Search results for: data driven diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27358

Search results for: data driven diagnosis

26908 Factors Affecting Context of Innovation: A Case Study of a Farming-as-a-Service Company

Authors: Kunal Mankodi, Sudhir Pandey

Abstract:

This study aims to assess the factors that play a role in setting up and running a social enterprise driven towards sustainability at the intersection of energy, environment, and poverty alleviation. According to the theory of sustainability-oriented innovation (SOI), conventional organisations adapt their processes to focus on sustainability-oriented innovations. On the other hand, social enterprises that are purpose-driven are also influenced by the context of innovation, which need due attention. This paper presents an account of innovation at Oorja - an Indian social enterprise operating with a farming-as-a-service business model. It aims to illustrate the contexts in which the innovative solutions were developed to work at an intersection between agriculture and clean energy, thereby allowing small farmers access to efficient solutions in the agriculture cycle. Primary data was collected through in-depth interviews, and secondary data was collected from company sources. The study finds that in the case of a social enterprise, the definition of innovation assumes a wider scope by going beyond the introduction of a new product/service. The context of innovation for social enterprise is affected by organisational factors such as organisation’s philosophical mindset, behaviour towards innovation, organisation’s capabilities, regulatory environment, and customer receptiveness. Additionally, the study also finds that the context of innovation for a social enterprise is affected by its organizational structure. A majority of these organizational factors are, in turn, affected by individual (Founder’s) factors such as the founder’s formative years, education, direct exposure to relevant issues, complementary skills of co-founders, and a common calling.

Keywords: context of innovation, social enterprise, sustainability oriented innovations, emerging markets, agriculture

Procedia PDF Downloads 143
26907 Approaches to Diagnosis of Ectopic Solid Organs in the Abdominopelvic Cavity

Authors: Van-Ngoc-Cuong Le, Ngoc-Quy Le

Abstract:

Approaches to the diagnosis of ectopic solid organs in the abdominopelvic cavity include Accessory liver lobe, Accessory spleens (ectopic splenic tissue), Wandering spleen, Ectopic pancreatic tissue, Ectopic kidney (Pancake kidney), Cryptorchidism (undescended testis, ectopic testis), Ectopic endometriosis. The application of diagnostic imaging techniques, of which magnetic resonance imaging is the most important, includes a clinical case study and reports. Ectopic organs and tumors are easy to confuse. This is a concern, as well as practical challenges encountered and solutions adopted in the fields of Image Analysis.

Keywords: ectopic, accessory, wandering, tumor

Procedia PDF Downloads 2
26906 An Audit to Look at the Management of Paediatric Peri Orbital Cellulitis in a District General Hospital, Emergency Department

Authors: Ruth Green, Samantha Milton, Rinal Desai

Abstract:

Background/Aims: Eye pain/swelling/redness is a common presentation to Barnet General Hospital (a district general hospital), pediatric emergency department, and is managed by both the pediatric and emergency teams. The management of each child differs dramatically depending on the healthcare professional who reviews them. There also appears to be confusion in diagnosis between periorbital cellulitis, pre-septal cellulitis, and orbital cellulitis. Pre septal cellulitis refers to an inflammation of the eyelids and soft tissue anterior to the orbital septum. In contrast, orbital cellulitis is a serious, rapidly progressive infection of soft tissues located posterior to the orbital septum. Pre-septal cellulitis is more prevalent and less serious than orbital cellulitis, although it may be part of a continuous spectrum if untreated. Pre-septal cellulitis should there be diagnosed and treated urgently to prevent spread to the septum. For the purpose of the audit, the term periorbital cellulitis has been used as an umbrella term for all spectrums of this infection. The audit aimed to look at, how as a whole, the department is diagnosing and managing orbital and pre-septal cellulitis. Gold Standard: Patients of the same age and diagnosis should be treated with the same medication, advice, and follow-up. Method: Data was collected retrospectively from pediatric patients ( < 18years) who attended the emergency department from June 2019 to February 2020 who had been coded as pre-septal cellulitis, periorbital cellulitis, orbital cellulitis, or eye pain/swelling/redness. Demographics, signs and symptoms, management, and follow-up were recorded for all patients with any of the diagnoses of pre-septal, periorbital, or orbital cellulitis. A Microsoft Excel spreadsheet was used to record the anonymised data. Results: There were vast discrepancies in the diagnosis, management, and follow-up of patients with periorbital cellulitis. Conclusion/Discussion: The audit concluded there is no uniform approach to managing periorbital cellulitis in Barnet General Hospital Paediatric Emergency Department. Healthcare professionals misdiagnosed conjunctivitis as periorbital cellulitis, and adequate steps did not appear to be documented on excluding red flag signs and symptoms of patients presenting. There was no consistency in follow-up, with some patients having timely phone reviews or clinical reviews for mild symptoms. Advice given by the staff was appropriate, and patients did return when symptoms got worse and were treated accordingly. Plan: Given the inconsistency, a gold standard care pathway or local easily accessible clinical guideline can be developed to help with the diagnosis and management of periorbital cellulitis. Along with this, a teaching session can be carried out for the staff of the pediatric team and emergency department to disseminate the teaching. Following the introduction of a guideline and teaching sessions, patients notes can be re-reviewed to check improvement in patient care.

Keywords: periorbital cellulitis, preseptal cellulitis, orbital cellulitis, erythematous eyelid

Procedia PDF Downloads 129
26905 Comparison of the Chest X-Ray and Computerized Tomography Scans Requested from the Emergency Department

Authors: Sahabettin Mete, Abdullah C. Hocagil, Hilal Hocagil, Volkan Ulker, Hasan C. Taskin

Abstract:

Objectives and Goals: An emergency department is a place where people can come for a multitude of reasons 24 hours a day. As it is an easy, accessible place, thanks to self-sacrificing people who work in emergency departments. But the workload and overcrowding of emergency departments are increasing day by day. Under these circumstances, it is important to choose a quick, easily accessible and effective test for diagnosis. This results in laboratory and imaging tests being more than 40% of all emergency department costs. Despite all of the technological advances in imaging methods and available computerized tomography (CT), chest X-ray, the older imaging method, has not lost its appeal and effectiveness for nearly all emergency physicians. Progress in imaging methods are very convenient, but physicians should consider the radiation dose, cost, and effectiveness, as well as imaging methods to be carefully selected and used. The aim of the study was to investigate the effectiveness of chest X-ray in immediate diagnosis against the advancing technology by comparing chest X-ray and chest CT scan results of the patients in the emergency department. Methods: Patients who applied to Bulent Ecevit University Faculty of Medicine’s emergency department were investigated retrospectively in between 1 September 2014 and 28 February 2015. Data were obtained via MIAMED (Clear Canvas Image Server v6.2, Toronto, Canada), information management system which patients’ files are saved electronically in the clinic, and were retrospectively scanned. The study included 199 patients who were 18 or older, had both chest X-ray and chest CT imaging. Chest X-ray images were evaluated by the emergency medicine senior assistant in the emergency department, and the findings were saved to the study form. CT findings were obtained from already reported data by radiology department in the clinic. Chest X-ray was evaluated with seven questions in terms of technique and dose adequacy. Patients’ age, gender, application complaints, comorbid diseases, vital signs, physical examination findings, diagnosis, chest X-ray findings and chest CT findings were evaluated. Data saved and statistical analyses have made via using SPSS 19.0 for Windows. And the value of p < 0.05 were accepted statistically significant. Results: 199 patients were included in the study. In 38,2% (n=76) of all patients were diagnosed with pneumonia and it was the most common diagnosis. The chest X-ray imaging technique was appropriate in patients with the rate of 31% (n=62) of all patients. There was not any statistically significant difference (p > 0.05) between both imaging methods (chest X-ray and chest CT) in terms of determining the rates of displacement of the trachea, pneumothorax, parenchymal consolidation, increased cardiothoracic ratio, lymphadenopathy, diaphragmatic hernia, free air levels in the abdomen (in sections including the image), pleural thickening, parenchymal cyst, parenchymal mass, parenchymal cavity, parenchymal atelectasis and bone fractures. Conclusions: When imaging findings, showing cases that needed to be quickly diagnosed, were investigated, chest X-ray and chest CT findings were matched at a high rate in patients with an appropriate imaging technique. However, chest X-rays, evaluated in the emergency department, were frequently taken with an inappropriate technique.

Keywords: chest x-ray, chest computerized tomography, chest imaging, emergency department

Procedia PDF Downloads 192
26904 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay

Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers

Abstract:

The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.

Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations

Procedia PDF Downloads 224
26903 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability

Procedia PDF Downloads 374
26902 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 374
26901 Transverse Behavior of Frictional Flat Belt Driven by Tapered Pulley -Change of Transverse Force Under Driving State–

Authors: Satoko Fujiwara, Kiyotaka Obunai, Kazuya Okubo

Abstract:

A skew is one of important problems for designing the conveyor and transmission with frictional flat belt, in which running belt is deviated in width direction due to the transverse force applied to the belt. The skew often not only degrades the stability of the path of belt but also causes some damages of the belt and auxiliary machines. However, the transverse behavior such as the skew has not been discussed quantitatively in detail for frictional belts. The objective of this study is to clarify the transverse behavior of frictional flat belt driven by tapered pulley. Commercially available rubber flat belt reinforced by polyamide film was prepared as the test belt where the thickness and length were 1.25 mm and 630 mm, respectively. Test belt was driven between two pulleys made of aluminum alloy, where diameter and inter-axial length were 50 mm and 150 mm, respectively. Some tapered pulleys were applied where tapered angles were 0 deg (for comparison), 2 deg, 4 deg, and 6 deg. In order to alternatively investigate the transverse behavior, the transverse force applied to the belt was measured when the skew was constrained at the string under driving state. The transverse force was measured by a load cell having free rollers contacting on the side surface of the belt when the displacement in the belt width direction was constrained. The conditions of observed bending stiffness in-plane of the belt were changed by preparing three types of belts (the width of the belt was 20, 30, and 40 mm) where their observed stiffnesses were changed. The contributions of the bending stiffness in-plane of belt and initial inter-axial force to the transverse were discussed in experiments. The inter-axial force was also changed by setting a distance (about 240 mm) between the two pulleys. Influence of observed bending stiffness in-plane of the belt and initial inter-axial force on the transverse force were investigated. The experimental results showed that the transverse force was increased with an increase of observed bending stiffness in-plane of the belt and initial inter-axial force. The transverse force acting on the belt running on the tapered pulley was classified into multiple components. Those were components of forces applied with the deflection of the inter-axial force according to the change of taper angle, the resultant force by the bending moment applied on the belt winding around the tapered pulley, and the reaction force applied due to the shearing deformation. The calculation result of the transverse force was almost agreed with experimental data when those components were formulated. It was also shown that the most contribution was specified to be the shearing deformation, regardless of the test conditions. This study found that transverse behavior of frictional flat belt driven by tapered pulley was explained by the summation of those components of forces.

Keywords: skew, frictional flat belt, transverse force, tapered pulley

Procedia PDF Downloads 147
26900 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 407
26899 CNS Cryptococcoma in an Immunocompetent Adult from a Low Resource Setting: A Case Report

Authors: Ssembatya Joseph Mary

Abstract:

Introduction: Cryptococcal infection in the Central Nervous System (CNS) is frequently seen in human immunodeficiency virus (HIV) patients and others with low immunity as an opportunistic fungal infection. However, CNS cryptococcal granuloma (cryptococcoma) in immunocompetent patients is rare. We present a case of CNS cryptococcoma in an immunocompetent patient and review the literature to illustrate the diagnosis and treatment of such lesions. Case presentation: A 62-year-old, HIV-negative, immunocompetent female patient with no known chronic illness presented with 5 months history of a progressive headache associated with on and off episodic generalized tonic-clonic convulsions. She had been to several hospitals before she was referred to our center with a diagnosis of a brain tumor. Before referral and despite a negative CSF analysis result, she had received treatment for bacterial meningitis with no success. At Mbarara Regional Referral Hospital (MRRH), she had surgery with an excision biopsy which showed features consistent with cryptococcosis on histology. The patient had a successful adjuvant treatment with antifungal drugs following surgery. Conclusion: The diagnosis of a parasitic CNS infection, particularly cryptococcal infection mimicking neoplastic lesions in an immunocompetent patient, was unusual. Surgical management of such lesions from different reports has a bad outcome and management remains totally conservative.

Keywords: Cryptococcal meningitis, immunocompetent patient, Uganda, low resource setting

Procedia PDF Downloads 85
26898 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 202
26897 Molecular Diagnosis of Influenza Strains Was Carried Out on Patients of the Social Security Clinic in Karaj Using the RT-PCR Technique

Authors: A. Ferasat, S. Rostampour Yasouri

Abstract:

Seasonal flu is a highly contagious infection caused by influenza viruses. These viruses undergo genetic changes that result in new epidemics across the globe. Medical attention is crucial in severe cases, particularly for the elderly, frail, and those with chronic illnesses, as their immune systems are often weaker. The purpose of this study was to detect new subtypes of the influenza A virus rapidly using a specific RT-PCR method based on the HA gene (hemagglutinin). In the winter and spring of 2022_2023, 120 embryonated egg samples were cultured, suspected of seasonal influenza. RNA synthesis, followed by cDNA synthesis, was performed. Finally, the PCR technique was applied using a pair of specific primers designed based on the HA gene. The PCR product was identified after purification, and the nucleotide sequence of purified PCR products was compared with the sequences in the gene bank. The results showed a high similarity between the sequence of the positive samples isolated from the patients and the sequence of the new strains isolated in recent years. This RT-PCR technique is entirely specific in this study, enabling the detection and multiplication of influenza and its subspecies from clinical samples. The RT-PCR technique based on the HA gene, along with sequencing, is a fast, specific, and sensitive diagnostic method for those infected with influenza viruses and its new subtypes. Rapid molecular diagnosis of influenza is essential for suspected people to control and prevent the spread of the disease to others. It also prevents the occurrence of secondary (sometimes fatal) pneumonia that results from influenza and pathogenic bacteria. The critical role of rapid diagnosis of new strains of influenza is to prepare a drug vaccine against the latest viruses that did not exist in the community last year and are entirely new viruses.

Keywords: influenza, molecular diagnosis, patients, RT-PCR technique

Procedia PDF Downloads 74
26896 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network

Authors: Leila Keshavarz Afshar, Hedieh Sajedi

Abstract:

Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.

Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter

Procedia PDF Downloads 147
26895 Pleomorphic Dermal Sarcoma: A Management Challenge

Authors: Mona Nada, Fahmy Fahmy

Abstract:

Background: Pleomorphic dermal sarcoma is a rare form of skin cancer affecting cutaneous layer and, in some cases associated with recurrence and metastasis, very commonly to seen in elderly patient affecting the area of head and neck. Pleomorphic dermal sarcoma rises in ultraviolet light exposed areas. The symptoms and severity of this kind of skin cancer varies according to histological factors. The differentiation of Pleomorphic dermal sarcoma needs extensive immunohistochemistry, as the diagnosis depends mainly on exclusion to rule out other malignancy like poorly differentiated squamous cell carcinoma, melanoma, angiosarcoma and leiomyosarcoma. Objective: assessing the management of Pleomorphic dermal sarcoma in our unit and compared to the updated guidelines. Design: Retrospective study Collection of patient data from medical records at countess of Chester plastic surgery unit of the last 5 years, all histologically confirmed Pleomorphic dermal sarcoma (2017-2023). Data were collected confirmed to be Pleomorphic dermal sarcoma were included in the study. The data collected: clinical description of the lesions at first presentation, operation time, multidisciplinary team discussion, plan, referral as well as second operation and investigation done. With comparison of histological examination, immunohistochemistry staining, the excision and rate of recurrence. Results: data collected N19 from (2017-2023) showed the disease predominantly affecting males and the lesion mainly in head and neck, the diagnosis needed extensive immunohistochemistry to differentiate between other malignancy. recurrence present in numbers of the cases which managed after multidisciplinary team discussion either by excision or radiotherapy. Conclusion: Pleomorphic dermal sarcoma is a rare malignancy which needs more understanding and avoid missing as it is aggressive form of skin cancer, there is a chance of metastasis and recurrence which makes it very important to understand the process of development of the cancer and frequent review of the management guidelines.

Keywords: pleomorphic dermal sarcoma, recurrence, radiotherapy, surgical

Procedia PDF Downloads 72
26894 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
26893 Knowledge of Quality Assurance and Quality Control in Mammography; A Study among Radiographers of Mammography Settings in Sri Lanka

Authors: H. S. Niroshani, W. M. Ediri Arachchi, R. Tudugala, U. J. M. A. L. Jayasinghe, U. M. U. J. Jayasekara, P. B. Hewavithana

Abstract:

Mammography is used as a screening tool for early diagnosis of breast cancer. It is also useful in refining the diagnosis of breast cancer either by assessment or work up after a suspicious area in the breast has been detected. In order to detect breast cancer accurately and at the earliest possible stage, the image must have an optimum contrast to reveal mass densities and spiculated fibrous structures radiating from them. In addition, the spatial resolution must be adequate to reveal the suffusion of micro calcifications and their shape. The above factors can be optimized by implementing an effective QA programme to enhance the accurate diagnosis of mammographic imaging. Therefore, the radiographer’s knowledge on QA is greatly instrumental in routine mammographic practice. The aim of this study was to assess the radiographer’s knowledge on Quality Assurance and Quality Control programmes in relation to mammographic procedures. A cross-sectional study was carried out among all radiographers working in each mammography setting in Sri Lanka. Pre-tested, anonymous self-administered questionnaires were circulated among the study population and duly filled questionnaires returned within a period of three months were taken into the account. The data on demographical information, knowledge on QA programme and associated QC tests, overall knowledge on QA and QC programmes were obtained. Data analysis was performed using IBM SPSS statistical software (version 20.0). The total response rate was 59.6% and the average knowledge score was 54.15±11.29 SD out of 100. Knowledge was compared on the basis of education level, special training of mammography, and the years of working experience in a mammographic setting of the individuals. Out of 31 subjects, 64.5% (n=20) were graduate radiographers and 35.5% (n=11) were diploma holders while 83.9% (n=26) of radiographers have been specially trained for mammography and 16.1% (n=5) have not been attended for any special training for mammography. It is also noted that 58.1% (n=18) of individuals possessed their experience of less than one year and rest 41.9% (n=13) of them were greater than that. Further, the results found that there is a significant difference (P < 0.05) in the knowledge of QA and overall knowledge on QA and QC programme in the categories of education level and working experience. Also, results imply that there was a significant difference (P < 0.05) in the knowledge of QC test among the groups of trained and non-trained radiographers. This study reveals that education level, working experience and the training obtained particularly in the field of mammography have a significant impact on their knowledge on QA and QC in mammography.

Keywords: knowledge, mammography, quality assurance, quality control

Procedia PDF Downloads 330
26892 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector

Procedia PDF Downloads 349
26891 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 75
26890 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 376
26889 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 321
26888 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 87
26887 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments

Authors: Aileen F. Wang

Abstract:

Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.

Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square

Procedia PDF Downloads 453
26886 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy

Procedia PDF Downloads 198
26885 Annual Water Level Simulation Using Support Vector Machine

Authors: Maryam Khalilzadeh Poshtegal, Seyed Ahmad Mirbagheri, Mojtaba Noury

Abstract:

In this paper, by application of the input yearly data of rainfall, temperature and flow to the Urmia Lake, the simulation of water level fluctuation were applied by means of three models. According to the climate change investigation the fluctuation of lakes water level are of high interest. This study investigate data-driven models, support vector machines (SVM), SVM method which is a new regression procedure in water resources are applied to the yearly level data of Lake Urmia that is the biggest and the hyper saline lake in Iran. The evaluated lake levels are found to be in good correlation with the observed values. The results of SVM simulation show better accuracy and implementation. The mean square errors, mean absolute relative errors and determination coefficient statistics are used as comparison criteria.

Keywords: simulation, water level fluctuation, urmia lake, support vector machine

Procedia PDF Downloads 367
26884 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
26883 Conceptualising Queercide: A Quantitative Desktop Exploration of the Technical Frames Used in Online Repors of Lesbian Killings in South Africa

Authors: Marchant Van Der Schyff

Abstract:

South Africa remains one of the most dangerous places for women – lesbians in particular – to live freely and safely, where a culture of patriarchy and a lack of socio-economic opportunity are ubiquitous throughout its communities. While the Internet has given a wider platform to provide insights to issues plaguing lesbians, very little information exists regarding the elements used in the construction of these online reports. This is not only due to the lack of language required to contextualise lesbian issues, but also persistent institutional and societal homophobia. This article describes the technical frames used in the online news reporting of four case studies of ‘queercide’. Through using a thematic coding sheet, data was collected from 70 online articles purposively selected based on priori population characteristics. The study found technical elements, such as the length of online reports, credible sources used, ‘code driven’-, and ‘user driven’ elements which were identified in the coded online articles. From the conclusions some clear trends emerged enabling the construction of a Venn-type diagram which present insights to how the murder of lesbians (referred to as ‘queercide’ in the article) is being reported on by online news media compared to the contemporary theoretical discussions on how these cases should be reported on.

Keywords: journalism, lesbian murder, queercide, technical frames, reporting, online

Procedia PDF Downloads 72
26882 Photovoltaic Modules Fault Diagnosis Using Low-Cost Integrated Sensors

Authors: Marjila Burhanzoi, Kenta Onohara, Tomoaki Ikegami

Abstract:

Faults in photovoltaic (PV) modules should be detected to the greatest extent as early as possible. For that conventional fault detection methods such as electrical characterization, visual inspection, infrared (IR) imaging, ultraviolet fluorescence and electroluminescence (EL) imaging are used, but they either fail to detect the location or category of fault, or they require expensive equipment and are not convenient for onsite application. Hence, these methods are not convenient to use for monitoring small-scale PV systems. Therefore, low cost and efficient inspection techniques with the ability of onsite application are indispensable for PV modules. In this study in order to establish efficient inspection technique, correlation between faults and magnetic flux density on the surface is of crystalline PV modules are investigated. Magnetic flux on the surface of normal and faulted PV modules is measured under the short circuit and illuminated conditions using two different sensor devices. One device is made of small integrated sensors namely 9-axis motion tracking sensor with a 3-axis electronic compass embedded, an IR temperature sensor, an optical laser position sensor and a microcontroller. This device measures the X, Y and Z components of the magnetic flux density (Bx, By and Bz) few mm above the surface of a PV module and outputs the data as line graphs in LabVIEW program. The second device is made of a laser optical sensor and two magnetic line sensor modules consisting 16 pieces of magnetic sensors. This device scans the magnetic field on the surface of PV module and outputs the data as a 3D surface plot of the magnetic flux intensity in a LabVIEW program. A PC equipped with LabVIEW software is used for data acquisition and analysis for both devices. To show the effectiveness of this method, measured results are compared to those of a normal reference module and their EL images. Through the experiments it was confirmed that the magnetic field in the faulted areas have different profiles which can be clearly identified in the measured plots. Measurement results showed a perfect correlation with the EL images and using position sensors it identified the exact location of faults. This method was applied on different modules and various faults were detected using it. The proposed method owns the ability of on-site measurement and real-time diagnosis. Since simple sensors are used to make the device, it is low cost and convenient to be sued by small-scale or residential PV system owners.

Keywords: fault diagnosis, fault location, integrated sensors, PV modules

Procedia PDF Downloads 224
26881 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 93
26880 Hypotonia - A Concerning Issue in Neonatal Care

Authors: Eda Jazexhiu-Postoli, Gladiola Hoxha, Ada Simeoni, Sonila Biba

Abstract:

Background Neonatal hypotonia represents a commonly encountered issue in the Neonatal Intensive Care Unit and newborn nursery. The differential diagnosis is broad, encompassing chromosome abnormalities, primary muscular dystrophies, neuropathies and inborn errors of metabolism. Aim of study Our study describes some of the main clinical features of hypotonia in newborns and presents clinical cases of neonatal hypotonia we treated in our Neonatal unit in the last 3 years. Case reports Four neonates born in our hospital presented with hypotonia after birth, one preterm newborn 35-36 weeks of gestational age and three other term newborns (38-39 weeks of gestational age). Prenatal data revealed a decrease in fetal movements in both cases. Intrapartum meconium-stained amniotic fluid was found in 75% of our hypotonic newborns. Clinical features included inability to establish effective respiratory movements and need for resuscitation in the delivery room, respiratory distress syndrome, feeding difficulties and need for oro-gastric tube feeding, dysmorphic features, hoarse voice and moderate to severe muscular hypotonia. The genetic workup revealed the diagnosis of Autosomal Recessive Congenital Myasthenic Syndrome 1-B, Sotos Syndrome, Spinal Muscular Atrophy Type 1 and Transient Hypotonia of the Newborn. Two out of four hypotonic neonates were transferred to the Pediatric Intensive Care Unit and died at the age of three to five months old. Conclusion Hypotonia is a concerning finding in neonatal care and it is suggested by decreased intrauterine fetal movements, failure to establish first breaths, respiratory distress and feeding difficulties in the neonate. Prognosis is determined by its etiology and time of diagnosis and intervention.

Keywords: hypotonic neonate, respiratory distress, feeding difficulties, fetal movements

Procedia PDF Downloads 115
26879 Evaluation of Condyle Alterations after Orthognathic Surgery with a Digital Image Processing Technique

Authors: Livia Eisler, Cristiane C. B. Alves, Cristina L. F. Ortolani, Kurt Faltin Jr.

Abstract:

Purpose: This paper proposes a technically simple diagnosis method among orthodontists and maxillofacial surgeons in order to evaluate discrete bone alterations. The methodology consists of a protocol to optimize the diagnosis and minimize the possibility for orthodontic and ortho-surgical retreatment. Materials and Methods: A protocol of image processing and analysis, through ImageJ software and its plugins, was applied to 20 pairs of lateral cephalometric images obtained from cone beam computerized tomographies, before and 1 year after undergoing orthognathic surgery. The optical density of the images was analyzed in the condylar region to determine possible bone alteration after surgical correction. Results: Image density was shown to be altered in all image pairs, especially regarding the condyle contours. According to measures, condyle had a gender-related density reduction for p=0.05 and condylar contours had their alterations registered in mm. Conclusion: A simple, viable and cost-effective technique can be applied to achieve the more detailed image-based diagnosis, not depending on the human eye and therefore, offering more reliable, quantitative results.

Keywords: bone resorption, computer-assisted image processing, orthodontics, orthognathic surgery

Procedia PDF Downloads 160