Search results for: bidirectional encoder representations from transformers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 709

Search results for: bidirectional encoder representations from transformers

259 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
258 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

Authors: Fethi Soltani, Adel Almarashi, Idir Mechai

Abstract:

Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.

Keywords: fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization

Procedia PDF Downloads 318
257 Increasing Photosynthetic H2 Production by in vivo Expression of Re-Engineered Ferredoxin-Hydrogenase Fusion Protein in the Green Alga Chlamydomonas reinhardtii

Authors: Dake Xiong, Ben Hankamer, Ian Ross

Abstract:

The most urgent challenge of our time is to replace the depleting resources of fossil fuels by sustainable environmentally friendly alternatives. Hydrogen is a promising CO2-neutral fuel for a more sustainable future especially when produced photo-biologically. Hydrogen can be photosynthetically produced in unicellular green alga like Chlamydomonas reinhardtii, catalysed by the inducible highly active and bidirectional [FeFe]-hydrogenase enzymes (HydA). However, evolutionary and physiological constraints severely restrict the hydrogen yield of algae for industrial scale-up, mainly due to its competition among other metabolic pathways on photosynthetic electrons. Among them, a major challenge to be resolved is the inferior competitiveness of hydrogen production (catalysed by HydA) with NADPH production (catalysed by ferredoxin-NADP+-reductase (FNR)), which is essential for cell growth and takes up ~95% of photosynthetic electrons. In this work, the in vivo hydrogen production efficiency of mutants with ferredoxin-hydrogenase (Fd*-HydA1*) fusion protein construct, where the electron donor ferredoxin (Fd*) is fused to HydA1* and expressed in the model organism C. reinhardtii was investigated. Once Fd*-HydA1* fusion gene is expressed in algal cells, the fusion enzyme is able to draw the redistributed photosynthetic electrons and use them for efficient hydrogen production. From preliminary data, mutants with Fd*-HydA1* transgene showed a ~2-fold increase in the photosynthetic hydrogen production rate compared with its parental strain, which only possesses the native HydA in vivo. Therefore, a solid method of having more efficient hydrogen production in microalgae can be achieved through the expression of the synthetic enzymes.

Keywords: Chlamydomonas reinhardtii, ferredoxin, fusion protein, hydrogen production, hydrogenase

Procedia PDF Downloads 262
256 The Role of Coaching in Fostering Entrepreneurial Intention among Graduate Students in Tunisia

Authors: Abdellatif Amouri, Sami Boudabbous

Abstract:

The current study provides insights on the importance of entrepreneurial coaching as a source of developing entrepreneurial intentions among entrepreneurs and a determinant factor of business creation process and growth. Coaching, which implies exchange of adequate information and a mutual understanding between entrepreneurs and their partners, requires a better mutual knowledge of the representations and the perceptions of ideas which are widely present in their dealings and transactions. Therefore, to analyze entrepreneurs’ perceptions of business creation, we addressed a survey questionnaire to a group of Tunisian entrepreneurs and experts in business creation to indicate their level of approval concerning the prominence of coaching. The factor analysis indicates that more than 60% of the respondents believe that each statement reflects an aspect of coaching, with no bias to its position in the entrepreneurial process. Therefore, the image drawn from our respondents’ perceptions is that an entrepreneur is rather "constructed" and "shaped" by multiple apprenticeships both before and during the entrepreneurial act, through an accompaniment process and within interactions with trainers, consultants or professionals in starting a business. Similarly, the results indicate that the poor support structures and lack of accompaniment procedures stand as an obstacle impeding the development of entrepreneurial intention among business creators.

Keywords: Entrepreneurial Behavior, Entrepreneurial Coaching, Entrepreneurial Intention, Perceptions, Venture Creation

Procedia PDF Downloads 438
255 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 143
254 Man-Nature relationship in Bishop’s Poetry: An Eco-Critical Reading of the Selected Poems

Authors: Khaled Abkar Alkodimi

Abstract:

This paper attempts to explore Bishop’s eco-poetics and environmental consciousness from an ecocritical perspective. It focuses on her representations of animals, environments, and natural phenomena and the connection between a broad range of human activities and flora, fauna habitats. Indeed, Bishop shows a sense of human responsibility towards the earth in her peculiar treatment of place and livestock, which appears to be more than a static growth process. Her poetry is totally contrary to egoism and egotism, and this can be easily noticed in her subjective understanding of nature and creatures. The findings show Bishop as an eco-poet who committed herself and her poetry to highlight the significance of nature and world life at large. This is obvious through her representation of natural phenomena such as seasonal cycles, weather, and physical and ecological elements, including air, earth, and water, which essentially constitute and inform the poet’s environmental thoughts. Examining Bishop’s conception of a human relationship with ‘external nature through the examination of her poetic language, this study shows how the environmental imagination can suggest social responsibility to readers.

Keywords: elizabeth bishop, eco-criticism, eco-poetry, environmental consciousness, man-nature relationship

Procedia PDF Downloads 193
253 Optimizing Volume Fraction Variation Profile of Bidirectional Functionally Graded Circular Plate under Mechanical Loading to Minimize Its Stresses

Authors: Javad Jamali Khouei, Mohammadreza Khoshravan

Abstract:

Considering that application of functionally graded material is increasing in most industries, it seems necessary to present a methodology for designing optimal profile of structures such as plate under mechanical loading which is highly consumed in industries. Therefore, volume fraction variation profile of functionally graded circular plate which has been considered two-directional is optimized so that stress of structure is minimized. For this purpose, equilibrium equations of two-directional functionally graded circular plate are solved by applying semi analytical-numerical method under mechanical loading and support conditions. By solving equilibrium equations, deflections and stresses are obtained in terms of control variables of volume fraction variation profile. As a result, the problem formula can be defined as an optimization problem by aiming at minimization of critical von-mises stress under constraints of deflections, stress and a physical constraint relating to structure of material. Then, the related problem can be solved with help of one of the metaheuristic algorithms such as genetic algorithm. Results of optimization for the applied model under constraints and loadings and boundary conditions show that functionally graded plate should be graded only in radial direction and there is no need for volume fraction variation of the constituent particles in thickness direction. For validating results, optimal values of the obtained design variables are graphically evaluated.

Keywords: two-directional functionally graded material, single objective optimization, semi analytical-numerical solution, genetic algorithm, graphical solution with contour

Procedia PDF Downloads 279
252 Festive Fictions: An Iconographic Study of Ritual and Intersectionality in Cartagena, Colombia

Authors: Melissa Valle

Abstract:

This paper draws upon the studies of visual culture and intersectionality to illuminate how visuality can naturalize social hierarchies. Through the use of iconography, it decodes the denotative, connotative and ideological meanings of symbols of ritualistic events in the context of the Colombian Atlantic Coast. An examination of such exceptional moments, i.e. of the spectacle, brings into focus how such performances are imbued with meaning by both the on-looker and the performer. Through an analysis of preexisting visuals (e.g., advertisements, social media) and visual materials produced by the researcher for the purpose of photo-elicitation interviews, this paper provides a contextual analysis of the ways in which three representations, popular during Colombian Atlantic coastal festivals (Negrita Puloy, Las Palenqueras, and El Son de Negro), have been historically, culturally and politically constituted. This work reveals that the visualizations are born out of and reproduce typifications systems heavily based upon race, gender, class, and ethnicity. Understanding the ways these categories are mutually constituted through the cultural practice of visual representation is essential to a more comprehensive understanding of the role such representation plays in the reproduction of social difference.

Keywords: Colombia, festivals, intersectionality, visual culture

Procedia PDF Downloads 355
251 A Mini-Review on Effect of Magnetic Field and Material on Combustion Engines

Authors: A. N. Santhosh, Vinay Hegde, S. Vinod Kumar, R. Giria, D. L. Rakesh, M. S. Raghu

Abstract:

At present, research on automobile engineering is in high demand, particularly in the field of fuel combustion. A large number of fossil fuels are being used in combustion, which may get exhausted in the near future and are not economical. To this end, research on the use of magnetic material in combustion engines is in progress to enhance the efficiency of fuel. The present review describes the chemical, physical and mathematical theory behind the magnetic materials along with the working principle of the internal combustion engine. The effect of different magnets like ferrite magnet, Neodymium magnet, and electromagnets was discussed. The effect of magnetic field on the consumption of the fuel, brake thermal efficiency, carbon monoxide, Oxides of Nitrogen, carbon dioxide, and hydrocarbon emission, along with smoke density, have been discussed in detail. Detailed mathematical modelling that shows the effect of magnetic field on fuel combustion is elaborated. Required pictorial representations are included wherever necessary. This review article could serve as a base for studying the effect of magnetic materials on IC engines.

Keywords: magnetic field, energizer, fuel conditioner, fuel consumption, emission reduction

Procedia PDF Downloads 101
250 Argument Representation in Non-Spatial Motion Bahasa Melayu Based Conceptual Structure Theory

Authors: Nurul Jamilah Binti Rosly

Abstract:

The typology of motion must be understood as a change from one location to another. But from a conceptual point of view, motion can also occur in non-spatial contexts associated with human and social factors. Therefore, from the conceptual point of view, the concept of non-spatial motion involves the movement of time, ownership, identity, state, and existence. Accordingly, this study will focus on the lexical as shared, accept, be, store, and exist as the study material. The data in this study were extracted from the Database of Languages and Literature Corpus Database, Malaysia, which was analyzed using semantics and syntax concepts using Conceptual Structure Theory - Ray Jackendoff (2002). Semantic representations are represented in the form of conceptual structures in argument functions that include functions [events], [situations], [objects], [paths] and [places]. The findings show that the mapping of these arguments comprises three main stages, namely mapping the argument structure, mapping the tree, and mapping the role of thematic items. Accordingly, this study will show the representation of non- spatial Malay language areas.

Keywords: arguments, concepts, constituencies, events, situations, thematics

Procedia PDF Downloads 129
249 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 66
248 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 305
247 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks

Authors: Elias Nemer, Greg Vines

Abstract:

Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.

Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()

Procedia PDF Downloads 233
246 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 245
245 Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils

Authors: Helena M. Wilhelm, Paulo O. Fernandes, Laís P. Dill, Kethlyn G. Moscon

Abstract:

The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability.

Keywords: compatibility, Rancimat, natural ester, vegetable oil

Procedia PDF Downloads 210
244 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 137
243 Designing Cultural-Creative Products with the Six Categories of Hanzi (Chinese Character Classification)

Authors: Pei-Jun Xue, Ming-Yu Hsiao

Abstract:

Chinese characters, or hanzi, represent a process of simplifying three-dimensional signs into plane signifiers. From pictograms at the beginning to logograms today, a Han linguist thus classified them into six categories known as the six categories of Chinese characters. Design is a process of signification, and cultural-creative design is a process translating ideas into design with creativity upon culture. Aiming to investigate the process of cultural-creative design transforming cultural text into cultural signs, this study analyzed existing cultural-creative products with the six categories of Chinese characters by treating such products as representations which accurately communicate the designer’s ideas to users through the categorization, simplification, and interpretation of sign features. This is a two-phase pilot study on designing cultural-creative products with the six categories of Chinese characters. Phase I reviews the related literature on the theory of the six categories of Chinese characters investigated and concludes with the process and principles of character evolution. Phase II analyzes the design of existing cultural-creative products with the six categories of Chinese characters and explores the conceptualization of product design.

Keywords: six categories of Chinese characters, cultural-creative product design, cultural signs, cultural product

Procedia PDF Downloads 341
242 Beauty Representation and Body Politic of Women Writers in Magdalene

Authors: Putri Alya Ramadhani

Abstract:

This research analysed how women writers represent their beauty in a platform called Magdalene. With the vision “Supporting diversity, empowering minds,” Magdalene is a new media that seeks to represent women's voices rarely heard in mainstream media. This research elaborates further on how women writers, through their writing, use their body politic to subvert patriarchal values. This research used a qualitative method with an explorative design by using text analysis based on the representation theory of Stuart Hall and in-dept-interview with Women Writers in Magdalene. The result illustrated that women writers represent their beauty in Magdalene to subvert body and beauty-representation in mainstream discourse. Furthermore, the authors have identified an identity negotiation as tension from inevitable oppression and power towards and from women’s bodies. In addition, Women Writers showed the power of their bodies through the redefinition of beauty practices and self. Hence, they subvert body dichotomy to redefine body values in society. In conclusion, this study shows various representations of beauty and body that are underrepresented in the mainstream media through the innovative new medium, Magdalena.

Keywords: women writers, beauty-representation, body politic, new media, identity negotiation

Procedia PDF Downloads 178
241 The Conception of the Students about the Presence of Mental Illness at School

Authors: Aline Giardin, Maria Rosa Chitolina, Maria Catarina Zanini

Abstract:

In this paper, we analyze the conceptions of high school students about mental health issues, and discuss the creation of mental basic health programs in schools. We base our findings in a quantitative survey carried out by us with 156 high school students of CTISM (Colégio Técnico Industrial de Santa Maria) school, located in Santa Maria city, Brazil. We have found that: (a) 28 students relate the subject ‘mental health’ with psychiatric hospitals and lunatic asylums; (b) 28 students have relatives affected by mental diseases; (c) 76 students believe that mental patients, if treated, can live a healthy life; (d) depression, schizophrenia and bipolar disorder are the most cited diseases; (e) 84 students have contact with mental patients, but know nothing about the disease; (f) 123 students have never been instructed about mental diseases while in the school; and (g) 135 students think that a mental health program would be important in the school. We argue that these numbers reflect a vision of mental health that can be related to the reductionist education still present in schools and to the lack of integration between health professionals, sciences teachers, and students. Furthermore, this vision can also be related to a stigmatization process, which interferes with the interactions and with the representations regarding mental disorders and mental patients in society.

Keywords: mental health, schools, mental illness, conception

Procedia PDF Downloads 469
240 The Right to State Lands: A Case Study of a Squatter Community in Egypt

Authors: Salwa Salman

Abstract:

On February 2016, Egypt’s President Abdel Fattah Al-Sisi ordered the former Prime Minister, Ibrahim Mehleb, to establish a committee responsible for retrieving looted state lands or providing squatters with land titles according to their individual cases. The specificity of desert lands emerges from its unique position in both Islamic law and Egypt’s Civil Code. In Egypt, desert lands can be transferred to private ownership through peaceful occupation and cultivation. This study explores the (re-) conceptualization of land rights, state territoriality, and sovereignty as a part of an emerging narrative on informal land tenure. Through the lens of an informal settlement, the study employs methodological insights from studies in the anthropology of development and their interpretation of Foucauldian discourse analysis to examine official representations on squatting over state lands and put them in conversation with individual narratives on land ownership and dispossession. It also employs Bruno Latour’s actor-network theory to explore the development of social networks through primary land contracts and informal local resource management.

Keywords: State lands, squatter community, Islamic law, Egypt’s Civil Code

Procedia PDF Downloads 171
239 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem

Abstract:

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

Keywords: connectivism, learning analytics, lifelong learning, social semantic web

Procedia PDF Downloads 215
238 Optimizing the Efficiency of Measuring Instruments in Ouagadougou-Burkina Faso

Authors: Moses Emetere, Marvel Akinyemi, S. E. Sanni

Abstract:

At the moment, AERONET or AMMA database shows a large volume of data loss. With only about 47% data set available to the scientist, it is evident that accurate nowcast or forecast cannot be guaranteed. The calibration constants of most radiosonde or weather stations are not compatible with the atmospheric conditions of the West African climate. A dispersion model was developed to incorporate salient mathematical representations like a Unified number. The Unified number was derived to describe the turbulence of the aerosols transport in the frictional layer of the lower atmosphere. Fourteen years data set from Multi-angle Imaging SpectroRadiometer (MISR) was tested using the dispersion model. A yearly estimation of the atmospheric constants over Ouagadougou using the model was obtained with about 87.5% accuracy. It further revealed that the average atmospheric constant for Ouagadougou-Niger is a_1 = 0.626, a_2 = 0.7999 and the tuning constants is n_1 = 0.09835 and n_2 = 0.266. Also, the yearly atmospheric constants affirmed the lower atmosphere of Ouagadougou is very dynamic. Hence, it is recommended that radiosonde and weather station manufacturers should constantly review the atmospheric constant over a geographical location to enable about eighty percent data retrieval.

Keywords: aerosols retention, aerosols loading, statistics, analytical technique

Procedia PDF Downloads 315
237 Exploring the Growth Path under Coupling Relationship between Space and Economy of Mountain Village and Townlets: Case Study of Southwest China

Authors: Runlin Liu, Shilong Li

Abstract:

China is a mountainous country, with two-thirds of its territory covered by plateaus, hills, and mountains, and nearly half of the cities and towns are distributed in mountainous areas. Compared with the environmental constraints in the development path of cities and towns in the plains, there are heterogeneities in aspects such as spatial characteristics, growth mode, and ecological protection and so on for mountain village and townlets, and the development path of mountain village and townlets has a bidirectional relationship between mountain space and economic growth. Based on classical growth theory, this article explores the two-dimensional coupling relation between space and economy in mountain village and townlets under background of rural rejuvenation. GIS technology is adopted in the study to analyze spatial trends and patterns, economical spatial differentiation characteristics of village and townlets. This powerful tool can also help differentiate and analyze limiting factors and assessment systems in the economic growth of village and townlets under spatial dimension of mountainous space. To make the research more specific, this article selects mountain village and townlets in Southwest China as the object of study; this provides good cases for analyzing parallel coupling mechanism of the duality structure system between economic growth and spatial expansion and discussing the path selection of spatial economic growth of mountain village and towns with multiple constraints. The research results can provide quantitative references for the spatial and economic development paths of mountain villages and towns, which is helpful in realizing efficient and high-quality development mode with equal emphasis on spatial and economic benefits for these type of towns.

Keywords: coupling mechanism, geographic information technology, mountainous town, synergetic development, spatial economy

Procedia PDF Downloads 150
236 Analysis of the Accuracy of Earth Movement with Drone Surveys

Authors: Raúl Pereda García, Julio Manuel de Luis Ruiz, Elena Castillo López, Rubén Pérez Álvarez, Felipe Piña García

Abstract:

New technologies for the capture of point clouds have experienced a great advance in recent years. In this way, its use has been extended in geomatics, providing measurement solutions that have been popularized without there being, many times, a detailed study of its accuracy. This research focuses on the study of the viability of topographic works with drones incorporating different sensors sensitive to the visible spectrum. The fundamentals have been applied to a road, located in Cantabria (Spain), where a platform extension and the reform of a riprap were being constructed. A total of six flights were made during two months, all of them with GPS as part of the photogrammetric process, and the results were contrasted with those measured with total station. The obtained results show that the choice of the camera and the planning of the flight have an important impact on the accuracy. In fact, the representations with a level of detail corresponding to 1/1000 scale are admissible, depending on the existing vegetation, and obtaining better results in the area of the riprap. This set of techniques is, therefore, suitable for the control of earthworks in road works but with certain limitations which are exposed in this paper.

Keywords: drone, earth movement control, global position system, surveying technology.

Procedia PDF Downloads 184
235 Analogical Reasoning on Preschoolers’ Linguistic Performance

Authors: Yenie Norambuena

Abstract:

Analogical reasoning is a cognitive process that consists of structured comparisons of mental representations and scheme construction. Because of its heuristic function, it is ubiquitous in cognition and could play an important role in language development. The use of analogies is expressed early in children and this behavior is also reflected in language, suggesting a possible way to understand the complex links between thought and language. The current research examines factors of verbal and non-verbal reasoning that should be taken into consideration in the study of language development for their relations and predictive value. The study was conducted with 48 Chilean preschoolers (Spanish speakers) from 4 to 6-year-old. We assessed children’s verbal analogical reasoning, non-verbal analogical reasoning and linguistics skills (Listening Comprehension, Phonemic awareness, Alphabetic principle, Syllabification, Lexical repetition and Lexical decision). The results evidenced significant correlations between analogical reasoning factors and linguistic skills and they can predict linguistic performance mainly on oral comprehension, lexical decision and phonological skills. These findings suggest a fundamental interrelationship between analogical reasoning and linguistic performance on children’s and points to the need to consider this cognitive process in comprehensive theories of children's language development.

Keywords: verbal analogical reasoning, non-verbal analogical reasoning, linguistic skills, language development

Procedia PDF Downloads 266
234 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM

Authors: M. J. Davidson, N. Selvaraj, L. Venugopal

Abstract:

The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.

Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube

Procedia PDF Downloads 509
233 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
232 The Prostitute’s Body in Diasporic Space: Sexualized China and Chineseness in Yu Dafu’s Sinking and Yan Geling’s The Lost Daughter of Happiness

Authors: Haizhi Wu

Abstract:

Sexualization brings together the interdependent experiences of prostitution and diaspora, establishing a masculine structure where a female’s body mediates the hegemony and sexuality of men from different races. Between eroticism and homesickness, writers of the Chinese diaspora develop sensual approaches to reflect on the diasporic experience and sexual frustration. Noticeably, Yu Dafu in Sinking and Yan Geling in The Lost Daughter of Happiness both take an interest in sexual encounters between an immature teen client and an erotically powerful prostitute in Japan or America, both countries considered colonizers in Chinese history. Both are utilizing the metaphor of body-space interplay to hint at the out-of-text transnational interactions, two writers, however, present distinct understandings of their bond with history and memory of the semi-colonial, semi-feudal China. Examining prostitutes’ bodies in multi-layer diasporic spaces, the central analysis of this essay works on the sexual, colonial, and historical representations of this bodily symbol and the prostitution’s engagement in negotiating with diaspora and “Chineseness”.

Keywords: Chineseness, diasporic spaces, prostitutes’ bodies, sexualization

Procedia PDF Downloads 108
231 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations

Authors: Fatemeh Sadat Sharifi

Abstract:

In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.

Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW

Procedia PDF Downloads 207
230 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation

Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou

Abstract:

An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures

Procedia PDF Downloads 493