Search results for: diastolic function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4928

Search results for: diastolic function

4478 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation

Authors: Sachin Kumar

Abstract:

Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.

Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method

Procedia PDF Downloads 165
4477 Angular Correlation and Independent Particle Model in Two-Electron Atomic Systems

Authors: Tokuei Sako

Abstract:

The ground and low-lying singly-excited states of He and He-like atomic ions have been studied by the Full Configuration Interaction (FCI) method focusing on the angular correlation between two electrons in the studied systems. The two-electron angle density distribution obtained by integrating the square-modulus of the FCI wave function over the coordinates other than the interelectronic angle shows a distinct trend between the singlet-triplet pair of states for different values of the nuclear charge Zn. Further, both of these singlet and triplet distributions tend to show an increasingly stronger dependence on the interelectronic angle as Zn increases, in contrast to the well-known fact that the correlation energy approaches towards zero for increasing Zn. This controversial observation has been rationalized on the basis of the recently introduced concept of so-called conjugate Fermi holes.

Keywords: He-like systems, angular correlation, configuration interaction wave function, conjugate Fermi hole

Procedia PDF Downloads 387
4476 Understanding Cyber Terrorism from Motivational Perspectives: A Qualitative Data Analysis

Authors: Yunos Zahri, Ariffin Aswami

Abstract:

Cyber terrorism represents the convergence of two worlds: virtual and physical. The virtual world is a place in which computer programs function and data move, whereas the physical world is where people live and function. The merging of these two domains is the interface being targeted in the incidence of cyber terrorism. To better understand why cyber terrorism acts are committed, this study presents the context of cyber terrorism from motivational perspectives. Motivational forces behind cyber terrorism can be social, political, ideological and economic. In this research, data are analyzed using a qualitative method. A semi-structured interview with purposive sampling was used for data collection. With the growing interconnectedness between critical infrastructures and Information & Communication Technology (ICT), selecting targets that facilitate maximum disruption can significantly influence terrorists. This work provides a baseline for defining the concept of cyber terrorism from motivational perspectives.

Keywords: cyber terrorism, terrorism, motivation, qualitative analysis

Procedia PDF Downloads 383
4475 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering

Authors: Z. Soleymani, M. Amirzadeh

Abstract:

Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.

Keywords: customer voice, engineering parameters, gear pump, QFD

Procedia PDF Downloads 227
4474 A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem

Authors: Sujeet Kumar Singh, Shiv Prasad Yadav

Abstract:

This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example.

Keywords: triangular intuitionistic fuzzy number, linear programming problem, multi objective linear programming problem, fuzzy mathematical programming, membership function

Procedia PDF Downloads 536
4473 Effects of Progressive Resistive Exercise on Isometric Strength of Shoulder Extensor and Abductor Muscles in Adult Hemiplegic

Authors: S. Abbasi, M. R. Hadian, M. Abdolvahab, M. Jalili, S. H. Jalaei

Abstract:

Background: Rehabilitation treatments have significant role in reducing the disabilities of Cerebro Vascular Accident (CVA). Due to great role of upper limb in the function of individuals particularly in Activity of Daily Living and the effect of stability of shoulder girdle on hand function, the aim of this study was to study the effects of Progressive Resistive Exercise on shoulder extensor and abductor muscles isometric strengths in adult hemiplegic. Methods: 17 adult hemiplegics patients (50-70 yrs., mean 60/52, SD7/22); with RT side dominancy and 6 months after stroke, participated in this study. All procedures were approved by ethical committee of TUMS and written consents were also taken. Patients were familiarized with the procedure and shoulder extensor and abductor muscles isometric strengths were measured by dynamometer. Results: according to result to our study, shoulder extensor and abductor muscles isometric strengths showed Significant differences between mean scores of pre and post intervention (P<0/05). Progressive Resistive Exercise improved 34% shoulder extensor muscles isometric strength and 27% shoulder abductor muscle isometric strength. Conclusion: Results of our research showed that progressive resistive exercise approach is a useful method for increasing the isometric strength of shoulder extensor and abductor muscles. Therefore, it might be concluded that improvement of strength of shoulder muscles could result in stability in shoulder girdle and consequently might effect on hand function in hemiplegic patients.

Keywords: shoulder extensor muscles isometric strength, shoulder abductor muscles isometric strength, hemiplegic, physical therapy

Procedia PDF Downloads 300
4472 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 124
4471 An Integrated Approach for Risk Management of Transportation of HAZMAT: Use of Quality Function Deployment and Risk Assessment

Authors: Guldana Zhigerbayeva, Ming Yang

Abstract:

Transportation of hazardous materials (HAZMAT) is inevitable in the process industries. The statistics show a significant number of accidents has occurred during the transportation of HAZMAT. This makes risk management of HAZMAT transportation an important topic. The tree-based methods including fault-trees, event-trees and cause-consequence analysis, and Bayesian network, have been applied to risk management of HAZMAT transportation. However, there is limited work on the development of a systematic approach. The existing approaches fail to build up the linkages between the regulatory requirements and the safety measures development. The analysis of historical data from the past accidents’ report databases would limit our focus on the specific incidents and their specific causes. Thus, we may overlook some essential elements in risk management, including regulatory compliance, field expert opinions, and suggestions. A systematic approach is needed to translate the regulatory requirements of HAZMAT transportation into specified safety measures (both technical and administrative) to support the risk management process. This study aims to first adapt the House of Quality (HoQ) to House of Safety (HoS) and proposes a new approach- Safety Function Deployment (SFD). The results of SFD will be used in a multi-criteria decision-support system to develop find an optimal route for HazMats transportation. The proposed approach will be demonstrated through a hypothetical transportation case in Kazakhstan.

Keywords: hazardous materials, risk assessment, risk management, quality function deployment

Procedia PDF Downloads 116
4470 A Resilience Process Model of Natural Gas Pipeline Systems

Authors: Zhaoming Yang, Qi Xiang, Qian He, Michael Havbro Faber, Enrico Zio, Huai Su, Jinjun Zhang

Abstract:

Resilience is one of the key factors for system safety assessment and optimization, and resilience studies of natural gas pipeline systems (NGPS), especially in terms of process descriptions, are still being explored. Based on the three main stages, which are function loss process, recovery process, and waiting process, the paper has built functions and models which are according to the practical characteristics of NGPS and mainly analyzes the characteristics of deterministic interruptions. The resilience of NGPS also considers the threshold of the system function or users' satisfaction. The outcomes, which quantify the resilience of NGPS in different evaluation views, can be combined with the max flow and shortest path methods, help with the optimization of extra gas supplies and gas routes as well as pipeline maintenance strategies, the quick analysis of disturbance effects and the improvement of NGPS resilience evaluation accuracy.

Keywords: natural gas pipeline system, resilience, process modeling, deterministic disturbance

Procedia PDF Downloads 89
4469 Advancing Our Understanding of Age-Related Changes in Executive Functions: Insights from Neuroimaging, Genetics and Cognitive Neurosciences

Authors: Yasaman Mohammadi

Abstract:

Executive functions are a critical component of goal-directed behavior, encompassing a diverse set of cognitive processes such as working memory, cognitive flexibility, and inhibitory control. These functions are known to decline with age, but the precise mechanisms underlying this decline remain unclear. This paper provides an in-depth review of recent research investigating age-related changes in executive functions, drawing on insights from neuroimaging, genetics, and cognitive neuroscience. Through an interdisciplinary approach, this paper offers a nuanced understanding of the complex interplay between neural mechanisms, genetic factors, and cognitive processes that contribute to executive function decline in aging. Here, we investigate how different neuroimaging methods, like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have helped scientists better understand the brain bases for age-related declines in executive function. Additionally, we discuss the role of genetic factors in mediating individual differences in executive functions across the lifespan, as well as the potential for cognitive interventions to mitigate age-related decline. Overall, this paper presents a comprehensive and integrative view of the current state of knowledge regarding age-related changes in executive functions. It underscores the need for continued interdisciplinary research to fully understand the complex and dynamic nature of executive function decline in aging, with the ultimate goal of developing effective interventions to promote healthy cognitive aging.

Keywords: executive functions, aging, neuroimaging, cognitive neuroscience, working memory, cognitive training

Procedia PDF Downloads 45
4468 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials

Authors: Mohamed Akbi, Aissa Bouchou

Abstract:

The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.

Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission

Procedia PDF Downloads 354
4467 Comparative Analysis of Traditional and Modern Roundabouts Using Sidra Intersection

Authors: Amir Mohammad Parvini, Amir Masoud Rahimi

Abstract:

Currently, most parts of the world have shifted from traditional roundabouts to modern roundabouts with respect to the role of roundabouts in reducing accidents, increasing safety, lowering the maintenance costs compared to traffic circles with their improper functional and safety experiences. In this study, field data collected from a current traditional roundabout was analyzed by the software AIMSUN and the obtained numbers were recorded. The modern roundabout was designed by changes in the traditional one, considering the geometric standards listed in regulations. Then, the modern roundabout was analyzed by applying a heterogeneous traffic by a micro-simulation software SIDRA (5.1). The function, capacity, and safety of the roundabout were analyzed assuming the superiority of modern roundabouts and acceptable LOS. The obtained results indicate that the function, capacity, and safety of modern roundabouts are better than traditional ones.

Keywords: traditional roundabout, traffic circles, modern roundabout, AIMSUN, SIDRA

Procedia PDF Downloads 367
4466 Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation

Authors: S. B. Provost, Susan Sheng

Abstract:

An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets.

Keywords: density estimation, empirical cumulant-generating function, moments, saddlepoint approximation

Procedia PDF Downloads 254
4465 Inverse Cauchy Problem of Doubly Connected Domains via Spectral Meshless Radial Point Interpolation

Authors: Elyas Shivanian

Abstract:

In this paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy problems of two-dimensional elliptic PDEs in doubly connected domains. It is obtained the unknown data on the inner boundary of the domain while overspecified boundary data are imposed on the outer boundary of the domain by using the SMRPI. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high order convergence rate. In this way, localization in SMRPI can reduce the ill-conditioning for Cauchy problem. Furthermore, we improve previous results and it is revealed the SMRPI is more accurate and stable by adding strong perturbations.

Keywords: cauchy problem, doubly connected domain, radial basis function, shape function

Procedia PDF Downloads 258
4464 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process

Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon

Abstract:

In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.

Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID

Procedia PDF Downloads 260
4463 Generating 3D Anisotropic Centroidal Voronoi Tessellations

Authors: Alexandre Marin, Alexandra Bac, Laurent Astart

Abstract:

New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.

Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing

Procedia PDF Downloads 71
4462 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 159
4461 Function of Fractals: Application of Non-Linear Geometry in Continental Architecture

Authors: Mohammadsadegh Zanganehfar

Abstract:

Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the '70s until today and has generated significant styles such as deconstructivism and parametrism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials, and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.

Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties

Procedia PDF Downloads 233
4460 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function

Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei

Abstract:

Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.

Keywords: wind energy, wind turbine, weibull, Sanar village, Iran

Procedia PDF Downloads 499
4459 Short-Term Association of In-vehicle Ultrafine Particles and Black Carbon Concentrations with Respiratory Health in Parisian Taxi Drivers

Authors: Melissa Hachem, Maxime Loizeau, Nadine Saleh, Isabelle Momas, Lynda Bensefa-Colas

Abstract:

Professional drivers are exposed inside their vehicles to high levels of air pollutants due to the considerable time they spend close to motor vehicle emissions. Little is known about ultrafine particles (UFP) or black carbon (BC) adverse respiratory health effects compared to the regulated pollutants. We aimed to study the short-term associations between UFP and BC concentrations inside vehicles and (1) the onset of mucosal irritation and (2) the acute changes in lung function of Parisian taxi drivers during a working day. An epidemiological study was carried out on 50 taxi drivers in Paris. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively. On the same day, the frequency and the severity of nose, eye, and throat irritations were self-reported by each participant and a spirometry test was performed before and after the work shift. Multivariate analysis was used to evaluate the associations between in-taxis UFP and BC concentrations and mucosal irritation and lung function, after adjustment for potential confounders. In-taxis UFP concentrations ranged from 17.9 to 37.9 × 103 particles/cm³ and BC concentrations from 2.2 to 3.9 μg/m³, during a mean of 9 ± 2 working hours. Significant dose-response relationships were observed between in-taxis UFP concentrations and both nasal irritation and lung function. The increase of in-taxis UFP (for an interquartile range of 20 × 103 particles/cm3) was associated to an increase in nasal irritation (adjusted OR = 6.27 [95% CI: 1.02 to 38.62]) and to a reduction in forced expiratory flow at 25–75% by −7.44% [95% CI: −12.63 to −2.24], forced expiratory volume in one second by −4.46% [95% CI: −6.99 to −1.93] and forced vital capacity by −3.31% [95% CI: −5.82 to −0.80]. Such associations were not found with BC. Incident throat and eye irritations were not related to in-vehicle particles exposure; however, they were associated with outdoor air quality (estimated by the Atmo index) and in-vehicle humidity, respectively. This study is the first to show a significant association, within a short-period of time, between in-vehicle UFP exposure and acute respiratory effects in professional drivers.

Keywords: black carbon, lung function, mucosal irritation, taxi drivers, ultrafine particles

Procedia PDF Downloads 151
4458 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants

Authors: Nisha Budhwar, Sunita Daniel

Abstract:

In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.

Keywords: equilibrium points, exposed, global stability, infective immigrants, Lyapunov function, recovered, reproduction number, susceptible

Procedia PDF Downloads 336
4457 A Voice Signal Encryption Scheme Based on Chaotic Theory

Authors: Hailang Yang

Abstract:

To ensure the confidentiality and integrity of speech signals in communication transmission, this paper proposes a voice signal encryption scheme based on chaotic theory. Firstly, the scheme utilizes chaotic mapping to generate a key stream and then employs the key stream to perform bitwise exclusive OR (XOR) operations for encrypting the speech signal. Additionally, the scheme utilizes a chaotic hash function to generate a Message Authentication Code (MAC), which is appended to the encrypted data to verify the integrity of the data. Subsequently, we analyze the security performance and encryption efficiency of the scheme, comparing and optimizing it against existing solutions. Finally, experimental results demonstrate that the proposed scheme can resist common attacks, achieving high-quality encryption and speed.

Keywords: chaotic theory, XOR encryption, chaotic hash function, Message Authentication Code (MAC)

Procedia PDF Downloads 25
4456 Intonation Salience as an Underframe to Text Intonation Models

Authors: Tatiana Stanchuliak

Abstract:

It is common knowledge that intonation is not laid over a ready text. On the contrary, intonation forms and accompanies the text on the level of its birth in the speaker’s mind. As a result, intonation plays one of the fundamental roles in the process of transferring a thought into external speech. Intonation structure can highlight the semantic significance of textual elements and become a ranging mark in understanding the information structure of the text. Intonation functions by means of prosodic characteristics, one of which is intonation salience, whose function in texts results in making some textual elements more prominent than others. This function of intonation, therefore, performs as organizing. It helps to form the frame of key elements of the text. The study under consideration made an attempt to look into the inner nature of salience and create a sort of a text intonation model. This general goal brought to some more specific intermediate results. First, there were established degrees of salience on the level of the smallest semantic element - intonation group, as well as prosodic means of creating salience, were examined. Second, the most frequent combinations of prosodic means made it possible to distinguish patterns of salience, which then became constituent elements of a text intonation model. Third, the analysis of the predicate structure allowed to divide the whole text into smaller parts, or units, which performed a specific function in the developing of the general communicative intention. It appeared that such units can be found in any text and they have common characteristics of their intonation arrangement. These findings are certainly very important both for the theory of intonation and their practical application.

Keywords: accentuation , inner speech, intention, intonation, intonation functions, models, patterns, predicate, salience, semantics, sentence stress, text

Procedia PDF Downloads 239
4455 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 327
4454 The Relationship between Hot and Cool Executive Function and Theory of Mind in School-Aged Children with Autism Spectrum Disorder

Authors: Evangelia-Chrysanthi Kouklari, Stella Tsermentseli, Claire P. Monks

Abstract:

Executive function (EF) refers to a set of future-oriented and goal-directed cognitive skills that are crucial for problem solving and social behaviour, as well as the ability to organise oneself. It has been suggested that EF could be conceptualised as two distinct but interrelated constructs, one emotional (hot) and one cognitive (cool), as it facilitates both affective and cognitive regulation. Cool EF has been found to be strongly related to Theory of Mind (ToM) that is the ability to infer mental states, but research has not taken into account the association between hot EF and ToM in Autism Spectrum Disorder (ASD) to date. The present study investigates the associations between both hot and cool EF and ToM in school-aged children with ASD. This cross-sectional study assesses 79 school-aged children with ASD (7-15 years) and 91 controls matched for age and IQ, on tasks tapping cool EF (working memory, inhibition, planning), hot EF (effective decision making, delay discounting), and ToM (emotional understanding and false/no false belief). Significant group differences in each EF measure support a global executive dysfunction in ASD. Strong associations between hot EF and ToM in ASD are reported for the first time (i.e. ToM emotional understanding and delay discounting). These findings highlight that hot EF also makes a unique contribution to the developmental profile of ASD. Considering the role of both hot and cool EF in association with ToM in individuals with ASD may aid in gaining a greater understanding not just of how these complex multifaceted cognitive abilities relate to one another, but their joint role in the distinct developmental pathway followed in ASD.

Keywords: ASD, executive function, school age, theory of mind

Procedia PDF Downloads 265
4453 Integrated Nested Laplace Approximations For Quantile Regression

Authors: Kajingulu Malandala, Ranganai Edmore

Abstract:

The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.

Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation

Procedia PDF Downloads 137
4452 25-Hydroxy Vit D, Adiponectin Levels and Cardiometabolic Risk Factors in a Sample of Obese Children

Authors: Nayera E. Hassan, Sahar A. El-Masry, Rokia A. El Banna, Mones M. Abu Shady, Muhammad Al-Tohamy, Manal Mouhamed Ali, Mehrevan M. Abd El-Moniem, Mona Anwar

Abstract:

Association between vitamin D, adiponectin and obesity is a matter of debate, as they play important role in linking obesity with different cardiometabolic risk factors. Objectives: Evaluation of the association between metabolic risk factors with both adiponectin and vitamin D levels and that between adiponectin and vitamin D among obese Egyptian children. Subjects and Methods: This case-control cross-sectional study consisted of 65 obese and 30 healthy children, aged 8-11 years. 25-hydroxy vitamin D (25(OH) D) level, serum adiponectin, total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) were measured. Results: The mean 25(OH) D levels in the obese and control groups were 29.9± 10.3 and 39.7 ± 12.7 ng/mL respectively (P < 0.001). The mean 25(OH) D and adiponectin levels in the obese were lower than that in the control group (P < 0.0001). 25(OH) D were inversely correlated with body mass index (BMI), triglyceride, total cholesterol and LDL-cholesterol (LDL-C), while adiponectin level were inversely correlated with systolic blood pressure (SBP), and diastolic blood pressure (DBP), and positively correlated with HDL-C. However, there is no relation between 25(OH) D and adiponectin levels among obese children and total sample. Conclusion: In spite of strong association between vitamin D and adiponectin levels with metabolic risk factors and obesity, there is no relation between 25(OH) D and adiponectin levels. In obese children, there are significant negative correlations between 25(OH) D with lipid profile, and between adiponectin levels with blood pressure. At certain adiponectin level, the relation between it and BMI disappears.

Keywords: 25-hydroxy vitamin D, adiponectin, lipid profile, blood pressure, children

Procedia PDF Downloads 349
4451 Developing Performance Model for Road Side Elements Receiving Periodic Maintenance

Authors: Ayman M. Othman, Hassan Y. Ahmed, Tallat A. Ali

Abstract:

Inadequate maintenance programs and funds allocated for highway networks in the developed countries have led to fast deterioration of road side elements. Therefore, this research focuses on developing a performance model for road side elements periodic maintenance activities. Road side elements that receive periodic maintenance include; earthen shoulder, road signs and traffic markings. Using the level of service concept, the developed model can determine the optimal periodic maintenance intervals for those elements based on a selected level of service suitable with the available periodic maintenance budget. Data related to time periods for progressive deterioration stages for the chosen elements were collected. Ten maintenance experts in Aswan, Sohag and Assiut cities were interviewed for that purpose. Time in months related to 10%, 25%, 40%, 50%, 75%, 90% and 100% deterioration of each road side element was estimated based on the experts opinion. Least square regression analysis has shown that a power function represents the best fit for earthen shoulders edge drop-off and damage of road signs with time. It was also evident that, the progressive dirtiness of road signs could be represented by a quadratic function an a linear function could represent the paint degradation nature of both traffic markings and road signs. Actual measurements of earthen shoulder edge drop-off agree considerably with the developed model.

Keywords: deterioration, level of service, periodic maintenance, performance model, road side element

Procedia PDF Downloads 543
4450 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions

Authors: Ramin Rostamkhani, Thurasamy Ramayah

Abstract:

One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.

Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components

Procedia PDF Downloads 67
4449 Heat Transfer Studies on CNT Nanofluids in a Turbulent Flow Heat Exchanger

Authors: W. Rashmi, M. Khalid, O. Seiksan, R. Saidur, A. F. Ismail

Abstract:

Nanofluids have received much more attention since its discovery. They are believed to be promising coolants in heat transfer applications due to their enhanced thermal conductivity and heat transfer characteristics. In this study, the enhancement in heat transfer of CNT-nanofluids under turbulent flow conditions is investigated experimentally. Carbon nanotube (CNTs) concentration was varied between 0.051-0.085 wt%. The nanofluid suspension was stabilized by gum arabic (GA) through a process of homogenisation and sonication. The flow rates of cold fluid (water) is varied from 1.7-3 L/min and flow rates of the hot fluid is varied between 2-3.5 L/min. Thermal conductivity, density and viscosity of the nanofluids were also measured as a function of temperature and CNT concentration. The experimental results are validated with theoretical correlations for turbulent flow available in the literature. Results showed an enhancement in heat transfer range between 9-67% as a function of temperature and CNT concentration.

Keywords: nanofluids, carbon nanotubes (CNT), heat transfer enhancement, heat transfer

Procedia PDF Downloads 474