Search results for: deep groundwater potential
13188 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 10413187 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 10113186 Salicornia bigelovii, a Promising Halophyte for Biosaline Agriculture: Lessons Learned from a 4-Year Field Study in United Arab Emirates
Authors: Dionyssia Lyra, Shoaib Ismail
Abstract:
Salinization of natural resources constitutes a significant component of the degradation force that leads to depletion of productive lands and fresh water reserves. The global extent of salt-affected soils is approximately 7% of the earth’s land surface and is expanding. The problems of excessive salt accumulation are most widespread in coastal, arid and semi-arid regions, where agricultural production is substantially hindered. The use of crops that can withstand high saline conditions is extremely interesting in such a context. Salt-loving plants or else ‘halophytes’ thrive when grown in hostile saline conditions, where traditional crops cannot survive. Salicornia bigelovii, a halophytic crop with multiple uses (vegetable, forage, biofuel), has demonstrated remarkable adaptability to harsh climatic conditions prevailing in dry areas with great potential for its expansion. Since 2011, the International Center for Biosaline Agriculture (ICBA) with Masdar Institute (MI) and King Abdul Aziz University of Science & Technology (KAUST) to look into the potential for growing S. bigelovii under hot and dry conditions. Through the projects undertaken, 50 different S. bigelovii genotypes were assessed under high saline conditions. The overall goal was to select the best performing S. bigelovii populations in terms of seed and biomass production for future breeding. Specific objectives included: 1) evaluation of selected S. bigelovii genotypes for various agronomic and growth parameters under field conditions, 2) seed multiplication of S. bigelovii using saline groundwater and 3) acquisition of inbred lines for further breeding. Field trials were conducted for four consecutive years at ICBA headquarters. During the first year, one Salicornia population was evaluated for seed and biomass production at different salinity levels, fertilizer treatments and planting methods. All growth parameters and biomass productivity for the salicornia population showed better performance with optimal biomass production in terms of both salinity level and fertilizer application. During the second year, 46 Salicornia populations (obtained from KAUST and Masdar Institute) were evaluated for 24 growth parameters and treated with groundwater through drip irrigation. The plant material originated from wild collections. Six populations were also assessed for their growth performance under full-strength seawater. Salicornia populations were highly variable for all characteristics under study for both irrigation treatments, indicating that there is a large pool of genetic information available for breeding. Irrigation with the highest level of salinity had a negative impact on the agronomic performance. The maximum seed yield obtained was 2 t/ha at 20 dS/m (groundwater treatment) at 25 cm x 25 cm planting distance. The best performing Salicornia populations for fresh biomass and seed yield were selected for the following season. After continuous selection, the best performing salicornia will be adopted for scaling-up options. Taking into account the results of the production field trials, salicornia expansion will be targeted in coastal areas of the Arabian Peninsula. As a crop with high biofuel and forage potential, its cultivation can improve the livelihood of local farmers.Keywords: biosaline agriculture, genotypes selection, halophytes, Salicornia bigelovii
Procedia PDF Downloads 40713185 Designing a Socio-Technical System for Groundwater Resources Management, Applying Smart Energy and Water Meter
Authors: S. Mahdi Sadatmansouri, Maryam Khalili
Abstract:
World, nowadays, encounters serious water scarcity problem. During the past few years, by advent of Smart Energy and Water Meter (SEWM) and its installation at the electro-pumps of the water wells, one had believed that it could be the golden key to address the groundwater resources over-pumping issue. In fact, implementation of these Smart Meters managed to control the water table drawdown for short; but it was not a sustainable approach. SEWM has been considered as law enforcement facility at first; however, for solving a complex socioeconomic problem like shared groundwater resources management, more than just enforcement is required: participation to conserve common resources. The well owners or farmers, as water consumers, are the main and direct stakeholders of this system and other stakeholders could be government sectors, investors, technology providers, privet sectors or ordinary people. Designing a socio-technical system not only defines the role of each stakeholder but also can lubricate the communication to reach the system goals while benefits of each are considered and provided. Farmers, as the key participators for solving groundwater problem, do not trust governments but they would trust a fair system in which responsibilities, privileges and benefits are clear. Technology could help this system remained impartial and productive. Social aspects provide rules, regulations, social objects and etc. for the system and help it to be more human-centered. As the design methodology, Design Thinking provides probable solutions for the challenging problems and ongoing conflicts; it could enlighten the way in which the final system could be designed. Using Human Centered Design approach of IDEO helps to keep farmers in the center of the solution and provides a vision by which stakeholders’ requirements and needs are addressed effectively. Farmers would be considered to trust the system and participate in their groundwater resources management if they find the rules and tools of the system fair and effective. Besides, implementation of the socio-technical system could change farmers’ behavior in order that they concern more about their valuable shared water resources as well as their farm profit. This socio-technical system contains nine main subsystems: 1) Measurement and Monitoring system, 2) Legislation and Governmental system, 3) Information Sharing system, 4) Knowledge based NGOs, 5) Integrated Farm Management system (using IoT), 6) Water Market and Water Banking system, 7) Gamification, 8) Agribusiness ecosystem, 9) Investment system.Keywords: human centered design, participatory management, smart energy and water meter (SEWM), social object, socio-technical system, water table drawdown
Procedia PDF Downloads 29413184 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.Keywords: agricultural object detection, deep learning, machine vision, YOLO family
Procedia PDF Downloads 19713183 Investigation of Subsurface Structures within Bosso Local Government for Groundwater Exploration Using Magnetic and Resistivity Data
Authors: Adetona Abbassa, Aliyu Shakirat B.
Abstract:
The study area is part of Bosso local Government, enclosed within Longitude 6.25’ to 6.31’ and Latitude 9.35’ to 9.45’, an area of 16x8 km², within the basement region of central Nigeria. The region is a host to Nigerian Airforce base 12 (NAF 12quick response) and its staff quarters, the headquarters of Bosso local government, the Independent National Electoral Commission’s two offices, four government secondary schools, six primary schools and Minna international airport. The area suffers an acute shortage of water from November when rains stop to June when rains commence within North Central Nigeria. A way of addressing this problem is a reconnaissance method to delineate possible fractures and fault lines that exists within the region by sampling the Aeromagnetic data and using an appropriate analytical algorithm to delineate these fractures. This is followed by an appropriate ground truthing method that will confirm if the fracture is connected to underground water movement. The first vertical derivative for structural analysis, reveals a set of lineaments labeled AA’, BB’, CC’, DD’, EE’ and FF’ all trending in the Northeast – Southwest directions. AA’ is just below latitude 9.45’ above Maikunkele village, cutting off the upper part of the field, it runs through Kangwo, Nini, Lawo and other communities. BB’ is at Latitude 9.43’ it truncated at about 2Km before Maikunkele and Kuyi. CC’ is around 9.40’ sitting below Maikunkele runs down through Nanaum. DD’ is from Latitude 9.38’; interestingly no community within this region where the fault passes through. A result from the three sites where Vertical Electrical Sounding was carried out reveals three layers comprised of topsoil, intermediate Clay formation and weathered/fractured or fresh basement. The depth to basement map was also produced, depth to the basement from the ground surface with VES A₂, B5, D₂ and E₁ to be relatively deeper with depth values range between 25 to 35 m while the shallower region of the area has a depth range value between 10 to 20 m. Hence, VES A₂, A₅, B₄, B₅, C₂, C₄, D₄, D₅, E₁, E₃, and F₄ are high conductivity zone that are prolific for groundwater potential. The depth range of the aquifer potential zones is between 22.7 m to 50.4 m. The result from site C is quite unique though the 3 layers were detected in the majority of the VES points, the maximum depth to the basement in 90% of the VES points is below 8 km, only three VES points shows considerably viability, which are C₆, E₂ and F₂ with depths of 35.2 m and 38 m respectively but lack of connectivity will be a big challenge of chargeability.Keywords: lithology, aeromagnetic, aquifer, geoelectric, iso-resistivity, basement, vertical electrical sounding(VES)
Procedia PDF Downloads 13913182 Ground Improvement Using Deep Vibro Techniques at Madhepura E-Loco Project
Authors: A. Sekhar, N. Ramakrishna Raju
Abstract:
This paper is a result of ground improvement using deep vibro techniques with combination of sand and stone columns performed on a highly liquefaction susceptible site (70 to 80% sand strata and balance silt) with low bearing capacities due to high settlements located (earth quake zone V as per IS code) at Madhepura, Bihar state in northern part of India. Initially, it was envisaged with bored cast in-situ/precast piles, stone/sand columns. However, after detail analysis to address both liquefaction and improve bearing capacities simultaneously, it was analyzed the deep vibro techniques with combination of sand and stone columns is excellent solution for given site condition which may be first time in India. First after detail soil investigation, pre eCPT test was conducted to evaluate the potential depth of liquefaction to densify silty sandy soils to improve factor of safety against liquefaction. Then trail test were being carried out at site by deep vibro compaction technique with sand and stone columns combination with different spacings of columns in triangular shape with different timings during each lift of vibro up to ground level. Different spacings and timing was done to obtain the most effective spacing and timing with vibro compaction technique to achieve maximum densification of saturated loose silty sandy soils uniformly for complete treated area. Then again, post eCPT test and plate load tests were conducted at all trail locations of different spacings and timing of sand and stone columns to evaluate the best results for obtaining the required factor of safety against liquefaction and the desired bearing capacities with reduced settlements for construction of industrial structures. After reviewing these results, it was noticed that the ground layers are densified more than the expected with improved factor of safety against liquefaction and achieved good bearing capacities for a given settlements as per IS codal provisions. It was also worked out for cost-effectiveness of lightly loaded single storied structures by using deep vibro technique with sand column avoiding stone. The results were observed satisfactory for resting the lightly loaded foundations. In this technique, the most important is to mitigating liquefaction with improved bearing capacities and reduced settlements to acceptable limits as per IS: 1904-1986 simultaneously up to a depth of 19M. To our best knowledge it was executed first time in India.Keywords: ground improvement, deep vibro techniques, liquefaction, bearing capacity, settlement
Procedia PDF Downloads 19713181 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 10613180 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 19813179 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.Keywords: ANPR, CS, CNN, deep learning, NPL
Procedia PDF Downloads 30613178 In Vitro Anthelmintic Effects of Citrullus colocynthis Fruit Extract on Fasciola gigantica of Domestic Buffalo (Bubalus bubalis) in Udaipur, India
Authors: Rajnarayan Damor, Gayatri Swarnakar
Abstract:
Fasciola gigantica are present in the biliary ducts of liver and gall bladder of domestic buffaloes. They are very harmful and causes significant lose to live stock owners, on account of poor growth and lower productivity of domestic buffaloes. Synthetic veterinary drugs have been used to eliminate parasites from cattle but these drugs are unaffordable and inaccessible for poor cattle farmers. The in vitro anthelmintic effect of Citrullus colocynthis fruit extract against Fasciola gigantica parasites were observed by light and scanning electron microscopy. Fruit extracts of C. colocynthis exhibit highest mortality 100% at 50 mg/ml in 15th hour of exposure. The oral and ventral sucker appeared to be slightly more swollen than control and synthetic drug albendazole. The tegument showed submerged spines by the swollen tegument around them. The tegument of the middle region showed deep furrows, folding and submerged spines which either lied very flat against the surface or had become submerged in the tegument by the swollen tegument around them leaving deep furrows. Posterior region showed with deep folding in the tegument, completely disappearance of spines and swelling of the tegument led to completely submerged spines leaving spine socket. The present study revealed that fruit extracts of Citrullus colocynthis found to be potential sources for novel anthelmintic and justify their ethno-veterinary use.Keywords: anthelmintic, buffalo, Citrullus colocynthis, Fasciola gigantica, mortality, tegument
Procedia PDF Downloads 23213177 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 24113176 Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider
Authors: Ijaz Ahmed, Anwar Zada, Muhammad Waqas, M. U. Ashraf
Abstract:
We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approachKeywords: top tagger, multivariate, deep learning, LHC, single top
Procedia PDF Downloads 11113175 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations
Authors: Xiao Zhou, Jianlin Cheng
Abstract:
A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining
Procedia PDF Downloads 46713174 Deep Excavations with Embedded Retaining Walls - Diaphragm Walls
Authors: Sowmiyaa V. S., Tiruvengala Padma, Dhanasekaran B.
Abstract:
Due to urbanization, traffic congestion, air pollution and fuel consumption underground metros are constructed in urban cities nowadays. These metros reduce the commutation time and makes the daily transportation in urban cities hassle free. To construct the underground metros deep excavations are to be carried out. These excavations should be supported by an appropriate earth retaining structures to provide stability and to prevent deformation failures. The failure of deep excavations is catastrophic and hence appropriate caution need to be carried out during design and construction stages. This paper covers the construction aspects, equipment, quality control, design aspects of one of the earth retaining systems the Diaphragm Walls.Keywords: underground metros, diaphragm wall, quality control of diaphragm wall, design aspects of diaphragm wall
Procedia PDF Downloads 10013173 Sustainable Water Supply: Rainwater Harvesting as Flood Reduction Measures in Ibadan, Nigeria
Authors: Omolara Lade, David Oloke
Abstract:
Ibadan City suffers serious water supply problems; cases of dry taps are common in virtually every part of the City. The scarcity of piped water has made communities find alternative water sources; groundwater sources being a ready source. These wells are prone to pollution due to the close proximity of septic tanks to wells, disposal of solid or liquid wastes in pits, abandoned boreholes or even stream channels and landfills. Storms and floods in Ibadan have increased with consequent devastating effects claiming over 120 lives and displacing 600 people on August 2011 alone. In this study, an analysis of the water demand and sources of supply for the city was carried out through questionnaire survey and collection of data from City’s main water supply - Water Corporation of Oyo State (WCOS), groundwater sources were explored and 30 years rainfall data were collected from Meteorological station in Ibadan. 1067 questionnaire were administered at household level with a response rate of 86.7 %. A descriptive analysis of the survey revealed that 77.1 % of the respondents did not receive water at all from WCOS while 83.8 % depend on groundwater sources. Analysis of data from WCOS revealed that main water supply is inadequate as < 10 % of the population water demand was met. Rainfall intensity is highest in June with a mean value of 188 mm, which can be harvested at community—based level and used to complement the population water demand. Rainwater harvesting if planned, and managed properly will become a valuable alternative source of managing urban flood and alleviating water scarcity in the city.Keywords: Ibadan, rainwater harvesting, sustainable water, urban flooding
Procedia PDF Downloads 18213172 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG
Procedia PDF Downloads 25613171 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis
Authors: Mehrnaz Mostafavi
Abstract:
The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans
Procedia PDF Downloads 10013170 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 3313169 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 7013168 Automatic Measurement of Garment Sizes Using Deep Learning
Authors: Maulik Parmar, Sumeet Sandhu
Abstract:
The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints
Procedia PDF Downloads 30813167 Geostatistical and Geochemical Study of the Aquifer System Waters Complex Terminal in the Valley of Oued Righ-Arid Area Algeria
Authors: Asma Bettahar, Imed Eddine Nezli, Sameh Habes
Abstract:
Groundwater resources in the Oued Righ valley are represented like the parts of the eastern basin of the Algerian Sahara, superposed by two major aquifers: the Intercalary Continental (IC) and the Terminal Complex (TC). From a qualitative point of view, various studies have highlighted that the waters of this region showed excessive mineralization, including the waters of the terminal complex (EC Avg equal 5854.61 S/cm) .The present article is a statistical approach by two multi methods various complementary (ACP, CAH), applied to the analytical data of multilayered aquifer waters Terminal Complex of the Oued Righ valley. The approach is to establish a correlation between the chemical composition of water and the lithological nature of different aquifer levels formations, and predict possible connection between groundwater’s layers. The results show that the mineralization of water is from geological origin. They concern the composition of the layers that make up the complex terminal.Keywords: complex terminal, mineralization, oued righ, statistical approach
Procedia PDF Downloads 38713166 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 12613165 Obsessive-Compulsive Disorder: Development of Demand-Controlled Deep Brain Stimulation with Methods from Stochastic Phase Resetting
Authors: Mahdi Akhbardeh
Abstract:
Synchronization of neuronal firing is a hallmark of several neurological diseases. Recently, stimulation techniques have been developed which make it possible to desynchronize oscillatory neuronal activity in a mild and effective way, without suppressing the neurons' firing. As yet, these techniques are being used to establish demand-controlled deep brain stimulation (DBS) techniques for the therapy of movement disorders like severe Parkinson's disease or essential tremor. We here present a first conceptualization suggesting that the nucleus accumbens is a promising target for the standard, that is, permanent high-frequency, DBS in patients with severe and chronic obsessive-compulsive disorder (OCD). In addition, we explain how demand-controlled DBS techniques may be applied to the therapy of OCD in those cases that are refractory to behavioral therapies and pharmacological treatment.Keywords: stereotactic neurosurgery, deep brain stimulation, obsessive-compulsive disorder, phase resetting
Procedia PDF Downloads 51213164 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil
Authors: B. Mendonça, D. Sandwell
Abstract:
The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.Keywords: ground subsidence, Interferometric Satellite Aperture Radar (InSAR), metropolitan region of Sao Paulo, water extraction
Procedia PDF Downloads 35413163 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity
Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.
Abstract:
Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine
Procedia PDF Downloads 5813162 Evolution of Chemistry in the Waters of Superposed Aquifer System Terminal Complex in the Valley of the Oued Righ - Arid Area Algeria
Authors: Asma Bettahar, Imed Eldine Nezli, Sameh Habes
Abstract:
Groundwater resources in the Oued Righ valley are represented like the parts of the eastern basin of the Algerian Sahara, superposed by two major aquifers: the Intercalary Continental (IC) and the Terminal Complex (TC). From a qualitative point of view, various studies have highlighted that the waters of this region showed excessive mineralization, including the waters of the terminal complex (EC Avg equal 5854.61 S/cm). The present article is a statistical approach by two multi methods various complementary (ACP CAH), applied to the analytical data of multilayered aquifer waters Terminal Complex of the Oued Righ valley. The approach is to establish a correlation between the chemical composition of water and the lithological nature of different aquifer levels formations, and predict possible connection between groundwater’s layers. The results show that the mineralization of water is from geological origin. They concern the composition of the layers that make up the complex terminal.Keywords: oued righ, complex terminal, infill continental, mineralization
Procedia PDF Downloads 45013161 Evaluation of the Environmental Risk from the Co-Deposition of Waste Rock Material and Fly Ash
Authors: A. Mavrikos, N. Petsas, E. Kaltsi, D. Kaliampakos
Abstract:
The lignite-fired power plants in the Western Macedonia Lignite Center produce more than 8 106 t of fly ash per year. Approximately 90% of this quantity is used for restoration-reclamation of exhausted open-cast lignite mines and slope stabilization of the overburden. The purpose of this work is to evaluate the environmental behavior of the mixture of waste rock and fly ash that is being used in the external deposition site of the South Field lignite mine. For this reason, a borehole was made within the site and 86 samples were taken and subjected to chemical analyses and leaching tests. The results showed very limited leaching of trace elements and heavy metals from this mixture. Moreover, when compared to the limit values set for waste acceptable in inert waste landfills, only few excesses were observed, indicating only minor risk for groundwater pollution. However, due to the complexity of both the leaching process and the contaminant pathway, more boreholes and analyses should be made in nearby locations and a systematic groundwater monitoring program should be implemented both downstream and within the external deposition site.Keywords: co-deposition, fly ash, leaching tests, lignite, waste rock
Procedia PDF Downloads 23813160 Determination of Aquifer Geometry Using Geophysical Methods: A Case Study from Sidi Bouzid Basin, Central Tunisia
Authors: Dhekra Khazri, Hakim Gabtni
Abstract:
Because of Sidi Bouzid water table overexploitation, this study aims at integrating geophysical methods to determinate aquifers geometry assessing their geological situation and geophysical characteristics. However in highly tectonic zones controlled by Atlassic structural features with NE-SW major directions (central Tunisia), Bouguer gravimetric responses of some areas can be as much dominated by the regional structural tendency, as being non-identified or either defectively interpreted such as the case of Sidi Bouzid basin. This issue required a residual gravity anomaly elaboration isolating the Sidi Bouzid basin gravity response ranging between -8 and -14 mGal and crucial for its aquifers geometry characterization. Several gravity techniques helped constructing the Sidi Bouzid basin's residual gravity anomaly, such as Upwards continuation compared to polynomial regression trends and power spectrum analysis detecting deep basement sources at (3km), intermediate (2km) and shallow sources (1km). A 3D Euler Deconvolution was also performed detecting deepest accidents trending NE-SW, N-S and E-W with depth values reaching 5500 m and delineating the main outcropping structures of the study area. Further gravity treatments highlighted the subsurface geometry and structural features of Sidi Bouzid basin over Horizontal and vertical gradient, and also filters based on them such as Tilt angle and Source Edge detector locating rooted edges or peaks from potential field data detecting a new E-W lineament compartmentalizing the Sidi Bouzid gutter into two unequally residual anomaly and subsiding domains. This subsurface morphology is also detected by the used 2D seismic reflection sections defining the Sidi Bouzid basin as a deep gutter within a tectonic set of negative flower structures, and collapsed and tilted blocks. Furthermore, these structural features were confirmed by forward gravity modeling process over several modeled residual gravity profiles crossing the main area. Sidi Bouzid basin (central Tunisia) is also of a big interest cause of the unknown total thickness and the undefined substratum of its siliciclastic Tertiary package, and its aquifers unbounded structural subsurface features and deep accidents. The Combination of geological, hydrogeological and geophysical methods is then of an ultimate need. Therefore, a geophysical methods integration based on gravity survey supporting available seismic data through forward gravity modeling, enhanced lateral and vertical extent definition of the basin's complex sedimentary fill via 3D gravity models, improved depth estimation by a depth to basement modeling approach, and provided 3D isochronous seismic mapping visualization of the basin's Tertiary complex refining its geostructural schema. A subsurface basin geomorphology mapping, over an ultimate matching between the basin's residual gravity map and the calculated theoretical signature map, was also displayed over the modeled residual gravity profiles. An ultimate multidisciplinary geophysical study of the Sidi Bouzid basin aquifers can be accomplished via an aeromagnetic survey and a 4D Microgravity reservoir monitoring offering temporal tracking of the target aquifer's subsurface fluid dynamics enhancing and rationalizing future groundwater exploitation in this arid area of central Tunisia.Keywords: aquifer geometry, geophysics, 3D gravity modeling, improved depths, source edge detector
Procedia PDF Downloads 28313159 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 145