Search results for: climate data validation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27497

Search results for: climate data validation

27047 A Discrete Logit Survival Model with a Smooth Baseline Hazard for Age at First Alcohol Intake among Students at Tertiary Institutions in Thohoyandou, South Africa

Authors: A. Bere, H. G. Sithuba, K. Kyei, C. Sigauke

Abstract:

We employ a discrete logit survival model to investigate the risk factors for early alcohol intake among students at two tertiary institutions in Thohoyandou, South Africa. Data were collected from a sample of 744 students using a self-administered questionnaire. Significant covariates were arrived at through a regularization algorithm implemented using the glmmLasso package. The tuning parameter was determined using a five-fold cross-validation algorithm. The baseline hazard was modelled as a smooth function of time through the use of spline functions. The results show that the hazard of initial alcohol intake peaks at the age of about 16 years and that at any given time, being of a male gender, prior use of other drugs, having drinking peers, having experienced negative life events and physical abuse are associated with a higher risk of alcohol intake debut.

Keywords: cross-validation, discrete hazard model, LASSO, smooth baseline hazard

Procedia PDF Downloads 191
27046 Language Errors Used in “The Space between Us” Movie and Their Effects on Translation Quality: Translation Study toward Discourse Analysis Approach

Authors: Mochamad Nuruz Zaman, Mangatur Rudolf Nababan, M. A. Djatmika

Abstract:

Both society and education areas teach to have good communication for building the interpersonal skills up. Everyone has the capacity to understand something new, either well comprehension or worst understanding. Worst understanding makes the language errors when the interactions are done by someone in the first meeting, and they do not know before it because of distance area. “The Space between Us” movie delivers the love-adventure story between Mars Boy and Earth Girl. They are so many missing conversations because of the different climate and environment. As the moviegoer also must be focused on the subtitle in order to enjoy well the movie. Furthermore, Indonesia subtitle and English conversation on the movie still have overlapping understanding in the translation. Translation hereby consists of source language -SL- (English conversation) and target language -TL- (Indonesia subtitle). These research gap above is formulated in research question by how the language errors happened in that movie and their effects on translation quality which is deepest analyzed by translation study toward discourse analysis approach. The research goal is to expand the language errors and their translation qualities in order to create a good atmosphere in movie media. The research is studied by embedded research in qualitative design. The research locations consist of setting, participant, and event as focused determined boundary. Sources of datum are “The Space between Us” movie and informant (translation quality rater). The sampling is criterion-based sampling (purposive sampling). Data collection techniques use content analysis and questioner. Data validation applies data source and method triangulation. Data analysis delivers domain, taxonomy, componential, and cultural theme analysis. Data findings on the language errors happened in the movie are referential, register, society, textual, receptive, expressive, individual, group, analogical, transfer, local, and global errors. Data discussions on their effects to translation quality are concentrated by translation techniques on their data findings; they are amplification, borrowing, description, discursive creation, established equivalent, generalization, literal, modulation, particularization, reduction, substitution, and transposition.

Keywords: discourse analysis, language errors, The Space between Us movie, translation techniques, translation quality instruments

Procedia PDF Downloads 219
27045 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 221
27044 Climate Change Results in Increased Accessibility of Offshore Wind Farms for Installation and Maintenance

Authors: Victoria Bessonova, Robert Dorrell, Nina Dethlefs, Evdokia Tapoglou, Katharine York

Abstract:

As the global pursuit of renewable energy intensifies, offshore wind farms have emerged as a promising solution to combat climate change. The global offshore wind installed capacity is projected to increase 56-fold by 2055. However, the impacts of climate change, particularly changes in wave climate, are not widely understood. Offshore wind installation and maintenance activities often require specific weather windows, characterized by calm seas and low wave heights, to ensure safe and efficient operations. However, climate change-induced alterations in wave characteristics can reduce the availability of suitable weather windows, leading to delays and disruptions in project timelines. it applied the operational limits of installation and maintenance vessels to past and future climate wave projections. This revealed changes in the annual and monthly accessibility of offshore wind farms at key global development locations. When accessibility is only defined by significant wave height, spatial patterns in the annual accessibility roughly follow changes in significant wave height, with increased availability where significant wave height is decreasing. This resulted in a 1-6% increase in Europe and North America and a similar decrease in South America, Australia and Asia. Monthly changes suggest unchanged or slightly decreased (1-2%) accessibility in summer months and increased (2-6%) in winter. Further assessment includes assessing the sensitivity of accessibility to operational limits defined by wave height combined with wave period and wave height combined with wind speed. Results of this assessment will be included in the presentation. These findings will help stakeholders inform climate change adaptations in installation and maintenance planning practices.

Keywords: climate change, offshore wind, offshore wind installation, operations and maintenance, wave climate, wind farm accessibility

Procedia PDF Downloads 83
27043 Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed

Authors: M. P. Tripathi, Priti Tiwari

Abstract:

Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds.

Keywords: watershed, hydrologic and water quality, ArcSWAT model, remote sensing, GIS, runoff and sediment yield

Procedia PDF Downloads 378
27042 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 318
27041 Climate Change and Global Warming: Effect on Indian Agriculture and Legal Control

Authors: Aman Guru, Chiron Singhi

Abstract:

The Earth’s climate is being changed at an unrivalled rate since beginning of the evolution of the Earth, 4–5 billion years back, but presently it gained pace due to unintentional anthropogenic disturbances and also increased global warming since the mid-20th century, and these incessant changes in the climatic pattern may bring unpropitious effect on global health and security. Today, however, it is not only the air, or water that are polluted, but the whole atmosphere is prone to pollution and this resulted in other cascading ramification in the form of change in the pattern of rainfall, melting of ice, the rise in the sea level etc. Human activities like production, transport, burning of fuels are adding umpteen dangerous pollutants to the atmosphere which in turn gives rise to global warming. Agriculture plays an imperative part in India's economy. Agriculture, along with fisheries and forestry, is one of the largest contributors to the Gross Domestic Product in India. Research on the effect of climate change and vulnerability of agriculture is a high need in India. A steady increase of CO2 is a primary cause of climate change and global warming and which in turn have a great impact on Indian agriculture. The research focuses on the effect of climate change on Indian agriculture and the proceedings and legal control of legislative measures on such issues and the ways to implement such laws which can help to provide a solution to these problems which can prove beneficial to Indian farmers and their agricultural produce.

Keywords: agriculture, climate change, global warming, India laws, legislative measures

Procedia PDF Downloads 314
27040 Estimating Water Balance at Beterou Watershed, Benin Using Soil and Water Assessment Tool (SWAT) Model

Authors: Ella Sèdé Maforikan

Abstract:

Sustained water management requires quantitative information and the knowledge of spatiotemporal dynamics of hydrological system within the basin. This can be achieved through the research. Several studies have investigated both surface water and groundwater in Beterou catchment. However, there are few published papers on the application of the SWAT modeling in Beterou catchment. The objective of this study was to evaluate the performance of SWAT to simulate the water balance within the watershed. The inputs data consist of digital elevation model, land use maps, soil map, climatic data and discharge records. The model was calibrated and validated using the Sequential Uncertainty Fitting (SUFI2) approach. The calibrated started from 1989 to 2006 with four years warming up period (1985-1988); and validation was from 2007 to 2020. The goodness of the model was assessed using five indices, i.e., Nash–Sutcliffe efficiency (NSE), the ratio of the root means square error to the standard deviation of measured data (RSR), percent bias (PBIAS), the coefficient of determination (R²), and Kling Gupta efficiency (KGE). Results showed that SWAT model successfully simulated river flow in Beterou catchment with NSE = 0.79, R2 = 0.80 and KGE= 0.83 for the calibration process against validation process that provides NSE = 0.78, R2 = 0.78 and KGE= 0.85 using site-based streamflow data. The relative error (PBIAS) ranges from -12.2% to 3.1%. The parameters runoff curve number (CN2), Moist Bulk Density (SOL_BD), Base Flow Alpha Factor (ALPHA_BF), and the available water capacity of the soil layer (SOL_AWC) were the most sensitive parameter. The study provides further research with uncertainty analysis and recommendations for model improvement and provision of an efficient means to improve rainfall and discharges measurement data.

Keywords: watershed, water balance, SWAT modeling, Beterou

Procedia PDF Downloads 55
27039 Establishment of a Nomogram Prediction Model for Postpartum Hemorrhage during Vaginal Delivery

Authors: Yinglisong, Jingge Chen, Jingxuan Chen, Yan Wang, Hui Huang, Jing Zhnag, Qianqian Zhang, Zhenzhen Zhang, Ji Zhang

Abstract:

Purpose: The study aims to establish a nomogram prediction model for postpartum hemorrhage (PPH) in vaginal delivery. Patients and Methods: Clinical data were retrospectively collected from vaginal delivery patients admitted to a hospital in Zhengzhou, China, from June 1, 2022 - October 31, 2022. Univariate and multivariate logistic regression were used to filter out independent risk factors. A nomogram model was established for PPH in vaginal delivery based on the risk factors coefficient. Bootstrapping was used for internal validation. To assess discrimination and calibration, receiver operator characteristics (ROC) and calibration curves were generated in the derivation and validation groups. Results: A total of 1340 cases of vaginal delivery were enrolled, with 81 (6.04%) having PPH. Logistic regression indicated that history of uterine surgery, induction of labor, duration of first labor, neonatal weight, WBC value (during the first stage of labor), and cervical lacerations were all independent risk factors of hemorrhage (P <0.05). The area-under-curve (AUC) of ROC curves of the derivation group and the validation group were 0.817 and 0.821, respectively, indicating good discrimination. Two calibration curves showed that nomogram prediction and practical results were highly consistent (P = 0.105, P = 0.113). Conclusion: The developed individualized risk prediction nomogram model can assist midwives in recognizing and diagnosing high-risk groups of PPH and initiating early warning to reduce PPH incidence.

Keywords: vaginal delivery, postpartum hemorrhage, risk factor, nomogram

Procedia PDF Downloads 76
27038 Traditional Farming Practices and Climate Change Adaptation among the Dumagats of Tanay, Rizal and Their Implications to the Delivery of Extension and Advisory Services

Authors: Janika Vien K. Valsorable, Filma C. Calalo

Abstract:

Climate change is one of the most damaging and serious environmental threats worldwide being faced today. While almost everyone highly depends and puts their trust on what technology, innovations, and initiatives from hard-core science can do to cope with the changing climate, there are still people who find hope on indigenous knowledge systems. The study aimed to analyze the traditional farming practices of the Dumagats in Tanay, Rizal and how these relate to their adaptation and mitigation of climate change. The analysis is based on interviews with 17 members of the Dumagat tribe specifically residing in Barangay Cuyambay, San Andres, and Mamuyao, and supported by Key Informant Interview and Focus Group Discussion as well as document reviews. Results of the study showed that the Dumagats adopt indigenous knowledge systems and their high sensitivity and resilience to climate change aid them in their farming system and activities. These traditional farming practices are exemplified from land preparation to planting, fertilizer application, weed and pest management, harvesting and post-harvest activities. Owing to their dependence upon, and close relationship with the environment and its resources, the Dumagats have learned to interpret and react to the impacts of climate change in creative ways, drawing on their traditional knowledge to cope with the impending changes. With the increasing trend at all levels of government to service the needs of rural communities, there is the need for the extension to contextualize advisory service delivery for indigenous communities.

Keywords: climate change, Dumagat tribe, indigenous knowledge systems, traditional farming practices

Procedia PDF Downloads 264
27037 Structural Model on Organizational Climate, Leadership Behavior and Organizational Commitment: Work Engagement of Private Secondary School Teachers in Davao City

Authors: Genevaive Melendres

Abstract:

School administrators face the reality of teachers losing their engagement, or schools losing the teachers. This study is then conducted to identify a structural model that best predict work engagement of private secondary teachers in Davao City. Ninety-three teachers from four sectarian schools and 56 teachers from four non-sectarian schools were involved in the completion of four survey instruments namely Organizational Climate Questionnaire, Leader Behavior Descriptive Questionnaire, Organizational Commitment Scales, and Utrecht Work Engagement Scales. Data were analyzed using frequency distribution, mean, standardized deviation, t-test for independent sample, Pearson r, stepwise multiple regression analysis, and structural equation modeling. Results show that schools have high level of organizational climate dimensions; leaders oftentimes show work-oriented and people-oriented behavior; teachers have high normative commitment and they are very often engaged at their work. Teachers from non-sectarian schools have higher organizational commitment than those from sectarian schools. Organizational climate and leadership behavior are positively related to and predict work engagement whereas commitment did not show any relationship. This study underscores the relative effects of three variables on the work engagement of teachers. After testing network of relationships and evaluating several models, a best-fitting model was found between leadership behavior and work engagement. The noteworthy findings suggest that principals pay attention and consistently evaluate their behavior for this best predicts the work engagement of the teachers. The study provides value to administrators who take decisions and create conditions in which teachers derive fulfillment.

Keywords: leadership behavior, organizational climate, organizational commitment, private secondary school teachers, structural model on work engagement

Procedia PDF Downloads 272
27036 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 76
27035 Natural Patterns for Sustainable Cooling in the Architecture of Residential Buildings in Iran (Hot and Dry Climate)

Authors: Elnaz Abbasian, Mohsen Faizi

Abstract:

In its thousand-year development, architecture has gained valuable patterns. Iran’s desert regions possess developed patterns of traditional architecture and outstanding skeletal features. Unfortunately increasing population and urbanization growth in the past decade as well as the lack of harmony with environment’s texture has destroyed such permanent concepts in the building’s skeleton, causing a lot of energy waste in the modern architecture. The important question is how cooling patterns of Iran’s traditional architecture can be used in a new way in the modern architecture of residential buildings? This research is library-based and documental that looks at sustainable development, analyzes the features of Iranian architecture in hot and dry climate in terms of sustainability as well as historical patterns, and makes a model for real environment. By methodological analysis of past, it intends to suggest a new pattern for residential buildings’ cooling in Iran’s hot and dry climate which is in full accordance to the ecology of the design and at the same time possesses the architectural indices of the past. In the process of cities’ physical development, ecological measures, in proportion to desert’s natural background and climate conditions, has kept the natural fences, preventing buildings from facing climate adversities. Designing and construction of buildings with this viewpoint can reduce the energy needed for maintaining and regulating environmental conditions and with the use of appropriate building technology help minimizing the consumption of fossil fuels while having permanent patterns of desert buildings’ architecture.

Keywords: sustainability concepts, sustainable development, energy climate architecture, fossil fuel, hot and dry climate, patterns of traditional sustainability for residential buildings, modern pattern of cooling

Procedia PDF Downloads 308
27034 Bayesian Networks Scoping the Climate Change Impact on Winter Wheat Freezing Injury Disasters in Hebei Province, China

Authors: Xiping Wang,Shuran Yao, Liqin Dai

Abstract:

Many studies report the winter is getting warmer and the minimum air temperature is obviously rising as the important climate warming evidences. The exacerbated air temperature fluctuation tending to bring more severe weather variation is another important consequence of recent climate change which induced more disasters to crop growth in quite a certain regions. Hebei Province is an important winter wheat growing province in North of China that recently endures more winter freezing injury influencing the local winter wheat crop management. A winter wheat freezing injury assessment Bayesian Network framework was established for the objectives of estimating, assessing and predicting winter wheat freezing disasters in Hebei Province. In this framework, the freezing disasters was classified as three severity degrees (SI) among all the three types of freezing, i.e., freezing caused by severe cold in anytime in the winter, long extremely cold duration in the winter and freeze-after-thaw in early season after winter. The factors influencing winter wheat freezing SI include time of freezing occurrence, growth status of seedlings, soil moisture, winter wheat variety, the longitude of target region and, the most variable climate factors. The climate factors included in this framework are daily mean and range of air temperature, extreme minimum temperature and number of days during a severe cold weather process, the number of days with the temperature lower than the critical temperature values, accumulated negative temperature in a potential freezing event. The Bayesian Network model was evaluated using actual weather data and crop records at selected sites in Hebei Province using real data. With the multi-stage influences from the various factors, the forecast and assessment of the event-based target variables, freezing injury occurrence and its damage to winter wheat production, were shown better scoped by Bayesian Network model.

Keywords: bayesian networks, climatic change, freezing Injury, winter wheat

Procedia PDF Downloads 408
27033 Strategic Environmental Assessment and Climate Change: From European Experiences to Brazilian Needs

Authors: Amália S. Botter Fabbri

Abstract:

This paper proposes the analysis of the Strategic Environmental Assessment (SEA) in relation to the three pillars of the sustainable development, highlighting its particular importance to combat climate change. Theoretical and practical examples from Europe show how SEA has been implemented under the SEA Directive in the recent years, while the Brazilian case study shows a situation in which no regulation on SEA was implemented, despite the strong demand for it, as revealed by past experiences and future planning needs. In the end, some aspects to the formulation of a SEA Act are suggested, in an attempt to contribute to a better Brazilian environmental governance in relation to the future plans, programmes and policies required to the reduction of greenhouse gases emissions.

Keywords: Brazil, climate change, Europe, strategic environmental assessment

Procedia PDF Downloads 268
27032 Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn

Authors: S. Chee Choy, Pauline Swee Choo Goh, Yow Lin Liew

Abstract:

The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval, and loving to learn. Data in the present study came from 680 university students enrolled in various programs in Malaysia. The Malay version of the questionnaire supported a similar four-factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement for the questions is needed to strengthen the correlations between the two questionnaires.

Keywords: student learning, learner awareness, questionnaire development, instrument validation

Procedia PDF Downloads 426
27031 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 84
27030 Study of Climate Change Process on Hyrcanian Forests Using Dendroclimatology Indicators (Case Study of Guilan Province)

Authors: Farzad Shirzad, Bohlol Alijani, Mehry Akbary, Mohammad Saligheh

Abstract:

Climate change and global warming are very important issues today. The process of climate change, especially changes in temperature and precipitation, is the most important issue in the environmental sciences. Climate change means changing the averages in the long run. Iran is located in arid and semi-arid regions due to its proximity to the equator and its location in the subtropical high pressure zone. In this respect, the Hyrcanian forest is a green necklace between the Caspian Sea and the south of the Alborz mountain range. In the forty-third session of UNESCO, it was registered as the second natural heritage of Iran. Beech is one of the most important tree species and the most industrial species of Hyrcanian forests. In this research, using dendroclimatology, the width of the tree ring, and climatic data of temperature and precipitation from Shanderman meteorological station located in the study area, And non-parametric Mann-Kendall statistical method to investigate the trend of climate change over a time series of 202 years of growth ringsAnd Pearson statistical method was used to correlate the growth of "ring" growth rings of beech trees with climatic variables in the region. The results obtained from the time series of beech growth rings showed that the changes in beech growth rings had a downward and negative trend and were significant at the level of 5% and climate change occurred. The average minimum, medium, and maximum temperatures and evaporation in the growing season had an increasing trend, and the annual precipitation had a decreasing trend. Using Pearson method during fitting the correlation of diameter of growth rings with temperature, for the average in July, August, and September, the correlation is negative, and the average temperature in July, August, and September is negative, and for the average The average maximum temperature in February was correlation-positive and at the level of 95% was significant, and with precipitation, in June the correlation was at the level of 95% positive and significant.

Keywords: climate change, dendroclimatology, hyrcanian forest, beech

Procedia PDF Downloads 104
27029 Climate Change Scenario Phenomenon in Malaysia: A Case Study in MADA Area

Authors: Shaidatul Azdawiyah Abdul Talib, Wan Mohd Razi Idris, Liew Ju Neng, Tukimat Lihan, Muhammad Zamir Abdul Rasid

Abstract:

Climate change has received great attention worldwide due to the impact of weather causing extreme events. Rainfall and temperature are crucial weather components associated with climate change. In Malaysia, increasing temperatures and changes in rainfall distribution patterns lead to drought and flood events involving agricultural areas, especially rice fields. Muda Agricultural Development Authority (MADA) is the largest rice growing area among the 10 granary areas in Malaysia and has faced floods and droughts in the past due to changing climate. Changes in rainfall and temperature patter affect rice yield. Therefore, trend analysis is important to identify changes in temperature and rainfall patterns as it gives an initial overview for further analysis. Six locations across the MADA area were selected based on the availability of meteorological station (MetMalaysia) data. Historical data (1991 to 2020) collected from MetMalaysia and future climate projection by multi-model ensemble of climate model from CMIP5 (CNRM-CM5, GFDL-CM3, MRI-CGCM3, NorESM1-M and IPSL-CM5A-LR) have been analyzed using Mann-Kendall test to detect the time series trend, together with standardized precipitation anomaly, rainfall anomaly index, precipitation concentration index and temperature anomaly. Future projection data were analyzed based on 3 different periods; early century (2020 – 2046), middle century (2047 – 2073) and late-century (2074 – 2099). Results indicate that the MADA area does encounter extremely wet and dry conditions, leading to drought and flood events in the past. The Mann-Kendall (MK) trend analysis test discovered a significant increasing trend (p < 0.05) in annual rainfall (z = 0.40; s = 15.12) and temperature (z = 0.61; s = 0.04) during the historical period. Similarly, for both RCP 4.5 and RCP 8.5 scenarios, a significant increasing trend (p < 0.05) was found for rainfall (RCP 4.5: z = 0.15; s = 2.55; RCP 8.5: z = 0.41; s = 8.05;) and temperature (RCP 4.5: z = 0.84; s = 0.02; RCP 8.5: z = 0.94; s = 0.05). Under the RCP 4.5 scenario, the average temperature is projected to increase up to 1.6 °C in early century, 2.0 °C in the middle century and 2.4 °C in the late century. In contrast, under RCP 8.5 scenario, the average temperature is projected to increase up to 1.8 °C in the early century, 3.1 °C in the middle century and 4.3 °C in late century. Drought is projected to occur in 2038 and 2043 (early century); 2052 and 2069 (middle century); and 2095, 2097 to 2099 (late century) under RCP 4.5 scenario. As for RCP 8.5 scenario, drought is projected to occur in 2021, 2031 and 2034 (early century); and 2069 (middle century). No drought is projected to occur in the late century under the RCP 8.5 scenario. Thus, this information can be used for the analysis of the impact of climate change scenarios on rice growth and yield besides other crops found in MADA area. Additionally, this study, it would be helpful for researchers and decision-makers in developing applicable adaptation and mitigation strategies to reduce the impact of climate change.

Keywords: climate projection, drought, flood, rainfall, RCP 4.5, RCP 8.5, temperature

Procedia PDF Downloads 77
27028 Implications of Climate Change and World Uncertainty for Gender Inequality: Global Evidence

Authors: Kashif Nesar Rather, Mantu Kumar Mahalik

Abstract:

The discourse surrounding climate change has gained considerable traction, with a discernible emphasis on its nuanced and consequential impact on gender inequality. Concurrently, escalating global tensions are contributing to heightened uncertainty, potentially exerting influence on gender disparities. Within this framework, this study attempts to empirically investigate the implications of climate change and world uncertainty on the gender inequality for a balanced panel of 100 economies between 1995 to 2021. The estimated models also control for the effects of globalisation, economic growth, and education expenditure. The panel cointegration tests establish a significant long-run relationship between the variables of the study. Furthermore, the PMG-ARDL (Panel mean group-Autoregressive distributed lag model) estimation technique confirms that both climate change and world uncertainty perpetuate the global gender inequalities. Additionally, the results establish that globalisation, economic growth, and education expenditure exert a mitigating influence on gender inequality, signifying their role in diminishing gender disparities. These findings are further confirmed by the FGLS (Feasible Generalized Least Squares) and DKSE (Driscoll-Kraay Standard Errors) regression methods. Potential policy implications for mitigating the detrimental gender ramifications stemming from climate change and rising world uncertainties are also discussed.

Keywords: gender inequality, world uncertainty, climate change, globalisation., ecological footprint

Procedia PDF Downloads 38
27027 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 82
27026 Impact of Climate Change on Water Level and Properties of Gorgan Bay in the Southern Caspian Sea

Authors: Siamak Jamshidi

Abstract:

The Caspian Sea is the Earth's largest inland body of water. One of the most important issues related to the sea is water level changes. For measuring and recording Caspian Sea water level, there are at least three gauges and radar equipment in Anzali, Nowshahr and Amirabad Ports along the southern boundary of the Caspian Sea. It seems that evaporation, hotter surface air temperature, and in general climate change is the main reasons for its water level fluctuations. Gorgan Bay in the eastern part of the southern boundary of the Caspian Sea is one of the areas under the effect of water level fluctuation. Based on the results of field measurements near the Gorgan Bay mouth temperature ranged between 24°C–28°C and salinity was about 13.5 PSU in midsummer while temperature changed between 10-11.5°C and salinity mostly was 15-16.5 PSU in mid-winter. The decrease of Caspian Sea water level and rivers outflow are the two most important factors for the increase in water salinity of the Gorgan Bay. Results of field observations showed that, due to atmospheric factors, climate changes and decreasing of precipitation over the southern basin of the Caspian Sea during last decades, the water level of bay was reduced around 0.5 m.

Keywords: Caspian Sea, Gorgan Bay, water level fluctuation, climate changes

Procedia PDF Downloads 170
27025 Flood Scenarios for Hydrological and Hydrodynamic Modelling

Authors: M. Sharif Imam Ibne Amir, Mohammad Masud Kamal Khan, Mohammad Golam Rasul, Raj H. Sharma, Fatema Akram

Abstract:

Future flood can be predicted using the probable maximum flood (PMF). PMF is calculated using the historical discharge or rainfall data considering the other climatic parameter stationary. However, climate is changing globally and the key climatic variables are temperature, evaporation, rainfall and sea level rise (SLR). To develop scenarios to a basin or catchment scale these important climatic variables should be considered. Nowadays scenario based on climatic variables is more suitable than PMF. Six scenarios were developed for a large Fitzroy basin and presented in this paper.

Keywords: climate change, rainfall, potential evaporation, scenario, sea level rise (SLR), sub-catchment

Procedia PDF Downloads 531
27024 The Implications of Population Dynamics on the Environmental Issues: A Case behind Global Change in Climate

Authors: Simiso Fisokuhle Nyandeni

Abstract:

The environment is one of the major components of intergenerational equity under sustainability; however, this component has been facing a lot of issues/crises, which include those that are caused by natural systems due to the actions of humans. Although some of those environmental issues may occur from natural causes, however, climate change effects have shown to increase rapidly due to human behavior, which led to the increase in greenhouse emissions and the over-exploitation of natural resources that maintain an ecological balance in our environment. Based on the recent projections, the growing population tends to outstrip the environmental resources, and as a result, the rapid depletion of natural resources that maintain ecological balance within the environment has resulted in such environmental issues. This paper has adopted desktop analysis to address the main objective, which seeks to address the effects of population dynamics on environmental issues and what needs to be done to maintain the ecological balance between the growing population and the limited resources that are available; thus, the collective data sources were used to justify the literature in order to get adequate results to influence the potential findings. The major findings postulate that there is an ecological imbalance between limited resources available and the growing population; as a result, the environment is taking action against humanity through climate change impacts. Hence findings further outline that in order to prevent such impacts, there should be drastic interventions by the governments (all stakeholders should be involved in decision-making; Governmental or non-governmental institutions, scientists, researchers, etc.) around the world to maintain this ecological balance and also to prioritize the adaptation measures. Therefore, this paper seeks to examine the implications of population dynamics on the environmental issues and what needs to be done in order to maintain this ecological balance between the growing population and environmental resources; hence, this review will be based on the climate change context.

Keywords: population dynamics, climate change, environment, sustainability

Procedia PDF Downloads 131
27023 Spatio-Temporal Dynamics of Snow Cover and Melt/Freeze Conditions in Indian Himalayas

Authors: Rajashree Bothale, Venkateswara Rao

Abstract:

Indian Himalayas also known as third pole with 0.9 Million SQ km area, contain the largest reserve of ice and snow outside poles and affect global climate and water availability in the perennial rivers. The variations in the extent of snow are indicative of climate change. The snow melt is sensitive to climate change (warming) and also an influencing factor to the climate change. A study of the spatio-temporal dynamics of snow cover and melt/freeze conditions is carried out using space based observations in visible and microwave bands. An analysis period of 2003 to 2015 is selected to identify and map the changes and trend in snow cover using Indian Remote Sensing (IRS) Advanced Wide Field Sensor (AWiFS) and Moderate Resolution Imaging Spectroradiometer(MODIS) data. For mapping of wet snow, microwave data is used, which is sensitive to the presence of liquid water in the snow. The present study uses Ku-band scatterometer data from QuikSCAT and Oceansat satellites. The enhanced resolution images at 2.25 km from the 13.6GHz sensor are used to analyze the backscatter response to dry and wet snow for the period of 2000-2013 using threshold method. The study area is divided into three major river basins namely Brahmaputra, Ganges and Indus which also represent the diversification in Himalayas as the Eastern Himalayas, Central Himalayas and Western Himalayas. Topographic variations across different zones show that a majority of the study area lies in 4000–5500 m elevation range and the maximum percent of high elevated areas (>5500 m) lies in Western Himalayas. The effect of climate change could be seen in the extent of snow cover and also on the melt/freeze status in different parts of Himalayas. Melt onset day increases from east (March11+11) to west (May12+15) with large variation in number of melt days. Western Himalayas has shorter melt duration (120+15) in comparison to Eastern Himalayas (150+16) providing lesser time for melt. Eastern Himalaya glaciers are prone for enhanced melt due to large melt duration. The extent of snow cover coupled with the status of melt/freeze indicating solar radiation can be used as precursor for monsoon prediction.

Keywords: Indian Himalaya, Scatterometer, Snow Melt/Freeze, AWiFS, Cryosphere

Procedia PDF Downloads 260
27022 Energy Transition and Investor-State Disputes: Scientific Knowledge as a Solution to the Burden for Climate Policy-Making

Authors: Marina E. Konstantinidi

Abstract:

It is now well-established that the fight against climate change and its consequences, which are a threat to mankind and to life on the planet Earth, requires that global temperature rise be kept under 1,5°C. It is also well-established that this requires humanity to put an end to the use of fossil fuels in the next decades, at the latest. However, investors in the fossil energy sector have brought or threatened to bring investment arbitration claims against States which put an end to their activity for the purpose of reaching their climate change policies’ objectives. Examples of such claims are provided by the cases of WMH v. Canada, Lone Pine v. Canada, Uniper v. Netherlands and RWE v. Netherlands. Irrespective of the outcome of the arbitration proceedings, the risk of being ordered to pay very substantial damages may have a ‘chilling effect’ on States, meaning that they may hesitate to implement the energy transition measures needed to fight climate change and its consequences. Although mitigation action is a relatively recent phenomenon, knowledge about the negative impact of fossil fuels has existed for a long time ago. In this paper, it is argued that structured documentation of evidence of knowledge about climate change may influence the adjudication of investment treaty claims and, consequently, affect the content of energy transition regulations that will be implemented. For example, as concerns investors, evidence that change in the regulatory framework towards environmental protection could have been predicted would refute the argument concerning legitimate expectations for legislative stability. By reference to relevant case law, it attempted to explore how pre-existing knowledge about climate change can be used in the adjudication of investor-State disputes and resulting from green energy transition policies.

Keywords: climate change, energy transition, international investment law, knowledge

Procedia PDF Downloads 99
27021 Effectiveness of Climate Smart Agriculture in Managing Field Stresses in Robusta Coffee

Authors: Andrew Kirabira

Abstract:

This study is an investigation into the effectiveness of climate-smart agriculture (CSA) technologies in improving productivity through managing biotic and abiotic stresses in the coffee agroecological zones of Uganda. The motive is to enhance farmer livelihoods. The study was initiated as a result of the decreasing productivity of the crop in Uganda caused by the increasing prevalence of pests, diseases and abiotic stresses. Despite 9 years of farmers’ application of CSA, productivity has stagnated between 700kg -800kg/ha/yr which is only 26% of the 3-5tn/ha/yr that CSA is capable of delivering if properly applied. This has negatively affected the incomes of the 10.6 million people along the crop value chain which has in essence affected the country’s national income. In 2019/20 FY for example, Uganda suffered a deficit of $40m out of singularly the increasing incidence of one pest; BCTB. The amalgamation of such trends cripples the realization of SDG #1 and #13 which are the eradication of poverty and mitigation of climate change, respectively. In probing CSA’s effectiveness in curbing such a trend, this study is guided by the objectives of; determining the existing farmers’ knowledge and perceptions of CSA amongst the coffee farmers in the diverse coffee agro-ecological zones of Uganda; examining the relationship between the use of CSA and prevalence of selected coffee pests, diseases and abiotic stresses; ascertaining the difference in the market organization and pricing between conventionally and CSA produced coffee; and analyzing the prevailing policy environment concerning the use of CSA in coffee production. The data collection research design is descriptive in nature; collecting data from farmers and agricultural extension workers in the districts of Ntungamo, Iganga and Luweero; each of these districts representing a distinct coffee agroecological zone. Policy custodian officers at district, cooperatives and at the crop’s overseeing national authority were also interviewed.

Keywords: climate change, food security, field stresses, Productivity

Procedia PDF Downloads 57
27020 Strategies Used by the Saffron Producers of Taliouine (Morocco) to Adapt to Climate Change

Authors: Aziz Larbi, Widad Sadok

Abstract:

In Morocco, the mountainous regions extend over about 26% of the national territory where 30% of the total population live. They contain opportunities for agriculture, forestry, pastureland and mining. The production systems in these zones are characterised by crop diversification. However, these areas have become vulnerable to the effects of climate change. To understand these effects in relation to the population living in these areas, a study was carried out in the zone of Taliouine, in the Anti-Atlas. The vulnerability of crop productions to climate change was analysed and the different ways of adaptation adopted by farmers were identified. The work was done on saffron, the most profitable crop in the target area even though it requires much water. Our results show that the majority of the farmers surveyed had noticed variations in the climate of the region: irregularity of precipitation leading to a decrease in quantity and an uneven distribution throughout the year; rise in temperature; reduction in the cold period and less snow. These variations had impacts on the cropping system of saffron and its productivity. To cope with these effects, the farmers adopted various strategies: better management and use of water; diversification of agricultural activities; increase in the contribution of non-agricultural activities to their gross income; and seasonal migration.

Keywords: climate change, Taliouine, saffron, perceptions, adaptation strategies

Procedia PDF Downloads 60
27019 Modeling of Sediment Yield and Streamflow of Watershed Basin in the Philippines Using the Soil Water Assessment Tool Model for Watershed Sustainability

Authors: Warda L. Panondi, Norihiro Izumi

Abstract:

Sedimentation is a significant threat to the sustainability of reservoirs and their watershed. In the Philippines, the Pulangi watershed experienced a high sediment loss mainly due to land conversions and plantations that showed critical erosion rates beyond the tolerable limit of -10 ton/ha/yr in all of its sub-basin. From this event, the prediction of runoff volume and sediment yield is essential to examine using the country's soil conservation techniques realistically. In this research, the Pulangi watershed was modeled using the soil water assessment tool (SWAT) to predict its watershed basin's annual runoff and sediment yield. For the calibration and validation of the model, the SWAT-CUP was utilized. The model was calibrated with monthly discharge data for 1990-1993 and validated for 1994-1997. Simultaneously, the sediment yield was calibrated in 2014 and validated in 2015 because of limited observed datasets. Uncertainty analysis and calculation of efficiency indexes were accomplished through the SUFI-2 algorithm. According to the coefficient of determination (R2), Nash Sutcliffe efficiency (NSE), King-Gupta efficiency (KGE), and PBIAS, the calculation of streamflow indicates a good performance for both calibration and validation periods while the sediment yield resulted in a satisfactory performance for both calibration and validation. Therefore, this study was able to identify the most critical sub-basin and severe needs of soil conservation. Furthermore, this study will provide baseline information to prevent floods and landslides and serve as a useful reference for land-use policies and watershed management and sustainability in the Pulangi watershed.

Keywords: Pulangi watershed, sediment yield, streamflow, SWAT model

Procedia PDF Downloads 209
27018 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 22