Search results for: machine learning in healthcare
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10041

Search results for: machine learning in healthcare

5301 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills

Authors: Kyle De Freitas, Margaret Bernard

Abstract:

Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.

Keywords: educational data mining, learning management system, learning analytics, EDM framework

Procedia PDF Downloads 330
5300 Using Hyperspectral Camera and Deep Learning to Identify the Ripeness of Sugar Apples

Authors: Kuo-Dung Chiou, Yen-Xue Chen, Chia-Ying Chang

Abstract:

This study uses AI technology to establish an expert system and establish a fruit appearance database for pineapples and custard apples. It collects images based on appearance defects and fruit maturity. It uses deep learning to detect the location of the fruit and can detect the appearance of the fruit in real-time. Flaws and maturity. In addition, a hyperspectral camera was used to scan pineapples and custard apples, and the light reflection at different frequency bands was used to find the key frequency band for pectin softening in post-ripe fruits. Conducted a large number of multispectral image collection and data analysis to establish a database of Pineapple Custard Apple and Big Eyed Custard Apple, which includes a high-definition color image database, a hyperspectral database in the 377~1020 nm frequency band, and five frequency band images (450, 500, 670, 720, 800nm) multispectral database, which collects 4896 images and manually labeled ground truth; 26 hyperspectral pineapple custard apple fruits (520 images each); multispectral custard apple 168 fruits (5 images each). Using the color image database to train deep learning Yolo v4's pre-training network architecture and adding the training weights established by the fruit database, real-time detection performance is achieved, and the recognition rate reaches over 97.96%. We also used multispectral to take a large number of continuous shots and calculated the difference and average ratio of the fruit in the 670 and 720nm frequency bands. They all have the same trend. The value increases until maturity, and the value will decrease after maturity. Subsequently, the sub-bands will be added to analyze further the numerical analysis of sugar content and moisture, and the absolute value of maturity and the data curve of maturity will be found.

Keywords: hyperspectral image, fruit firmness, deep learning, automatic detection, automatic measurement, intelligent labor saving

Procedia PDF Downloads 9
5299 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference

Procedia PDF Downloads 111
5298 Searching the Relationship among Components that Contribute to Interactive Plight and Educational Execution

Authors: Shri Krishna Mishra

Abstract:

In an educational context, technology can prompt interactive plight only when it is used in conjunction with interactive plight methods. This study, therefore, examines the relationships among components that contribute to higher levels of interactive plight and execution, such as interactive Plight methods, technology, intrinsic motivation and deep learning. 526 students participated in this study. With structural equation modelling, the authors test the conceptual model and identify satisfactory model fit. The results indicate that interactive Plight methods, technology and intrinsic motivation have significant relationship with interactive Plight; deep learning mediates the relationships of the other variables with Execution.

Keywords: searching the relationship among components, contribute to interactive plight, educational execution, intrinsic motivation

Procedia PDF Downloads 456
5297 Audio-Visual Aids and the Secondary School Teaching

Authors: Shrikrishna Mishra, Badri Yadav

Abstract:

In this complex society of today where experiences are innumerable and varied, it is not at all possible to present every situation in its original colors hence the opportunities for learning by actual experiences always are not at all possible. It is only through the use of proper audio visual aids that the life situation can be trough in the class room by an enlightened teacher in their simplest form and representing the original to the highest point of similarity which is totally absent in the verbal or lecture method. In the presence of audio aids, the attention is attracted interest roused and suitable atmosphere for proper understanding is automatically created, but in the existing traditional method greater efforts are to be made in order to achieve the aforesaid essential requisite. Inspire of the best and sincere efforts on the side of the teacher the net effect as regards understanding or learning in general is quite negligible.

Keywords: Audio-Visual Aids, the secondary school teaching, complex society, audio

Procedia PDF Downloads 485
5296 Measuring the Unmeasurable: A Project of High Risk Families Prediction and Management

Authors: Peifang Hsieh

Abstract:

The prevention of child abuse has aroused serious concerns in Taiwan because of the disparity between the increasing amount of reported child abuse cases that doubled over the past decade and the scarcity of social workers. New Taipei city, with the most population in Taiwan and over 70% of its 4 million citizens are migrant families in which the needs of children can be easily neglected due to insufficient support from relatives and communities, sees urgency for a social support system, by preemptively identifying and outreaching high-risk families of child abuse, so as to offer timely assistance and preventive measure to safeguard the welfare of the children. Big data analysis is the inspiration. As it was clear that high-risk families of child abuse have certain characteristics in common, New Taipei city decides to consolidate detailed background information data from departments of social affairs, education, labor, and health (for example considering status of parents’ employment, health, and if they are imprisoned, fugitives or under substance abuse), to cross-reference for accurate and prompt identification of the high-risk families in need. 'The Service Center for High-Risk Families' (SCHF) was established to integrate data cross-departmentally. By utilizing the machine learning 'random forest method' to build a risk prediction model which can early detect families that may very likely to have child abuse occurrence, the SCHF marks high-risk families red, yellow, or green to indicate the urgency for intervention, so as to those families concerned can be provided timely services. The accuracy and recall rates of the above model were 80% and 65%. This prediction model can not only improve the child abuse prevention process by helping social workers differentiate the risk level of newly reported cases, which may further reduce their major workload significantly but also can be referenced for future policy-making.

Keywords: child abuse, high-risk families, big data analysis, risk prediction model

Procedia PDF Downloads 136
5295 The Impact of Science Teachers' Epistemological Beliefs and Metacognition on Their Use of Inquiry Based Teaching Approaches

Authors: Irfan Ahmed Rind

Abstract:

Science education has recently become the top priority of government of Pakistan. Number of schemes has been initiated for the improvement of science teaching and learning at primary and secondary levels of education, most importantly training in-service science teachers on inquiry based teaching and learning to empower students and encourage creativity, critical thinking, and innovation among them. Therefore, this approach has been promoted in the recent continuous professional development trainings for the in-service teachers. However, the follow ups on trained science teachers and educators suggest that these teachers fail to implement the inquiry based teaching and learning in their classes. In addition, these trainings also fail to bring any significant change in students’ science content knowledge and understanding as per the annual national level surveys conducted by government and independent agencies. Research suggests that science has been taught using scientific positivism, which supports objectivity based on experiments and mathematics. In contrary, the inquiry based teaching and learning are based on constructivism, which conflicts with the positivist epistemology of science teachers. It was, therefore, assumed that science teachers struggle to implement the inquiry based teaching approach as it conflicts with their basic epistemological beliefs. With this assumption, this research aimed to (i) understand how science teachers conceptualize the nature of science, and how this influence their understanding of learning, learners, their own roles as teachers and their teaching strategies, (ii) identify the conflict of science teachers’ epistemological beliefs with the inquiry based teaching approach, and (iii) find the ways in which science teachers epistemological beliefs may be developed from positivism to constructivism, so that they may effectively use the inquiry based teaching approach in teaching science. Using qualitative case study approach, thirty six secondary and higher secondary science teachers (21 male and 15 female) were selected. Data was collected using interviewed, participatory observations (sixty lessons were observed), and twenty interviews from students for verifications of teachers’ responses. The findings suggest that most of the science teacher were positivist in defining the nature of science. Most of them limit themselves to one fix answer that is provided in the books and that there is only one 'right' way to teach science. There is no room for students’ or teachers’ own opinion or bias when it comes to scientific concepts. Inquiry based teaching seems 'no right' to them. They find it difficult to allow students to think out of the box. However, some interesting exercises were found to be very effective in bringing the change in teachers’ epistemological beliefs. These will be discussed in detail in the paper. The findings have major implications for the teachers, educators, and policymakers.

Keywords: science teachers, epistemology, metacognition, inquiry based teaching

Procedia PDF Downloads 151
5294 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP

Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost

Abstract:

The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.

Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)

Procedia PDF Downloads 432
5293 Dao Embodied – Embodying Dao: The Body as Locus of Personal Cultivation in Ancient Daoist and Confucian Philosophy

Authors: Geir Sigurðsson

Abstract:

This paper compares ancient Daoist and Confucian approaches to the human body as a locus for learning, edification or personal cultivation. While pointing out some major differences between ancient Chinese and mainstream Western visions of the body, it seeks at the same time inspiration in some seminal Western phenomenological and post-structuralist writings, in particular from Maurice Merleau-Ponty and Pierre Bourdieu. By clarifying the somewhat dissimilar scopes of foci found in Daoist and Confucian philosophies with regard to the role of and attitude to the body, the conclusion is nevertheless that their approaches are comparable, and that both traditions take the physical body to play a vital role in the cultivation of excellence. Lastly, it will be argued that cosmological underpinnings prevent the Confucian li from being rigid and invariable and that it rather emerges as a flexible learning device to train through active embodiment a refined sensibility for one’s cultural environment.

Keywords: body, Confucianism, Daoism, li (ritual), phenomenology

Procedia PDF Downloads 133
5292 Learners' Perceptions about Teacher Written Feedback in the School of Foreign Languages, Anadolu University

Authors: Gaye Senbag

Abstract:

In English language teaching, feedback is considered as one of the main components of writing instruction. Teachers put a lot of time and effort in order to provide learners with written feedback for effective language learning. At Anadolu University School of Foreign Languages (AUSFL) students are given written feedback for their each piece of writing through online platforms such as Edmodo and Turnitin, and traditional methods. However, little is known regarding how learners value and respond to teacher-provided feedback. As the perceptions of the students remarkably affect their learning, this study examines how they perceive the effectiveness of feedback provided by the teacher. Aiming to analyse it, 30 intermediate level (B1+ CEFR level) students were given a questionnaire, which includes Likert scale questions. The results will be discussed in detail.

Keywords: feedback, perceptions, writing, English Language Teaching (ELT)

Procedia PDF Downloads 249
5291 Deploying a Platform as a Service Cloud Solution to Support Student Learning

Authors: Jiangping Wang

Abstract:

This presentation describes the design and implementation of PaaS (platform as a service) cloud-based labs that are used in database-related courses to teach students practical skills. Traditionally, all labs are implemented in a desktop-based environment where students have to install heavy client software to access database servers. In order to release students from that burden, we have successfully deployed the cloud-based solution to support database-related courses, from which students and teachers can practice and learn database topics in various database courses via cloud access. With its development environment, execution runtime, web server, database server, and collaboration capability, it offers a shared pool of configurable computing resources and comprehensive environment that supports students’ needs without the complexity of maintaining the infrastructure.

Keywords: PaaS, database environment, e-learning, web server

Procedia PDF Downloads 273
5290 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings

Authors: Annette Cosgrove

Abstract:

The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.

Keywords: TEL, DTL, digital teaching, digital assessment

Procedia PDF Downloads 78
5289 Rural-To-Urban Migrants' Experiences with Primary Care in Four Types of Medical Institutions in Guangzhou, China

Authors: Jiazhi Zeng, Leiyu Shi, Xia Zou, Wen Chen, Li Ling

Abstract:

Background: China is facing the unprecedented challenge of rapidly increasing rural-to-urban migration. Due to the household registration system, migrants are in a vulnerable state when they attempt to access to primary care services. A strong primary care system can reduce health inequities and mitigate socioeconomic disparities in healthcare utilization. Literature indicated that migrants were more reliant on the primary care system than local residents. Although the Chinese government has attached great importance to creating an efficient health system, primary care services are still underutilized. The referral system between primary care institutions and hospitals has not yet been completely established in China. The general populations often go directly to hospitals instead of primary care institutions for their primary care. Primary care institutions generally consist of community health centers (CHCs) and community health stations (CHSs) in urban areas, and township health centers (THCs) and rural health stations (THSs) in rural areas. In addition, primary care services are also provided by the outpatient department of municipal hospitals and tertiary hospitals. A better understanding of migrants’ experiences with primary care in the above-mentioned medical institutions is critical for improving the performance of primary care institutions and providing indications of the attributes that require further attention. The purpose of this pioneering study is to explore rural-to-urban migrants’ experiences in primary care, compare their primary care experiences in four types of medical institutions in Guangzhou, China, and suggest implications for targeted interventions to improve primary care for the migrants. Methods: This was a cross-sectional study conducted with 736 rural-to-urban migrants in Guangzhou, China, in 2014. A multistage sampling method was employed. A validated Chinese version of Primary Care Assessment Tool - Adult Short Version (PCAT-AS) was used to collect information on migrants’ primary care experiences. The PCAT-AS consists of 10 domains. Analysis of covariance was conducted for comparison on PCAT domain scores and total scores among migrants accessing four types of medical institutions. Multiple linear regression models were used to explore factors associated with PCAT total scores. Results: After controlling for socio-demographic characteristics, migrant characteristics, health status and health insurance status, migrants accessing primary care in tertiary hospitals had the highest PCAT total scores when compared with those accessing primary care THCs/ RHSs (25.49 vs. 24.18, P=0.007) and CHCs/ CHSs(25.49 vs. 24.24, P=0.006). There was no statistical significant difference for PCAT total scores between migrants accessing primary care in CHCs/CHSs and those in municipal hospitals (24.24 vs. 25.02, P=0.436). Factors positively associated with higher PCAT total scores also included insurance covering parts of healthcare payment (P < 0.001). Conclusions: This study highlights the need for improvement in primary care provided by primary care institutions for rural-to-urban migrants. Migrants receiving primary care from THCs, RHSs, CHSs and CHSs reported worse primary care experiences than those receiving primary care from tertiary hospitals. Relevant policies related to medical insurance should be implemented for providing affordable healthcare services for migrants accessing primary care. Further research exploring the specific reasons for poorer PCAT scores of primary care institutions users will be needed.

Keywords: China, PCAT, primary care, rural-to-urban migrants

Procedia PDF Downloads 357
5288 Fostering Inclusive Learning: The Role of Intercultural Communication in Multilingual Primary Education

Authors: Ozge Yalciner

Abstract:

Intercultural communication is crucial in the education of multilingual learners in primary grades, significantly influencing their academic and social development. This study explores how intercultural communication intersects with multilingual education, highlighting the importance of culturally responsive teaching practices. It addresses the challenges and opportunities presented by diverse linguistic backgrounds and proposes strategies for creating inclusive and supportive learning environments. The research emphasizes the need for teacher training programs that equip educators with the skills to recognize and address cultural differences, thereby enhancing student engagement and participation. This study was completed in an elementary school in a city in the Midwest, USA. The data was collected through observations and interviews with students and teachers. It discusses the integration of multicultural perspectives in curricula and the promotion of language diversity as an asset. Peer interactions and collaborative learning are highlighted as crucial for developing intercultural competence among young learners. The findings suggest that meaningful intercultural communication fosters a sense of belonging and mutual respect, leading to improved educational outcomes for multilingual students. Prioritizing intercultural communication in primary education is essential for supporting the linguistic and cultural identities of multilingual learners. By adopting inclusive pedagogical approaches and fostering an environment of cultural appreciation, educators can better support their students' academic success and personal growth.

Keywords: diversity, intercultural communication, multilingual learners, primary grades

Procedia PDF Downloads 43
5287 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines

Authors: Alexander Guzman Urbina, Atsushi Aoyama

Abstract:

The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.

Keywords: deep learning, risk assessment, neuro fuzzy, pipelines

Procedia PDF Downloads 293
5286 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 149
5285 Adaptive Programming for Indigenous Early Learning: The Early Years Model

Authors: Rachel Buchanan, Rebecca LaRiviere

Abstract:

Context: The ongoing effects of colonialism continue to be experienced through paternalistic policies and funding processes that cause disjuncture between and across Indigenous early childhood programming on-reserve and in urban and Northern settings in Canada. While various educational organizations and social service providers have risen to address these challenges in the short, medium and long term, there continues to be a lack in nation-wide cohesive, culturally grounded, and meaningful early learning programming for Indigenous children in Canada. Indigenous-centered early learning programs tend to face one of two scaling dilemmas: their program goals are too prescriptive to enable the program to be meaningfully replicated in different cultural/ community settings, or their program goals are too broad to be meaningfully adapted to the unique cultural and contextual needs and desires of Indigenous communities (the “franchise approach”). There are over 600 First Nations communities in Canada representing more than 50 Nations and languages. Consequently, Indigenous early learning programming cannot be applied with a universal or “one size fits all” approach. Sustainable and comprehensive programming must be responsive to each community context, building upon existing strengths and assets to avoid program duplication and irrelevance. Thesis: Community-driven and culturally adapted early childhood programming is critical but cannot be achieved on a large scale within traditional program models that are constrained by prescriptive overarching program goals. Principles, rather than goals, are an effective way to navigate and evaluate complex and dynamic systems. Principles guide an intervention to be adaptable, flexible and scalable. The Martin Family Initiative (MFI) ’s Early Years program engages a principles-based approach to programming. As will be discussed in this paper, this approach enables the program to catalyze existing community-based strengths and organizational assets toward bridging gaps across and disjuncture between Indigenous early learning programs, as well as to scale programming in sustainable, context-responsive and dynamic ways. This paper argues that using a principles-driven and adaptive scaling approach, the Early Years model establishes important learnings for culturally adapted Indigenous early learning programming in Canada. Methodology: The Early Years has leveraged this approach to develop an array of programming with partner organizations and communities across the country. The Early Years began as a singular pilot project in one First Nation. In just three years, it has expanded to five different regions and community organizations. In each context, the program supports the partner organization through different means and to different ends, the extent to which is determined in partnership with each community-based organization: in some cases, this means supporting the organization to build home visiting programming from the ground-up; in others, it means offering organization-specific culturally adapted early learning resources to support the programming that already exists in communities. Principles underpin but do not define the practices of the program in each of these relationships. This paper will explore numerous examples of principles-based adaptability with the context of the Early Years, concluding that the program model offers theadaptability and dynamism necessary to respond to unique and ever-evolving community contexts and needs of Indigenous children today.

Keywords: culturally adapted programming, indigenous early learning, principles-based approach, program scaling

Procedia PDF Downloads 193
5284 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 74
5283 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 106
5282 Applying Image Schemas and Cognitive Metaphors to Teaching/Learning Italian Preposition a in Foreign/Second Language Context

Authors: Andrea Fiorista

Abstract:

The learning of prepositions is a quite problematic aspect in foreign language instruction, and Italian is certainly not an exception. In their prototypical function, prepositions express schematic relations of two entities in a highly abstract, typically image-schematic way. In other terms, prepositions assume concepts such as directionality, collocation of objects in space and time and, in Cognitive Linguistics’ terms, the position of a trajector with respect to a landmark. Learners of different native languages may conceptualize them differently, implying that they are supposed to operate a recategorization (or create new categories) fitting with the target language. However, most current Italian Foreign/Second Language handbooks and didactic grammars do not facilitate learners in carrying out the task, as they tend to provide partial and idiosyncratic descriptions, with the consequent learner’s effort to memorize them, most of the time without success. In their prototypical meaning, prepositions are used to specify precise topographical positions in the physical environment which become less and less accurate as they radiate out from what might be termed a concrete prototype. According to that, the present study aims to elaborate a cognitive and conceptually well-grounded analysis of some extensive uses of the Italian preposition a, in order to propose effective pedagogical solutions in the Teaching/Learning process. Image schemas, cognitive metaphors and embodiment represent efficient cognitive tools in a task like this. Actually, while learning the merely spatial use of the preposition a (e.g. Sono a Roma = I am in Rome; vado a Roma = I am going to Rome,…) is quite straightforward, it is more complex when a appears in constructions such as verbs of motion +a + infinitive (e.g. Vado a studiare = I am going to study), inchoative periphrasis (e.g. Tra poco mi metto a leggere = In a moment I will read), causative construction (e.g. Lui mi ha mandato a lavorare = He sent me to work). The study reports data from a teaching intervention of Focus on Form, in which a basic cognitive schema is used to facilitate both teachers and students to respectively explain/understand the extensive uses of a. The educational material employed translates Cognitive Linguistics’ theoretical assumptions, such as image schemas and cognitive metaphors, into simple images or proto-scenes easily comprehensible for learners. Illustrative material, indeed, is supposed to make metalinguistic contents more accessible. Moreover, the concept of embodiment is pedagogically applied through activities including motion and learners’ bodily involvement. It is expected that replacing rote learning with a methodology that gives grammatical elements a proper meaning, makes learning process more effective both in the short and long term.

Keywords: cognitive approaches to language teaching, image schemas, embodiment, Italian as FL/SL

Procedia PDF Downloads 90
5281 Influence of Different Rhizome Sizes and Operational Speed on the Field Capacity and Efficiency of a Three–Row Turmeric Rhizome Planter

Authors: Muogbo Chukwudi Peter, Gbabo Agidi

Abstract:

Influence of different turmeric rhizome sizes and machine operational speed on the field capacity and efficiency of a developed prototype tractor-drawn turmeric planter was studied. This was done with a view to ascertaining how the field capacity and field efficiency were affected by the turmeric rhizome lengths and tractor operational speed. The turmeric rhizome planter consists of trapezoidal hopper, grooved cylindrical metering devise, rectangular frame, ground wheels made of mild steel, furrow opener, chain/sprocket drive system, three linkage point seed delivery tube and press wheel. The experiment was randomized in a factorial design of three levels of rhizome lengths (30, 45 and 60 mm) and operational speeds of 8, 10, and 12 kmh-1. About 3 kg cleaned turmeric rhizomes were introduced into each hopper of the planter and were planted 30 m2 of experimental plot. During the field evaluation of the planter, the effective field capacity, field efficiency, missing index, multiple index and percentage rhizome bruise were evaluated. 30.08% was recorded for maximum percentage bruise on the rhizome. The mean effective field capacity ranged between 0.63 – 0.96hah-1 at operational speeds of 8 and 12kmh-1 respectively and 45 mm rhizome length. The result also shows that the mean efficiency was obtained to be 65.8%. The percentage rhizome bruise decreases with increase in operational speed. The highest and lowest percentage turmeric rhizome miss index of 35% were recorded for turmeric rhizome length of 30 mm at a speed of 10 kmhr-1 and 8 kmhr-1, respectively. The potential implications of the experimental result is to determine the optimal machine process conditions for higher field capacity and gross reduction in mechanical injury (bruise) of planted turmeric rhizomes.

Keywords: rhizome sizes, operational speed, field capacity. field efficiency, turmeric rhizome, planter

Procedia PDF Downloads 65
5280 The Analysis of Gizmos Online Program as Mathematics Diagnostic Program: A Story from an Indonesian Private School

Authors: Shofiayuningtyas Luftiani

Abstract:

Some private schools in Indonesia started integrating the online program Gizmos in the teaching-learning process. Gizmos was developed to supplement the existing curriculum by integrating it into the instructional programs. The program has some features using an inquiry-based simulation, in which students conduct exploration by using a worksheet while teachers use the teacher guidelines to direct and assess students’ performance In this study, the discussion about Gizmos highlights its features as the assessment media of mathematics learning for secondary school students. The discussion is based on the case study and literature review from the Indonesian context. The purpose of applying Gizmos as an assessment media refers to the diagnostic assessment. As a part of the diagnostic assessment, the teachers review the student exploration sheet, analyze particularly in the students’ difficulties and consider findings in planning future learning process. This assessment becomes important since the teacher needs the data about students’ persistent weaknesses. Additionally, this program also helps to build student’ understanding by its interactive simulation. Currently, the assessment over-emphasizes the students’ answers in the worksheet based on the provided answer keys while students perform their skill in translating the question, doing the simulation and answering the question. Whereas, the assessment should involve the multiple perspectives and sources of students’ performance since teacher should adjust the instructional programs with the complexity of students’ learning needs and styles. Consequently, the approach to improving the assessment components is selected to challenge the current assessment. The purpose of this challenge is to involve not only the cognitive diagnosis but also the analysis of skills and error. Concerning the selected setting for this diagnostic assessment that develops the combination of cognitive diagnosis, skills analysis and error analysis, the teachers should create an assessment rubric. The rubric plays the important role as the guide to provide a set of criteria for the assessment. Without the precise rubric, the teacher potentially ineffectively documents and follows up the data about students at risk of failure. Furthermore, the teachers who employ the program of Gizmos as the diagnostic assessment might encounter some obstacles. Based on the condition of assessment in the selected setting, the obstacles involve the time constrain, the reluctance of higher teaching burden and the students’ behavior. Consequently, the teacher who chooses the Gizmos with those approaches has to plan, implement and evaluate the assessment. The main point of this assessment is not in the result of students’ worksheet. However, the diagnostic assessment has the two-stage process; the process to prompt and effectively follow-up both individual weaknesses and those of the learning process. Ultimately, the discussion of Gizmos as the media of the diagnostic assessment refers to the effort to improve the mathematical learning process.

Keywords: diagnostic assessment, error analysis, Gizmos online program, skills analysis

Procedia PDF Downloads 184
5279 Maker Education as Means for Early Entrepreneurial Education: Evaluation Results from a European Pilot Action

Authors: Elisabeth Unterfrauner, Christian Voigt

Abstract:

Since the foundation of the first Fab Lab by the Massachusetts Institute of Technology about 17 years ago, the Maker movement has spread globally with the foundation of maker spaces and Fab Labs worldwide. In these workshops, citizens have access to digital fabrication technologies such as 3D printers and laser cutters to develop and test their own ideas and prototypes, which makes it an attractive place for start-up companies. Know-How is shared not only in the physical space but also online in diverse communities. According to the Horizon report, the Maker movement, however, will also have an impact on educational settings in the following years. The European project ‘DOIT - Entrepreneurial skills for young social innovators in an open digital world’ has incorporated key elements of making to develop an early entrepreneurial education program for children between the age of six and 16. The Maker pedagogy builds on constructive learning approaches, learning by doing principles, learning in collaborative and interdisciplinary teams and learning through trial and error where mistakes are acknowledged as learning opportunities. The DOIT program consists of seven consecutive elements. It starts with a motivation phase where students get motivated by envisioning the scope of their possibilities. The second step is about Co-design: Students are asked to collect and select potential ideas for innovations. In the Co-creation phase students gather in teams and develop first prototypes of their ideas. In the iteration phase, the prototype is continuously improved and in the next step, in the reflection phase, feedback on the prototypes is exchanged between the teams. In the last two steps, scaling and reaching out, the robustness of the prototype is tested with a bigger group of users outside of the educational setting and finally students will share their projects with a wider public. The DOIT program involves 1,000 children in two pilot phases at 11 pilot sites in ten different European countries. The comprehensive evaluation design is based on a mixed method approach with a theoretical backbone on Lackeus’ model of entrepreneurship education, which distinguishes between entrepreneurial attitudes, entrepreneurial skills and entrepreneurial knowledge. A pre-post-test with quantitative measures as well as qualitative data from interviews with facilitators, students and workshop protocols will reveal the effectiveness of the program. The evaluation results will be presented at the conference.

Keywords: early entrepreneurial education, Fab Lab, maker education, Maker movement

Procedia PDF Downloads 136
5278 Training as Barrier for Implementing Inclusion for Students with Learning Difficulties in Mainstream Primary Schools in Saudi Arabia

Authors: Mohammed Alhammad

Abstract:

The movement towards the inclusion of students with special educational needs (SEN) in mainstream schools has become widely accepted practice in many countries. However in Saudi Arabia, this is not happening. Instead the practice for students with learning difficulties (LD) is to study in special classrooms in mainstream schools and they are not included with their peers, except at break times and morning assembly, and on school trips. There are a number of barriers that face implementing inclusion for students with LD in mainstream classrooms: one such barrier is the training of teachers. The training, either pre- or in-service, that teachers receive is seen as playing an important role in leading to the successful implementation of inclusion. The aim of this presentation is to explore how pre-service training and in-service training are acting as barriers for implementing inclusion of students with LD in mainstream primary schools in Saudi Arabia from the perspective of teachers. The qualitative research approach was used to explore this barrier. Twenty-four teachers (general education teachers, special education teachers) were interviewed using semi-structured interview and a number of documents were used as method of data collection. The result showed teachers felt that not much attention was paid to inclusion in pre-services training for general education teachers and special education teachers in Saudi Arabia. In addition, pre-service training for general education teachers does not normally including modules on special education. Regarding the in-service training, no courses at all about inclusion are provided for teachers. Furthermore, training courses in special education are few. As result, the knowledge and skills required to implemented inclusion successfully.

Keywords: inclusion, learning difficulties, Saudi Arabia, training

Procedia PDF Downloads 379
5277 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 122
5276 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 113
5275 Burnout and Salivary Cortisol Among Laboratory Personnel in Klang Valley, Malaysia During COVID-19 Pandemic

Authors: Maznieda Mahjom, Rohaida Ismail, Masita Arip, Mohd Shaiful Azlan, Nor’Ashikin Othman, Hafizah Abdullah, nor Zahrin Hasran, Joshita Jothimanickam, Syaqilah Shawaluddin, Nadia Mohamad, Raheel Nazakat, Tuan Mohd Amin, Mizanurfakhri Ghazali, Rosmanajihah Mat Lazim

Abstract:

COVID-19 outbreak is particularly detrimental to the mental health of everyone as well as leaving a long devastating crisis in the healthcare sector. Daily increment of COVID-19 cases and close contact, necessitating the testing of a large number of samples, thus increasing the workload and burden to laboratory personnel. This study aims to determine the prevalence of personal-, work- and client-related burnout as well as to measure the concentration of salivary cortisol among laboratory personnel in the main laboratories in Klang Valley, Malaysia. This cross-sectional study was conducted in late 2021 and recruited a total of 404 respondents from three laboratories in Klang Valley, Malaysia. The level of burnout was assessed using Copenhagen Burnout Inventory (CBI) comprising three sub-dimensions of personal-, work- and client-related burnout. The cut-off score of 50% and above indicated possible burnout. Meanwhile, salivary cortisol was measured using a competitive enzyme immunoassay kit (Salimetrics, State College, PA, USA). Normal levels of salivary cortisol concentration in adults are within 0.094 to 1.551 μg/dl (morning) and can be none detected to 0.359 μg/dl (evening). The prevalence of personal-, work- and client-related burnout among laboratory personnel were 36.1%, 17.8% and 7.2% respectively. Meanwhile, the abnormal morning and evening cortisol concentration recorded were 29.5% and 21.8% excluding 6.9%-7.4% missing data. While the IgA level is normal for most of the respondents, which recorded at 95.53%. Laboratory personnel were at risk of suffering burnout during the COVID-19 pandemic. Thus, mental health programs need to be addressed at the department and hospital level by regularly screening healthcare workers and designing an intervention program. It is also vital to improve the coping skills of laboratory personnel by increasing the awareness of good coping skill techniques. The training must be in an innovative way to ensure that the lab personnel can internalise the technique and practise it in real life.

Keywords: burnout, COVID-19, laborotary personnel, salivary cortisol

Procedia PDF Downloads 76
5274 Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices: Construction Proceedings and Validation

Authors: Cristina Costa-Lobo, Sandra Fernandes, Miguel Magalhães, José Dinis-Carvalho, Alfredo Regueiro, Ana Carvalho

Abstract:

This paper is a report on the findings of the construction and the validation of a questionnaire monetized in a portuguese higher education context with undergraduate students. The Questionnaire for the Evaluation of Entrepreneurship Project Psychopedagogical Practices consists of six scales: Critical appraisal of the project, Developed Learning and Skills, Teamwork, Teacher and Tutor Roles, Evaluation of Student Performance, and Project Effectiveness as a Teaching-Learning Methodology. The proceedings of its construction are analyzed, and the validity and internal consistency analysis are described. Findings indicate good indicators of validity, good fidelity and an interpretable factorial structure.

Keywords: entrepreneurship project, higher education, psychopedagogical practices, teacher and tutor roles

Procedia PDF Downloads 384
5273 Linking Pre-Class Engagement with Academic Achievement: The Role of Quests in a Flipped Chemistry Course

Authors: Anthony J. Rojas

Abstract:

In flipped classroom environments, students are tasked with engaging in pre-class learning to maximize the effectiveness of in-class time. This study investigates the use of ‘Quests’, brief formative assessments administered at the start of class, to evaluate student understanding of assigned pre-class materials in an undergraduate chemistry course. Students completed Quests via Microsoft Forms, based on content from instructional videos and worksheets, and these assessments were mandatory, with no opportunity for make-up. This paper examines the correlation between Quest performance and overall course success, finding that students who performed well on the Quests consistently achieved higher final grades in the course. The findings suggest that Quests are effective in both reinforcing student engagement with pre-class content and predicting their broader academic performance. The implications of these results for flipped classroom strategies and student learning outcomes will be discussed.

Keywords: chemistry, flipped classroom, attendance, assessments

Procedia PDF Downloads 31
5272 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments

Authors: Lana Burmistrova

Abstract:

Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.

Keywords: attention, blindness, memory, music learning, strategy

Procedia PDF Downloads 189