, the incorporation of bacteriocins, as in other investigations, proved to be efficient in the short and medium-term since, although the population of bacteria decreased, once the bacteriocins were depleted or degraded over time, the bacteria eventually returned to their regular growth rate. The efficacy of the bacteriocins at low temperatures decreased slightly, which equates with the fact that their natural degradation rate also decreased. In summary, the implementation of the mathematical model allowed the simulation of a set of possible bacteria present in animal based products, along with their properties, in various transport and storage situations, which led us to state that for inhibiting bacterial growth, the optimum is complementary low constant temperatures and the initial use of bacteriocins.

Keywords: bacterial growth, bacteriocins, mathematical modelling, temperature

Procedia PDF Downloads 135
1056 Antifungal Activity of Commiphora myrrha L. against Some Air Fungi

Authors: Ahmed E. Al-Sabri, Mohamed A. Moslem, Sarfaraz Hadi

Abstract:

To avoid the harmful effects of the chemical fungicides on the human and minimize the environmental pollution, an alternative eco-friendly control strategies should be developed. The extract of Commiphora myhrra L. was tested against twenty fungal genera isolated from the indoor air collected from different rooms in King Saud University, Kingdom of Saudi Arabia. Disc diffusion test was modified for use in this study and the collected data was statistically analyzed. Variable antifungal efficacy of different myrrh extract was recorded against the investigated fungal genera. The efficacy of the extract was increased as the concentration increased. The highest growth inhibition (74.6%) was against Acremonium strictum followed by Trichoderma psuedokoningii (70.6%). On contrast, the lowest efficacy (12.7%) was against Ulocladium consortiale. It could be concluded that myrrh extract is promised as a source of substances from which of safer and eco-friendly could be used as antimicrobial agents against a number of pathogenic fungi.

Keywords: antifungal, myrrh, antimicrobial, medicinal plant

Procedia PDF Downloads 419