Search results for: chemical composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6243

Search results for: chemical composition

1503 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material

Procedia PDF Downloads 107
1502 Binary Metal Oxide Catalysts for Low-Temperature Catalytic Oxidation of HCHO in Air

Authors: Hanjie Xie, Raphael Semiat, Ziyi Zhong

Abstract:

It is well known that many oxidation reactions in nature are closely related to the origin and life activities. One of the features of these natural reactions is that they can proceed under mild conditions employing the oxidant of molecular oxygen (O₂) in the air and enzymes as catalysts. Catalysis is also a necessary part of life for human beings, as many chemical and pharmaceutical industrial processes need to use catalysts. However, most heterogeneous catalytic reactions must be run at high operational reaction temperatures and pressures. It is not strange that, in recent years, research interest has been redirected to green catalysis, e.g., trying to run catalytic reactions under relatively mild conditions as much as possible, which needs to employ green solvents, green oxidants such O₂, particularly air, and novel catalysts. This work reports the efficient binary Fe-Mn metal oxide catalysts for low-temperature formaldehyde (HCHO) oxidation, a toxic pollutant in the air, particularly in indoor environments. We prepared a series of nanosized FeMn oxide catalysts and found that when the molar ratio of Fe/Mn = 1:1, the catalyst exhibited the highest catalytic activity. At room temperature, we realized the complete oxidation of HCHO on this catalyst for 20 h with a high GHSV of 150 L g⁻¹ h⁻¹. After a systematic investigation of the catalyst structure and the reaction, we identified the reaction intermediates, including dioxymethylene, formate, carbonate, etc. It is found that the oxygen vacancies and the derived active oxygen species contributed to this high-low-temperature catalytic activity. These findings deepen the understanding of the catalysis of these binary Fe-Mn metal oxide catalysts.

Keywords: oxygen vacancy, catalytic oxidation, binary transition oxide, formaldehyde

Procedia PDF Downloads 106
1501 Community Singing, a Pathway to Social Capital: A Cross-Cultural Comparative Assessment of the Benefits of Singing Communities in South Tyrol and South Africa

Authors: Johannes Van Der Sandt

Abstract:

This quantitative study investigates different approaches of community singing, in building social capital in South Tyrol, Italy, and South Africa. The impact of the various approaches of community singing is examined by investigating the main components of social capital, namely, social norms and obligations, social networks and associations and trust, and how these components are manifested in two different societies. The research is based on the premise that community singing is an important agent for the development of social capital. It seeks to establish in what form community singing can best enhance the social capital of communities in South Tyrol that are undergoing significant changes in the ways in which social capital is generally being generated on account of demographic, economic, technological and cultural changes. South Tyrol and South Africa share some similarities in the management of their multi-cultural composition. By comparing the different approaches to community singing in two multi-cultural societies, it is hoped to gain insight, and an understanding of the connections between culture, social cohesion, identity and therefore to be able to add to the understanding of the building of social capital through community singing. Participation in music contributes to the growth of social capital in communities, this is amongst others the finding of an ever increasing amount of research. In sociological discourses on social capital generation, the dimension of community music making is recognized as an important factor. Trust and mutual cooperation are products when people listen to each other, when they work or play together, and when they care about each other. This is how social capital develops as an important shared resource. Scholars of Community Music still do not agree on a short and concise definition for Community Music. For the purpose of this research, the author concurs with the definition of Community Music of the Community Music Activity commission of the International Society of Music Education as having the following characteristics: decentralization, accessibility, equal opportunity, and active participation in music-making. These principles are social and political ones, and there can be no doubt that community music activity is more than a purely musical one. Trust, shared norms and values civic and community involvement, networks, knowledge resources, contact with families and friends, and fellowship are key components in fostering group cohesion and social capital development in a community. The research will show that there is no better place for these factors to flourish than in a community singing group. Through this comparative study, it is the aim to identify, analyze and explain similarities and differences in approaches to community across societies that find themselves in a rapid transition from traditional cultural to global cultural habits characterized by a plurality of orientation points, with the aim to gain a better understanding of the various directions South Tyrolean singing culture can take.

Keywords: community music, multicultural, singing, social capital

Procedia PDF Downloads 256
1500 Determination of Brominated Flame Retardants In Recycled Plastic Toys Using Thermal Desorption GC/MS

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

In recycling plastics industries, waste plastics are converted into monomers and other useful molecules by chemical reactions. Thermal energy generated by incineration is recovered when waste plastics melt. During the process, Flame retardants containing products get in, and brominated flame retardants (BFRs) are often used to reduce the flammability of products. Some of the originally formulated brominated flame retardants additives are restricted by the RoHS Directive, such as PBDE and PBB. The determination of BFRs other than those restricted by the RoHS directive is required. Frontier Lab developed a pyrolyzer based on the vertical micro-furnace design. The multi-mode pyrolyzer with different modes of operations, including evolve gas analysis (EGA), flash pyrolysis, thermal desorption, heart cutting, allows users to choose among the techniques for their analysis purposes. The method requires very little sample preparation. The first step is to perform an EGA using temperature programs. This technique provides information about the thermal temperature behaviors of the sample. The EGA thermogram is then used to determine the next steps in the analysis process. In this presentation, with an Optimal thermal temperature zone identified based on EGA thermogram, thermal desorption GC/MS is a chosen technique for the determination of brominated flame retardants in recycled plastic toys. Five types of general-purpose brominated flame retardants other than those restricted by the RoHS Directive are determined by the standard addition method.

Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 162
1499 Consumption of Animal and Vegetable Protein on Muscle Power in Road Cyclists from 18 to 20 Years in Bogota, Colombia

Authors: Oscar Rubiano, Oscar Ortiz, Natalia Morales, Lida Alfonso, Johana Alvarado, Adriana Gutierrez, Daniel Botero

Abstract:

Athletes who usually use protein supplements, are those who practice strength and power sports, whose goal is to achieve a large muscle mass. However, it has also been explored in sports or endurance activities such as cycling, and where despite requiring high power, prominent muscle development can impede good competitive performance due to the determinant of body mass for good performance of the athlete body. This research shows, the effect with protein supplements establishes a protein - muscle mass ratio, although in a lesser proportion the relationship between protein types and muscle power. Thus, we intend to explore as a first approximation, the behavior of muscle power in lower limbs after the intake of two protein supplements from different sources. The aim of the study was to describe the behavior of muscle power in lower limbs after the consumption of animal protein (AP) and vegetable protein (VP) in four route cyclists from 18 to 20 years of the Bogota cycling league. The methodological design of this study is quantitative, with a non-probabilistic sampling, based on a pre-experimental model. The jumping power was evaluated before and after the intervention by means of the squat jump test (SJ), Counter movement jump (CMJ) and Abalacov (AB). Cyclists consumed a drink with whey protein and a soy isolate after training four times a week for three months. The amount of protein in each cyclist, was calculated according to body weight (0.5 g / kg of muscle mass). The results show that subjects who consumed PV improved muscle strength and landing strength. In contrast, the power and landing force decreased for subjects who consumed PA. For the group that consumed PV, the increase was positive at 164.26 watts, 135.70 watts and 33.96 watts for the AB, SJ and CMJ jumps respectively. While for PA, the differences of the medians were negative at -32.29 watts, -82.79 watts and -143.86 watts for the AB, SJ and CMJ jumps respectively. The differences of the medians in the AB jump were positive for both the PV (121.61 Newton) and PA (454.34 Newton) cases, however, the difference was greater for PA. For the SJ jump, the difference for the PA cases was 371.52 Newton, while for the PV cases the difference was negative -448.56 Newton, so the difference was greater in the SJ jump for PA. In jump CMJ, the differences of the medians were negative for the cases of PA and PV, being -7.05 for PA and - 958.2 for PV. So the difference was greater for PA. The conclusion of this study shows that serum protein supplementation showed no improvement in muscle power in the lower limbs of the cyclists studied, which could suggest that whey protein does not have a beneficial effect on performance in terms of power, either, showed an impact on body composition. In contrast, supplementation with soy isolate showed positive effects on muscle power, body.

Keywords: animal protein (AP), muscle power, supplements, vegetable protein (VP)

Procedia PDF Downloads 155
1498 Modelling and Control of Binary Distillation Column

Authors: Narava Manose

Abstract:

Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.

Keywords: modelling, distillation column, control, binary distillation

Procedia PDF Downloads 255
1497 Urban Renewal from the Perspective of Industrial Heritage Protection: Taking the Qiaokou District of Wuhan as an Example

Authors: Yue Sun, Yuan Wang

Abstract:

Most of the earliest national industries in Wuhan are located along the Hanjiang River, and Qiaokou is considered to be a gathering place for Dahankou old industrial base. Zongguan Waterworks, Pacific Soap Factory, Fuxin Flour Factory, Nanyang Tobacco Factory and other hundred-year-old factories are located along Hanjiang River in Qiaokou District, especially the Gutian Industrial Zone, which was listed as one of 156 national restoration projects at the beginning of the founding of the People’s Republic of China. After decades of development, Qiaokou has become the gathering place of the chemical industry and secondary industry, causing damage to the city and serious pollution, becoming a marginalized area forgotten by the central city. In recent years, with the accelerated pace of urban renewal, Qiaokou has been constantly reforming and innovating, and has begun drastic changes in the transformation of old cities and the development of new districts. These factories have been listed as key reconstruction projects, and a large number of industrial heritage with historical value and full urban memory have been relocated, demolished and reformed, with only a few factory buildings preserved. Through the methods of industrial archaeology, image analysis, typology and field investigation, this paper analyzes and summarizes the spatial characteristics of industrial heritage in Qiaokou District, explores urban renewal from the perspective of industrial heritage protection, and provides design strategies for the regeneration of urban industrial sites and industrial heritage.

Keywords: industrial heritage, urban renewal, protection, urban memory

Procedia PDF Downloads 119
1496 Synthesis of Plant-Mediated Silver Nanoparticles Using Erythrina indica Extract and Evaluation of Their Anti-Microbial Activities

Authors: Chandra Sekhar Singh, P. Chakrapani, B. Arun Jyothi, A. Roja Rani

Abstract:

The green synthesis of metallic nanoparticles (NPs) involves biocompatible ingredients under physiological conditions of temperature and pressure. Moreover, the biologically active molecules involved in the green synthesis of NPs act as functionalizing ligands, making these NPs more suitable for biomedical applications. Among the most important bioreductants are plant extracts, which are relatively easy to handle, readily available, low cost, and have been well explored for the green synthesis of other nanomaterials. Various types of metallic NPs have already been synthesized using plant extracts. They have wide applicability in various areas such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In our study, we were described a cost effective and environment friendly technique for green synthesis of silver nanoparticles from 1mM AgNO3 solution through the aqueous extract of Erythrina indica as reducing as well as capping agent. Nanoparticles were characterized using UV–Vis absorption spectroscopy, FTIR, XRD, X-ray diffraction, SEM and TEM analysis showed the average particle size of 30 nm as well as revealed their spherical structure. Further these biologically synthesized nanoparticles were found to be highly toxic against different human pathogens viz. two Gram positive namely Klebsiella pneumonia and Bacillus subtilis bacteria and two were Gram negative bacteria namely Staphylococcus aureus and Escherichia coli (E. coli). This is for the first time reporting that Erythrina indica plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, antibacterial activity, FTIR, TEM, SEM

Procedia PDF Downloads 467
1495 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values ​​at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: electrical properties, optical gap, phthalocyanine, thin film.

Procedia PDF Downloads 217
1494 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device

Authors: Jisoo Kim, Min Su Lee, Sunmook Lee

Abstract:

Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.

Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test

Procedia PDF Downloads 373
1493 The Potential Effect of Climate Changes on Food and Water Associated Infections

Authors: Mohammed A. Alhoot, Rathika A/P Nagarajan

Abstract:

Climate change and variability are affecting human health and diseases direct or indirectly through many mechanisms. Change in rain pattern, an increase of temperature and humidity are showing an increased trend in Malaysia. This will affect the biological, physical and chemical component of water through different pathways and will enhance the risk of waterborne diseases. Besides, the warm temperature and humid climate provide very suitable conditions for the growth of pathogenic bacteria. This study is intended to highlight the relationship between the climate changes and the incidence food and water associated infections. Incidences of food and water associated infection and climate data were collected from Malaysian Ministry of health and Malaysian Metrological Department respectively. Maximum and minimum temperature showed high correlation with incidence of typhoid, hepatitis A, dysentery, food poisoning (P value <0.05 significant with 2 tailed / 0.5<[r]). Heavy rainfall does not associated with any outbreaks. Climate change brings out new challenges in controlling food and water associated infections. Adaptation strategies should involve all key stakeholders with a strong regional cooperation to prevent and deal with cross-boundary health crises. Moreover, the role of health care personnel at local, state and national levels is important to ensure the success of these programmes. As has been shown herein, climate variability is an important element influencing the food and water associated epidemiology in Malaysia. The results of this study are crucial to implementing climate changes as a factor to reduce any future outbreaks.

Keywords: climate change, typhoid, hepatitis A, dysentery, food poisoning

Procedia PDF Downloads 281
1492 The Motion of Ultrasonically Propelled Nanomotors Operating in Biomimetic Environments

Authors: Suzanne Ahmed

Abstract:

Nanomotors, also commonly referred to as nanorobotics or nanomachines, have garnered considerable research attention due to their numerous potential applications in biomedicine, including drug delivery and microsurgery. Nanomotors typically consist of inorganic or polymeric particles that are powered to undergo motion. These artificial, man-made nanoscale motors operate in the low Reynolds number regime and typically have no moving parts. Several methods have been developed to actuate the motion of nanomotors including magnetic fields, electrical fields, electromagnetic waves, and chemical fuel. Since their introduction in 2012, ultrasonically powered nanomotors have been explored in biocompatible fluids and even within living cells. Due to the common use of ultrasound within the biomedical community for both imaging and therapeutics, the introduction of ultrasonically propelled nanomotors holds significant potential for biomedical applications. In this work, metallic nanomotors are electrochemically plated within porous anodic alumina templates to have a diameter of 300 nm and a length that is 2-4 µm. Nanomotors are placed within an acoustic chamber capable of producing bulk acoustic waves in the ultrasonic range. The motion of nanomotors within biomimetic confines is explored. The control over nanomotor motion is exerted by virtue of the properties of the acoustic signal within these biomimetic confines to control speed, modes of motion and directionality of motion. To expand the range of control over nanorod motion within biomimetic confines, external forces from biocompatible magnetic fields, are exerted onto the acoustically propelled nanomotors.

Keywords: nanomotors, nanomachines, nanorobots, ultrasound

Procedia PDF Downloads 49
1491 Preparation, Characterization, and in-Vitro Drug Release Study of Methotrexate-Loaded Hydroxyapatite-Sodium Alginate Nanocomposites

Authors: Friday G. Okibe, Edit B. Agbaji, Victor O. Ajibola, Christain C. Onoyima

Abstract:

Controlled drug delivery systems reduce dose-dependent toxicity associated with potent drugs, including anticancer drugs. In this research, hydroxyapatite (HA) and hydroxyapatite-sodium alginate nanocomposites (HASA) were successfully prepared and characterized using Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The FTIR result showed absorption peaks characteristics of pure hydroxyapatite (HA), and also confirmed the chemical interaction between hydroxyapatite and sodium alginate in the formation of the composite. Image analysis from SEM revealed nano-sized hydroxyapatite and hydroxyapatite-sodium alginate nanocomposites with irregular morphologies. Particle size increased with the formation of the nanocomposites relative to pure hydroxyapatite, with no significant change in particles morphologies. Drug loading and in-vitro drug release study were carried out using synthetic body fluid as the release medium, at pH 7.4 and 37 °C and under perfect sink conditions. The result shows that drug loading is highest for pure hydroxyapatite and decreased with increasing quantity of sodium alginate. However, the release study revealed that HASA-5%wt and HASA-20%wt presented better release profile than pure hydroxyapatite, while HASA-33%wt and HASA-50%wt have poor release profiles. This shows that Methotrexate-loaded hydroxyapatite-sodium alginate if prepared under optimal conditions is a potential carrier for effective delivery of Methotrexate.

Keywords: drug-delivery, hydroxyapatite, methotrexate, nanocomposites, sodium alginate

Procedia PDF Downloads 252
1490 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil

Procedia PDF Downloads 156
1489 Physicochemical Characterization of Coastal Aerosols over the Mediterranean Comparison with Weather Research and Forecasting-Chem Simulations

Authors: Stephane Laussac, Jacques Piazzola, Gilles Tedeschi

Abstract:

Estimation of the impact of atmospheric aerosols on the climate evolution is an important scientific challenge. One of a major source of particles is constituted by the oceans through the generation of sea-spray aerosols. In coastal areas, marine aerosols can affect air quality through their ability to interact chemically and physically with other aerosol species and gases. The integration of accurate sea-spray emission terms in modeling studies is then required. However, it was found that sea-spray concentrations are not represented with the necessary accuracy in some situations, more particularly at short fetch. In this study, the WRF-Chem model was implemented on a North-Western Mediterranean coastal region. WRF-Chem is the Weather Research and Forecasting (WRF) model online-coupled with chemistry for investigation of regional-scale air quality which simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. One of the objectives was to test the ability of the WRF-Chem model to represent the fine details of the coastal geography to provide accurate predictions of sea spray evolution for different fetches and the anthropogenic aerosols. To assess the performance of the model, a comparison between the model predictions using a local emission inventory and the physicochemical analysis of aerosol concentrations measured for different wind direction on the island of Porquerolles located 10 km south of the French Riviera is proposed.

Keywords: sea-spray aerosols, coastal areas, sea-spray concentrations, short fetch, WRF-Chem model

Procedia PDF Downloads 171
1488 Information Technology Impacts on the Supply Chain Performance: Case Study Approach

Authors: Kajal Zarei

Abstract:

Supply chain management is becoming an increasingly important issue in many businesses today. In such circumstances, a number of reasons such as management deficiency in different segments of the supply chain, lack of streamlined processes, resistance to change the current systems and technologies, and lack of advanced information system have paved the ground to ask for innovative research studies. To this end, information technology (IT) is becoming a major driver to overcome the supply chain limitations and deficiencies. The emergence of IT has provided an excellent opportunity for redefining the supply chain to be more effective and competitive. This paper has investigated the IT impact on two-digit industry codes in the International Standard Industrial Classification (ISIC) that are operating in four groups of the supply chains. Firstly, the primary fields of the supply chain were investigated, and then paired comparisons of different industry parts were accomplished. Using experts' ideas and Analytical Hierarchy Process (AHP), the status of industrial activities in Kurdistan Province in Iran was determined. The results revealed that manufacturing and inventory fields have been more important compared to other fields of the supply chain. In addition, IT has had greater impact on food and beverage industry, chemical industry, wood industry, wood products, and production of basic metals. The results indicated the need to IT awareness in supply chain management; in other words, IT applications needed to be developed for the identified industries.

Keywords: supply chain, information technology, analytical hierarchy process, two-digit codes, international standard industrial classification

Procedia PDF Downloads 260
1487 Assessing Smallholder Farmers’ Perception of Climate Change and Coping Strategies Adopted in the Olifants Catchment of South Africa

Authors: Mary Funke Olabanji, Thando Ndarana, Nerhene Davis, Sylvester Okechukwu Ilo

Abstract:

Scientific evidence indicates that climate change is already being experienced by farmers, and its impacts are felt on agricultural and food systems. Understanding the perceptions of farmers on climate change and how they respond to this change is essential to the development and implementation of appropriate policies for agriculture and food security. This paper aims to contribute to the understanding of farmers’ perceptions of climate change, adopted coping strategies, long-term implications of their adaptation choices, and barriers to their decisions to adapt. Data were randomly collected from 73 respondents in five districts located in the Olifants catchment of South Africa. A combination of descriptive statistics and Chi-Square statistical tests using the Statistical Package for Social Science (SPSS) was used to analyse the data obtained from the survey. Results show that smallholder farmers have an in-depth perception of climate change. The most significant changes perceived by farmers were increased temperature and low rainfall. The results equally revealed that smallholder farmers in the Olifants catchment had adopted several adaptation strategies in response to the perceived climate change. The significant adaptation strategies from the results include changing cropping patterns and planting date, use of improved seed variety, and chemical fertilizers. The study, therefore, concludes that crop diversification and agroforestry were more effective and sustainable in mitigating the impact of climate change.

Keywords: adaptation, climate change, perception, smallholder farmers

Procedia PDF Downloads 143
1486 Synthesis and Characterization of an Aerogel Based on Graphene Oxide and Polyethylene Glycol

Authors: Javiera Poblete, Fernando Gajardo, Katherina Fernandez

Abstract:

Graphene, and its derivatives such as graphene oxide (GO), are emerging nanoscopic materials, with interesting physical and chemical properties. From them, it is possible to develop three-dimensional macrostructures, such as aerogels, which are characterized by a low density, high porosity, and large surface area, having a promising structure for the development of materials. The use of GO as a precursor of these structures provides a wide variety of materials, which can be developed as a result of the functionalization of their oxygenated groups, with specific compounds such as polyethylene glycol (PEG). The synthesis of aerogels of GO-PEG for non-covalent interactions has not yet been widely reported, being of interest due to its feasible escalation and economic viability. Thus, this work aims to develop a non-covalently functionalized GO-PEG aerogels and characterize them physicochemically. In order to get this, the GO was synthesized from the modified hummers method and it was functionalized with the PEG by polymer-assisted GO gelation (crosslinker). The gelation was obtained for GO solutions (10 mg/mL) with the incorporation of PEG in different proportions by weight. The hydrogel resulting from the reaction was subsequently lyophilized, to obtain the respective aerogel. The material obtained was chemically characterized by analysis of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD), and its morphology by scanning electron microscopy (SEM) images; as well as water absorption tests. The results obtained showed the formation of a non-covalent aerogel (FTIR), whose structure was highly porous (SEM) and with a water absorption values greater than 50% g/g. Thus, a methodology of synthesis for GO-PEG was developed and validated.

Keywords: aerogel, graphene oxide, polyethylene glycol, synthesis

Procedia PDF Downloads 97
1485 The Rational Design of Original Anticancer Agents Using Computational Approach

Authors: Majid Farsadrooh, Mehran Feizi-Dehnayebi

Abstract:

Serum albumin is the most abundant protein that is present in the circulatory system of a wide variety of organisms. Although it is a significant macromolecule, it can contribute to osmotic blood pressure and also, plays a superior role in drug disposition and efficiency. Molecular docking simulation can improve in silico drug design and discovery procedures to propound a lead compound and develop it from the discovery step to the clinic. In this study, the molecular docking simulation was applied to select a lead molecule through an investigation of the interaction of the two anticancer drugs (Alitretinoin and Abemaciclib) with Human Serum Albumin (HSA). Then, a series of new compounds (a-e) were suggested using lead molecule modification. Density functional theory (DFT) including MEP map and HOMO-LUMO analysis were used for the newly proposed compounds to predict the reactivity zones on the molecules, stability, and chemical reactivity. DFT calculation illustrated that these new compounds were stable. The estimated binding free energy (ΔG) values for a-e compounds were obtained as -5.78, -5.81, -5.95, -5,98, and -6.11 kcal/mol, respectively. Finally, the pharmaceutical properties and toxicity of these new compounds were estimated through OSIRIS DataWarrior software. The results indicated no risk of tumorigenic, irritant, or reproductive effects and mutagenicity for compounds d and e. As a result, compounds d and e, could be selected for further study as potential therapeutic candidates. Moreover, employing molecular docking simulation with the prediction of pharmaceutical properties helps to discover new potential drug compounds.

Keywords: drug design, anticancer, computational studies, DFT analysis

Procedia PDF Downloads 49
1484 The Effect of Extruded Full-Fat Rapeseed on Productivity and Eggs Quality of Isa Brown Laying Hens

Authors: Vilma Sasyte, Vilma Viliene, Agila Dauksiene, Asta Raceviciute-Stupeliene, Romas Gruzauskas, Saulius Alijosius

Abstract:

The eight-week feeding trial was conducted involving 27-wk-old Isa brown laying hens to study the effect of dry extrusion processing on partial reduction in total glucosinolates content of locally produced rapeseed and on productivity and eggs quality parameters of laying hens. Thirty-six hens were randomly assigned one of three treatments (CONTR, AERS and HERS), each comprising 12, individual caged layers. The main composition of the diets was the same, but extruded soya bean seed were replaced with 2.5% of the extruded rapeseed in the AERS group and 4.5 % in the HERS group. Rapeseed was extruded together with faba beans. Due to extrusion process the glucosinolates content was reduced by 7.83 µmol/g of rapeseed. The results of conducted trial shows, that during all experimental period egg production parameters, such as the average feed intake (6529.17 vs. 6257 g/hen/14 day; P < 0.05) and laying intensity (94.35% vs. 89.29; P < 0.05) were statistically different for HERS and CONTR laying hens respectively. Only the feed conversion ratio to produce 1 kg of eggs, kg in AERS group was by 11 % lower compared to CONTR group (P < 0.05). By analysing the effect of extruded rapeseed on egg mass, the statistical differences between treatments were no determined. The dietary treatments did not affect egg weight, albumen height, haugh units, albumen and yolk pH. However, in the HERS group were get eggs with the more intensive yolk color, higher redness (a) and yellowness (b) values. The inclusion of full-fat extruded rapeseed had no effect on egg shell quality parameters, i.e. shell breaking strength, shell weight with and without coat and shell index, but in the experimental groups were get eggs with the thinner shell (P < 0.05). The internal egg quality analysis showed that with higher content of extruded rapeseed (4.5 %) level in the diet, the total cholesterol in the eggs yolk decreased by 1.92 mg/g in comparison with CONTR group (P < 0.05). Eggs laid by hens fed the diet containing 2.5% and 4.5% had increasing ∑PNRR/∑SRR ratio and decreasing ∑(n-6)/∑(n-3) ratio values of eggs yolk fatty acids than in CONTR group. Eggs of hens fed different amount of extruded rapeseed presented an n-6 : n-3 ratio changed from 5.17 to 4.71. The analysis of the relationship between hypocholesteremia/ hypercholesterolemia fatty acids (H/H), which is based on the functional properties of fatty acids, found that the value of it ratio is significant higher in laying hens fed diets supplemented with 4.5% extruded rapeseed than the CONTR group, demonstrating the positive effects of extruded rapeseed on egg quality. The results of trial confirmed that extruded full fat rapeseed to the 4.5% are suitable to replace soyabean in the compound feed of laying hens.

Keywords: egg quality, extruded full-fat rapeseed, laying hens, productivity

Procedia PDF Downloads 195
1483 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 350
1482 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Authors: Abimbola M. Enitan, J. Adeyemo

Abstract:

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (µmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (dˉ¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Keywords: brewery wastewater, methane generation model, environment, anaerobic modeling

Procedia PDF Downloads 232
1481 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance

Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.

Abstract:

The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, Philippines

Keywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure

Procedia PDF Downloads 73
1480 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Waste Water: A Study of Techno-Economics, Energy Use, and Greenhouse Gas Emissions

Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez

Abstract:

The biodegradable family of polymers polyhydroxyalkanoates are interesting substitutes for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.

Keywords: circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization

Procedia PDF Downloads 426
1479 Fluoride Contamination and Effects on Crops in North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination in water and its subsequent impact on agricultural practices is a growing concern in various regions worldwide, including North 24 Parganas, West Bengal, India. This study aimed to investigate the extent of fluoride contamination in the region's water sources and evaluate its effects on crop production and quality. A comprehensive survey of water sources, including wells, ponds, and rivers, was conducted to assess the fluoride levels in North 24 Parganas. Water samples were collected and analyzed using standard methods, and the fluoride concentration was determined. The findings revealed significant fluoride contamination in the water sources, surpassing the permissible limits recommended by national and international standards. To assess the effects of fluoride contamination on crops, field experiments were carried out in selected agricultural areas. Various crops commonly cultivated in the region, such as paddy, wheat, vegetables, and fruits, were examined for their growth, yield, and nutritional quality parameters. Additionally, soil samples were collected from the study sites to analyse the fluoride levels and their potential impact on soil health. The results demonstrated the adverse effects of fluoride contamination on crop growth and yield. Reduced plant height, stunted root development, decreased biomass accumulation, and diminished crop productivity were observed in fluoride-affected areas compared to uncontaminated control sites. Furthermore, the nutritional composition of crops, including micronutrients and mineral content, was significantly altered under high fluoride exposure, leading to potential health risks for consumers. The study also assessed the impact of fluoride on soil quality and found a negative correlation between fluoride concentration and soil health indicators, such as pH, organic matter content, and nutrient availability. These findings emphasize the need for sustainable soil management practices to mitigate the harmful effects of fluoride contamination and maintain agricultural productivity. Overall, this study highlights the alarming issue of fluoride contamination in water sources and its detrimental effects on crop production and quality in North 24 Parganas, West Bengal, India. The findings underscore the urgency for implementing appropriate water treatment measures, promoting awareness among farmers and local communities, and adopting sustainable agricultural practices to mitigate fluoride contamination and safeguard the region's agricultural ecosystem.

Keywords: agricultural ecosystem, water treatment, sustainable agricultural, fluoride contamination

Procedia PDF Downloads 52
1478 Quality Management in Spice Paprika Production as a Synergy of Internal and External Quality Measures

Authors: É. Kónya, E. Szabó, I. Bata-Vidács, T. Deák, M. Ottucsák, N. Adányi, A. Székács

Abstract:

Spice paprika is a major spice commodity in the European Union (EU), produced locally and imported from non-EU countries, reported not only for chemical and microbiological contamination, but also for fraud. The effective interaction between producers’ quality management practices and government and EU activities is described on the example of spice paprika production and control in Hungary, a country of leading spice paprika producer and per capita consumer in Europe. To demonstrate the importance of various contamination factors in the Hungarian production and EU trade of spice paprika, several aspects concerning food safety of this commodity are presented. Alerts in the Rapid Alert System for Food and Feed (RASFF) of the EU between 2005 and 2013, as well as Hungarian state inspection results on spice paprika in 2004 are discussed, and quality non-compliance claims regarding spice paprika among EU member states are summarized in by means of network analysis. Quality assurance measures established along the spice paprika production technology chain at the leading Hungarian spice paprika manufacturer, Kalocsai Fűszerpaprika Zrt. are surveyed with main critical control points identified. The structure and operation of the Hungarian state food safety inspection system is described. Concerted performance of the latter two quality management systems illustrates the effective interaction between internal (manufacturer) and external (state) quality control measures.

Keywords: spice paprika, quality control, reporting mechanisms, RASFF, vulnerable points, HACCP

Procedia PDF Downloads 262
1477 Activity Anti-Motility Exstract Kedondong Leaf in Balb/C Strain Male Mice Invivo

Authors: Muhammad Abdul Latif, Edijanti Goenarwo , Intan Rahmania Eka

Abstract:

Diarrhea is one of the leading causes of morbidity and mortality in many countries, as well as responsible for the deaths of millions of people each year. Previous research showed that the leaves, bark, and root bark of kedondong contains saponins, tannins, and flavonoids. Tannins have anti-diarrheal effects that work as the freeze of protein / astrigen, and may inhibit the secretion of chloride over the tannate bonding between protein in the intestines. Chemical compounds of flavonoids also have an effect as anti-diarrheal block receptors Cl ˉ in intestinal thus reducing the secretion of Cl ˉ to the intestinal lume. This research aims to know the anti-diarrheal activity of extracts kedondong leaf in mice Balb/C strain males in vivo. This research also proves kedondong leaves as an anti-diarrhea through trial efficacy of kedondong leaves as antisekretori and antimotilitas. This research using post-test only controlled group design. Analysis of statistical data normality and homogenity were tested by Kolmogorov Smirnov. If the data obtained homogenous then using ANOVA test. This research using ethanolic extracts kedondong leaf 200, 400 and 800 mg/kg BW to prove there is anti-motility became five treatment groups. The result showed dose of ethanolic extracts kedondong leaf 800 mg/kg BW have significant value (p < 0.005). The conclusion from this extracts kedondong leaf research 800 mg/kg BW have pharmacological effects as antimotility on Balb/C strain male mice.

Keywords: anti-diarrhea, anti-motility, castrol oil, kedondong leaf

Procedia PDF Downloads 443
1476 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology

Authors: Ahmed Abdel Sattar Khalil, Hazem Omar

Abstract:

Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.

Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy

Procedia PDF Downloads 63
1475 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village

Authors: Corinna Barraco, Ornella Salimbene

Abstract:

This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.

Keywords: drinking water, Ethiopia, treatments, water pumping

Procedia PDF Downloads 130
1474 Two Antiplasmodial Compounds from Lauraceae: Actinodaphne macrophylla and Nectandra angustifolia

Authors: Tiah Rachmatiah, Subaryanti

Abstract:

Plants of Lauraceae family are known to contain many chemical compounds which have potential bioactivity such as alkaloids, flavonoids, lactones, terpenes, etc. Actinodaphne macrophylla and Nectandra angustifolia are two species from Lauraceae. A previous study on the crude alkaloidal extract from the bark of Act. macrophylla and n-hexane extract from the bark of N. angustifolia showed antiplasmodial activity against Plasmodium falciparum. The study was continued to find antiplasmodial active compounds from the two extracts. The materials were obtained from Bogor Botanical Garden, West Java, Indonesia. Crude alkaloidal extract of Act. macrophylla was prepared by maceration in dichloromethane after moistened with NH4OH 25% and n-hexane extract of N. angustifolia was prepared by maceration in n-hexane. A major compound was isolated by column chromatography using silica gel and a mixture of CH2Cl2 and methanol as a gradient solvent system for the alkaloidal extract and mixture of n-hexane and ethyl acetate for n-hexane extract. Fine white needle crystals were obtained from the alkaloidal extract and rod crystals from n-hexane extract. Molecular structure of the compounds was determined by analysis of spectra of NMR, IR, MS and compared by references. In vitro bioactivity test of the compound was performed against Plasmodium falciparum. The results showed that the bark of Act. macrophylla contained an aporphine alkaloid, actinodaphnine, that had activity against P. falciparum with IC50 value of 0.095 µg/mL and the bark of N. angustifolia contained a lignan compound, sesamine, with IC50 of 0.122 µg/mL.

Keywords: actinodaphne macrophylla, alkaloid, antiplasmodial, lauraceae, lignan, nectandra angustifolia

Procedia PDF Downloads 399