Search results for: control chart pattern recognition
14173 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation
Authors: Bubai Maji, Monorama Swain
Abstract:
Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition
Procedia PDF Downloads 11314172 AI Applications in Accounting: Transforming Finance with Technology
Authors: Alireza Karimi
Abstract:
Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance
Procedia PDF Downloads 6314171 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition
Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini
Abstract:
Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning
Procedia PDF Downloads 6114170 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.Keywords: TDNN, neural networks, noise, speech recognition
Procedia PDF Downloads 28914169 On Musical Information Geometry with Applications to Sonified Image Analysis
Authors: Shannon Steinmetz, Ellen Gethner
Abstract:
In this paper, a theoretical foundation is developed for patterned segmentation of audio using the geometry of music and statistical manifold. We demonstrate image content clustering using conic space sonification. The algorithm takes a geodesic curve as a model estimator of the three-parameter Gamma distribution. The random variable is parameterized by musical centricity and centric velocity. Model parameters predict audio segmentation in the form of duration and frame count based on the likelihood of musical geometry transition. We provide an example using a database of randomly selected images, resulting in statistically significant clusters of similar image content.Keywords: sonification, musical information geometry, image, content extraction, automated quantification, audio segmentation, pattern recognition
Procedia PDF Downloads 23814168 Personalize E-Learning System Based on Clustering and Sequence Pattern Mining Approach
Authors: H. S. Saini, K. Vijayalakshmi, Rishi Sayal
Abstract:
Network-based education has been growing rapidly in size and quality. Knowledge clustering becomes more important in personalized information retrieval for web-learning. A personalized-Learning service after the learners’ knowledge has been classified with clustering. Through automatic analysis of learners’ behaviors, their partition with similar data level and interests may be discovered so as to produce learners with contents that best match educational needs for collaborative learning. We present a specific mining tool and a recommender engine that we have integrated in the online learning in order to help the teacher to carry out the whole e-learning process. We propose to use sequential pattern mining algorithms to discover the most used path by the students and from this information can recommend links to the new students automatically meanwhile they browse in the course. We have Developed a specific author tool in order to help the teacher to apply all the data mining process. We tend to report on many experiments with real knowledge so as to indicate the quality of using both clustering and sequential pattern mining algorithms together for discovering personalized e-learning systems.Keywords: e-learning, cluster, personalization, sequence, pattern
Procedia PDF Downloads 42914167 Improved Particle Swarm Optimization with Cellular Automata and Fuzzy Cellular Automata
Authors: Ramin Javadzadeh
Abstract:
The particle swarm optimization are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Particle swarm optimization is introduced for the first time to overcome its problems. The fuzzy cellular automata is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the Particle swarm optimization algorithms.Keywords: cellular automata, cellular learning automata, local search, optimization, particle swarm optimization
Procedia PDF Downloads 60714166 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment
Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar
Abstract:
Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors
Procedia PDF Downloads 1114165 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images
Authors: Mekha Mathew, Varun P Gopi
Abstract:
Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform
Procedia PDF Downloads 48514164 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 10114163 Effects of Aerobic Dance Circuit Training Programme on Blood Pressure Variables of Obese Female College Students in Oyo State, Nigeria
Authors: Isiaka Oladele Oladipo, Olusegun Adewale Ajayi
Abstract:
The blood pressure fitness of female college students has been implicated in sedentary lifestyles. This study was designed to determine the effects of the Aerobic Dance Circuit Training Programme (ADCT) on blood pressure variables (Diastolic Blood Pressure (DBP) and Systolic Blood Pressure (SBP). Participants’ Pretest-Posttest control group quasi-experimental design using a 2x2x4 factorial matrix was adopted, while one (1) research question and two (2) research hypotheses were formulated. Seventy (70) untrained obese students-volunteers age 21.10±2.46 years were purposively selected from Oyo town, Nigeria; Emmanuel Alayande College of Education (experimental group and Federal College of Education (special) control group. The participants’ BMI, weight (kg), height (m), systolic bp(mmHg), and diastolic bp (mmHg) were measured before and completion of ADCT. Data collected were analysed using a pie chart, graph, percentage, mean, frequency, and standard deviation, while a t-test was used to analyse the stated hypotheses set at the critical level of 0.05. There were significant mean differences in baseline and post-treatment values of blood pressure variables in terms of SBP among the experimental group 136.49mmHg and 131.66mmHg; control group 130.82mmHg and 130.56mmHg (crit-t=2.00, cal.t=3.02, df=69, p<.0, the hypothesis was rejected; while DBP experimental group 88.65mmHg and 82.21mmHg; control group 69.91mmHg and 72.66mmHg (crit-t=2.00, cal.t=1.437, df=69, p>.05) in which the hypothesis was accepted). It was revealed from the findings that participants’ SBP decrease from week 4 to week 12 of ADCT indicated an effective reduction in blood pressure variables of obese female students. Therefore, the study confirmed that the use of ADCT is safe and effective in the management of blood pressure for the healthy benefit of obesity.Keywords: aerobic dance circuit training, fitness lifestyles, obese college female students, systolic blood pressure, diastolic blood pressure
Procedia PDF Downloads 7614162 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia
Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar
Abstract:
Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition
Procedia PDF Downloads 22114161 A Smart Visitors’ Notification System with Automatic Secure Door Lock Using Mobile Communication Technology
Authors: Rabail Shafique Satti, Sidra Ejaz, Madiha Arshad, Marwa Khalid, Sadia Majeed
Abstract:
The paper presents the development of an automated security system to automate the entry of visitors, providing more flexibility of managing their record and securing homes or workplaces. Face recognition is part of this system to authenticate the visitors. A cost effective and SMS based door security module has been developed and integrated with the GSM network and made part of this system to allow communication between system and owner. This system functions in real time as when the visitor’s arrived it will detect and recognizes his face and on the result of face recognition process it will open the door for authorized visitors or notifies and allows the owner’s to take further action in case of unauthorized visitor. The proposed system is developed and it is successfully ensuring security, managing records and operating gate without physical interaction of owner.Keywords: SMS, e-mail, GSM modem, authenticate, face recognition, authorized
Procedia PDF Downloads 78914160 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.Keywords: biological pathway, gene identification, object detection, Siamese network
Procedia PDF Downloads 29314159 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls
Authors: Ramdas Sonawane, Mahaveer Gadiya
Abstract:
The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations
Procedia PDF Downloads 44414158 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System
Procedia PDF Downloads 55114157 UML Model for Double-Loop Control Self-Adaptive Braking System
Authors: Heung Sun Yoon, Jong Tae Kim
Abstract:
In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption, we can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.Keywords: activity diagram, automotive, braking system, double-loop, self-adaptive, UML, vehicle
Procedia PDF Downloads 41614156 Intelligent Agent Travel Reservation System Requirements Definitions Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Intelligent Agent Reservation System (IARS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are developing the Behavioral Pattern Analysis (BPA) modeling methodology, and developing an interactive software tool (DECISION) which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, intelligent agent, reservation system, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 48414155 Drug Sensitivity Pattern of Organisms Causing Chronic Suppurative Otitis Media
Authors: Fatma M. Benrabha
Abstract:
The aim of the study was to determine the type and pattern of antibiotic susceptibility of the pathogenic microorganisms causing chronic suppurative otitis media (CSOM), which could lead to better therapeutic decisions and consequently avoidance of appearance of resistance to specific antibiotics. Most frequently isolated agents were Pseudomonas aeruginosa 28.5%; followed by Staphylococcus aureus 18.2%; proteus mirabilis 13.9%; Providencia stuartti 6.7%; Bacteroides melaninogenicus, Aspergillus sp., candida sp., 4.2% each; and other microorganisms were represented in 3-0.2%. Drug sensitivities pattern of Pseudomonas aeruginosa showed that ciprofloxacin was active against the majority of isolates (93.9%) followed by ceftazidime 86.2%, amikacin 76.2% and gentamicin 40.8%. However, Staphylococcus aureus isolates were resistant to penicillin 72.7%, erythromycin 28.6%, cephalothin 18.2%, cloxacillin 8.3% and ciprofloxacin was active against 96.2% of isolates. The resistance pattern of proteus mirabilis were 55.6% to ampicillin, 47.1% to carbencillin, 29.4% to cephalothin, 14.3% to gentamicin and 4.8% to amikacin while 100% were sensitive to ciprofloxacin. We conclude that ciprofloxacin is the best drug of choice in treatment of CSOM caused by the common microorganisms.Keywords: otitis media, chronic suppurative otitis media (CSOM), microorganism, drug sensitivity
Procedia PDF Downloads 40314154 The Influence of Job Recognition and Job Motivation on Organizational Commitment in Public Sector: The Mediation Role of Employee Engagement
Authors: Muhammad Tayyab, Saba Saira
Abstract:
It is an established fact that organizations across the globe consider employees as their assets and try to advance their well-being. However, the local firms of developing countries are mostly profit oriented and do not have much concern about their employees’ engagement or commitment. Like other developing countries, the local organizations of Pakistan are also less concerned about the well-being of their employees. Especially public sector organizations lack concern regarding engagement, satisfaction or commitment of the employees. Therefore, this study aimed at investigating the impact of job recognition and job motivation on organizational commitment in the mediation role of employee engagement. The data were collected from land record officers of board of revenue, Punjab, Pakistan. Structured questionnaire was used to collect data through physically visiting land record officers and also through the internet. A total of 318 land record officers’ responses were finalized to perform data analysis. The data were analyzed through confirmatory factor analysis and structural equation modeling technique. The findings revealed that job recognition and job motivation have direct as well as indirect positive and significant impact on organizational commitment. The limitations, practical implications and future research indications are also explained.Keywords: job motivation, job recognition, employee engagement, employee commitment, public sector, land record officers
Procedia PDF Downloads 13214153 Comparative Study between Direct Torque Control and Sliding Mode Control of Sensorless Induction Machine
Authors: Fouad Berrabah, Saad Salah, Zaamouche Fares
Abstract:
In this paper, the Direct Torque Control (DTC) Control and the Sliding Mode Control for induction motor are presented and compared. The performance of the two control schemes is evaluated in terms of torque and current ripple, and transient response to variations of the torque , speed and robustness, trajectory tracking. In order to identify the more suitable solution for any application, both techniques are analyzed mathematically and simulation results are compared which advantages and drawbacks are discussed.Keywords: induction motor, DTC- MRAS control, sliding mode control, robustness, trajectory tracking
Procedia PDF Downloads 59714152 Room Temperature Lasing from InGaAs Quantum Well Nanowires on Silicon-On-Insulator Substrates
Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li
Abstract:
Quantum confinement can be used to increase efficiency and control the emitted spectra in lasers and LEDs. In semiconductor nanowires, quantum confinement can be achieved in the axial direction by stacking multiple quantum disks or in the radial direction by forming a core-shell structure. In this work we demonstrate room temperature lasing in topological photonic crystal nanowire array lasers by using the InGaAs radial quantum well as the gain material. The nanowires with the GaAs/ InGaAs/ InGaP quantum well structure are arranged in a deformed honeycomb lattice, forming a photonic crystal surface emitting laser (PCSEL) . Under optical pumping we show that the PCSEL lase at the wavelength of 1001 nm (undeformed pattern) and 966 nm (stretched pattern), with the lasing threshold of 103 µJ〖/cm 〗^2. We compare the lasing wavelengths from devices with three different nanowire diameters for undeformed compressed and stretched devices, showing that the lasing wavelength increases as the nanowire diameter increases. The impact of deforming the honeycomb pattern is studied, where it was found out that the lasing wavelengths of undeformed devices are always larger than the corresponding stretched or compressed devices with the same nanowire diameter. Using photoluminescence results and numerical simulations on the field profile and the quality factors of the devices, we establish that the lasing of the device is from the radial quantum well structure.Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, quantum well laser
Procedia PDF Downloads 1214151 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems
Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang
Abstract:
The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes
Procedia PDF Downloads 61114150 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language
Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim
Abstract:
The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition
Procedia PDF Downloads 32314149 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 54214148 A New Lateral Load Pattern for Pushover Analysis of RC Frame Structures
Authors: Mohammad Reza Ameri, Ali Massumi, Mohammad Haghbin
Abstract:
Non-linear static analysis, commonly referred to as pushover analysis, is a powerful tool for assessing the seismic response of structures. A suitable lateral load pattern for pushover analysis can bring the results of this simple, quick and low-cost analysis close to the realistic results of nonlinear dynamic analyses. In this research, four samples of 10- and 15 story (two- and four-bay) reinforced concrete frames were studied. The lateral load distribution patterns recommended in FEMA 273/356 guidelines were applied to the sample models in order to perform pushover analyses. The results were then compared to the results obtained from several nonlinear incremental dynamic analyses for a range of earthquakes. Finally, a lateral load distribution pattern was proposed for pushover analysis of medium-rise reinforced concrete buildings based on the results of nonlinear static and dynamic analyses.Keywords: lateral load pattern, nonlinear static analysis, incremental dynamic analysis, medium-rise reinforced concrete frames, performance based design
Procedia PDF Downloads 47614147 Bringing the Confidence Intervals into Choropleth Mortality Map: An Example of Tainan, Taiwan
Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu
Abstract:
Background: Choropleth mortality map is commonly used to identify areas with higher mortality risk. However, the use of choropleth map alone might result in the misinterpretation of differences in mortality rates between areas. Two areas with different color shades might not actually have a significant difference in mortality rates. The mortality rates estimated for an area with a small population would be less stable. We suggest of bringing the 95% confidence intervals (CI) into the choropleth mortality map to help users interpret the areal mortality rate difference more properly. Method: In the first choropleth mortality map, we used only three color to indicate standardized mortality ratio (SMR) for each district in Tainan, Taiwan. The red color denotes that the SMR of that district was significantly higher than the Tainan average; on the contrary, the green color suggests that the SMR of that district was significantly lower than the Tainan average. The yellow color indicates that the SMR of that district was not statistically significantly different from the Tainan average. In the second choropleth mortality map, we used traditional sequential color scheme (color ramp) for different SMR in 37 districts in Tainan City with bar chart of each SMR with 95% CI in which the users could examine if the line of 95% CI of SMR of two districts overlapped (nonsignificant difference). Results: The all-causes SMR of each district in Tainan for 2008 to 2013 ranged from 0.77 (95% CI 0.75 to 0.80) in East District to 1.39 Beimen (95% CI 1.25 to 1.52). In the first choropleth mortality map, only 16 of 37 districts had red color and 8 districts had green color. For different causes of death, the number of districts with red color differed. In the first choropleth mortality map we added a bar chart with line of 95% CI of SMR in each district, in which the users could visualize the SMR differences between districts. Conclusion: Through the use of 95% CI the users could interpret the aral mortality differences more properly.Keywords: choropleth map, small area variation, standardized mortality ratio (SMR), Taiwan
Procedia PDF Downloads 32514146 Design of a Drift Assist Control System Applied to Remote Control Car
Authors: Sheng-Tse Wu, Wu-Sung Yao
Abstract:
In this paper, a drift assist control system is proposed for remote control (RC) cars to get the perfect drift angle. A steering servo control scheme is given powerfully to assist the drift driving. A gyroscope sensor is included to detect the machine's tail sliding and to achieve a better automatic counter-steering to prevent RC car from spinning. To analysis tire traction and vehicle dynamics is used to obtain the dynamic track of RC cars. It comes with a control gain to adjust counter-steering amount according to the sensor condition. An illustrated example of 1:10 RC drift car is given and the real-time control algorithm is realized by Arduino Uno.Keywords: drift assist control system, remote control cars, gyroscope, vehicle dynamics
Procedia PDF Downloads 39714145 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)
Procedia PDF Downloads 16114144 Pattern of Bacterial Isolates and Antimicrobial Resistance at Ayder Comprehensive Specialized Referral Hospital in Northern Ethiopia: A Retrospective Study
Authors: Solomon Gebremariam, Mulugeta Naizigi, Aregawi Haileselassie
Abstract:
Background: Knowledge of the pattern of bacterial isolates and their antimicrobial susceptibility is crucial for guiding empirical treatment and infection prevention and control measures. Objective: The aim of this study was to analyze the pattern of bacterial isolates and their susceptibility patterns from various specimens. Methods: Retrospectively, a total of 1067 microbiological culture results that were isolated, characterized, and identified by standard microbiological methods and whose antibiotic susceptibility was determined using CLSI guidelines between 2017 and 2019 were retrieved and analyzed. Data were entered and analyzed using the Stata release 10.1 statistical package. Result: The positivity rate of culture was 26.04% (419/1609). The most common bacteria isolated were S. aureus 23.8% (94), E. coli 15.1% (60), Klebsiella pneumonia 14.1% (56), Pseudomonas aeruginosa 8.5% (34), and CONS 7.3% (29). S. aureus and CONS showed a high (58.1% - 96.2%) rate of resistance to most antibiotics tested. They were less resistant to Vancomycin which is 18.6% (13/70) and 11.8% (2/17), respectively. Similarly, the resistance of E. coli, Klebsella pneumonia, and Pseudomonas aeruginosa was high (69.4% - 100%) to most antibiotics. They were less resistant to Ciprofloxacilin, which is 41.1% (23/56), 19.2% (10/52), and 16.1% (5/31), respectively. Conclusion: This study has shown that there is a high rate of antibiotic resistance among bacterial isolates in this hospital. A combination of Vancomycin and Ciprofloxacin should be considered in the choice of antibiotics for empirical treatment of suspected infections due to S. aureus, CONS, E. coli, Klebsiella pneumonia, Pseudomonas such as in infections within hospital setup.Keywords: antimicrobial, resistance, bacteria, hospital
Procedia PDF Downloads 74