Search results for: agricultural applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8118

Search results for: agricultural applications

3378 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications

Authors: M. Madigoe, R. Modiba

Abstract:

High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.

Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys

Procedia PDF Downloads 179
3377 Chitosan Magnetic Nanoparticles and Its Analytical Applications

Authors: Eman Alzahrani

Abstract:

Efficient extraction of proteins by removing interfering materials is necessary in proteomics, since most instruments cannot handle such contaminated sample matrices directly. In this study, chitosan-coated magnetic nanoparticles (CS-MNPs) for purification of myoglobin were successfully fabricated. First, chitosan (CS) was prepared by a deacetylation reaction during its extraction from shrimp-shell waste. Second, magnetic nanoparticles (MNPs) were synthesised, using the coprecipitation method, from aqueous Fe2+ and Fe3+ salt solutions by the addition of a base under an inert atmosphere, followed by modification of the surface of MNPs with chitosan. The morphology of the formed nanoparticles, which were about 23 nm in average diameter, was observed by transmission electron microscopy (TEM). In addition, nanoparticles were characterised using X-ray diffraction patterns (XRD), which showed the naked magnetic nanoparticles have a spinel structure and the surface modification did not result in phase change of the Fe3O4. The coating of MNPs was also demonstrated by scanning electron microscopy (SEM) analysis, energy dispersive analysis of X-ray spectroscopy (EDAX), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption behaviour of MNPs and CS-MNPs towards myoglobin was investigated. It was found that the difference in adsorption capacity between MNPs and CS-MNPs was larger for CS-MNPs. This result makes CS-MNPs good adsorbents and attractive for using in protein extraction from biological samples.

Keywords: chitosan, magnetic nanoparticles, coprecipitation, adsorption

Procedia PDF Downloads 413
3376 Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress

Authors: Auwal Ibrahim Magashi, Lawan Dan Larai Fagwalawa, Muhammad Bello Ibrahim

Abstract:

A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements.

Keywords: cowpea, genetic variability, quantitative traits, water stress

Procedia PDF Downloads 152
3375 Auction Theory In Competitive Takeovers: Ideas For Regulators

Authors: Emanuele Peggi

Abstract:

The regulation of competitive takeover bids is one of the most problematic issues of any legislation on takeovers since it concerns a particular type of market, that of corporate control, whose peculiar characteristic is that companies represent "assets" unique of their kind, for each of which there will be a relevant market characterized by the presence of different subjects interested in acquiring control. Firstly, this work aims to analyze, from a comparative point of view, the regulation of takeover bids in competitive scenarios, characterized by the presence of multiple takeover bids for the same target company, and contribute to the debate on the impact that various solutions adopted in some legal systems examined (Italy, UK, and USA) have had on the efficiency of the market for corporate control. Secondly, the different auction models identified by the economic literature and their possible applications to corporate acquisitions in competitive scenarios will be examined, as well as the consequences that the application of each of them causes on the efficiency of the market for corporate control and the interests of the target shareholders. The scope is to study the possibility of attributing to the management of the target company the power to design the auction in order to better protect the interests of shareholders through the adoption of ad hoc models according to the specific context. and in particular on the ground of their assessment of the buyer's risk profile.

Keywords: takeovers, auction theory, shareholders, target company

Procedia PDF Downloads 172
3374 Monitoring Peri-Urban Growth and Land Use Dynamics with GIS and Remote Sensing Techniques: A Case Study of Burdwan City, India

Authors: Mohammad Arif, Soumen Chatterjee, Krishnendu Gupta

Abstract:

The peri-urban interface is an area of transition where the urban and rural areas meet and interact. So the peri-urban areas, which is characterized by strong urban influence, easy access to markets, services and other inputs, are ready supplies of labour but distant from the land paucity and pollution related to urban growth. Hence, the present study is primarily aimed at quantifying the spatio-temporal pattern of land use/land cover change during the last three decades (i.e., 1987 to 2016) in the peri-urban area of Burdwan city. In the recent past, the morphology of the study region has rapid change due to high growth of population and establishment of industries. The change has predominantly taken place along the State and National Highway 2 (NH-2) and around the Burdwan Municipality for meeting both residential and commercial purposes. To ascertain the degree of change in land use and land cover, over the specified time, satellite imageries and topographical sheets are employed. The data is processed through appropriate software packages to arrive at a deduction that most of the land use changes have occurred by obliterating agricultural land & water bodies and substituting them by built area and industrial spaces. Geospatial analysis of study area showed that this area has experienced a steep increase (30%) of built-up areas and excessive decrease (15%) in croplands between 1987 and 2016. Increase in built-up areas is attributed to the increase of out-migration during this period from the core city. This study also examined social, economic and institutional factors that lead to this rapid land use change in peri-urban areas of the Burdwan city by carrying out a field survey of 250 households in peri-urban areas. The research concludes with an urgency for regulating land subdivisions in peri-urban areas to prevent haphazard land use development. It is expected that the findings of the study would go a long way in facilitating better policy making.

Keywords: growth, land use land cover, morphology, peri-urban, policy making

Procedia PDF Downloads 169
3373 Hemostasis Poly Vinyl Alcohol Gauze Coated with Chitosan Encapsulated with Polymer and Drug

Authors: Abhishekkumar Ramasamy, Parameshwari

Abstract:

Chitosan is the deacyelitated derivative of chitin, the second most abundant biopolymer just after cellulose. Without doubt, its biomedical usages have gained more importance among the vast variety of chitosan applications owing to its good biocompatibility and biodegradability. In recent years, particular interest has been devoted to chitosan hydrogels as a promising alternative in competition with conventional sutures or bioadhesives. Different parameters such as acid type and concentration, and degree of deacetylation (DD%) of chitosan, were altered to modify hydrogel properties including viscosity, pH, cohesive strength, and tissue bioadhesiveness. In the current work, we have investigated the effectiveness of chitosan hydrogel encapsulated with tanexamic acid to stop bleeding. Chitosan film was obtained with solubilization of chitosan powder in aqueous acidic media. In vivo experiments have been conducted on rat and rabbit models that provide a convenient way to evaluate the efficacy of prepared samples. The arteries vein was punctured on the hind limb of the rat and the gauze was been applied on the punchered area. Bioadhesive strength as well as irritant effects were discussed. Samples with higher degree of deacetylation, including Chs-16 and Chs-19 that were dissolved in lactic media showed best sealing effect.

Keywords: chitosan, biocomaptibility, biodegradability, bioadhersive, deacetylation

Procedia PDF Downloads 344
3372 Modeling, Analysis, and Optimization of Process Parameters of Metal Spinning

Authors: B. Ravi Kumar, S. Gajanana, K. Hemachandra Reddy, K. Udayani

Abstract:

Physically into various derived shapes and sizes under the effect of externally applied forces. The spinning process is an advanced plastic working technology and is frequently used for manufacturing axisymmetric shapes. Over the last few decades, Sheet metal spinning has developed significantly and spun products have widely used in various industries. Nowadays the process has been expanded to new horizons in industries, since tendency to use minimum tool and equipment costs and also using lower forces with the output of excellent surface quality and good mechanical properties. The automation of the process is of greater importance, due to its wider applications like decorative household goods, rocket nose cones, gas cylinders, etc. This paper aims to gain insight into the conventional spinning process by employing experimental and numerical methods. The present work proposes an approach for optimizing process parameters are mandrel speed (rpm), roller nose radius (mm), thickness of the sheet (mm). Forming force, surface roughness and strain are the responses.in spinning of Aluminum (2024-T3) using DOE-Response Surface Methodology (RSM) and Analysis of variance (ANOVA). The FEA software is used for modeling and analysis. The process parameters considered in the experimentation.

Keywords: FEA, RSM, process parameters, sheet metal spinning

Procedia PDF Downloads 315
3371 Identification of Suitable Rainwater Harvesting Sites Using Geospatial Techniques with AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia

Authors: Abrha Ybeyn Gebremedhn, Yitea Seneshaw Getahun, Alebachew Shumye Moges, Fikrey Tesfay

Abstract:

Rainfed agriculture in Ethiopia has failed to produce enough food, to achieve the increasing demand for food. Pinpointing the appropriate site for rainwater harvesting (RWH) have a substantial contribution to increasing the available water and enhancing agricultural productivity. The current study related to the identification of the potential RWH sites was conducted at the Chacha watershed central highlands of Ethiopia which is endowed with rugged topography. The Geographic Information System with Analytical Hierarchy Process was used to generate the different maps for identifying appropriate sites for RWH. In this study, 11 factors that determine the RWH locations including slope, soil texture, runoff depth, land cover type, annual average rainfall, drainage density, lineament intensity, hydrologic soil group, antecedent moisture content, and distance to the roads were considered. The overall analyzed result shows that 10.50%, 71.10%, 17.90%, and 0.50% of the areas were found under highly, moderately, marginally suitable, and unsuitable areas for RWH, respectively. The RWH site selection was found highly dependent on a slope, soil texture, and runoff depth; moderately dependent on drainage density, annual average rainfall, and land use land cover; but less dependent on the other factors. The highly suitable areas for rainwater harvesting expansion are lands having a flat topography with a soil textural class of high-water holding capacity that can produce high runoff depth. The application of this study could be a baseline for planners and decision-makers and support any strategy adoption for appropriate RWH site selection.

Keywords: runoff depth, antecedent moisture condition, AHP, weighted overlay, water resource

Procedia PDF Downloads 45
3370 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction

Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan

Abstract:

In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.

Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound

Procedia PDF Downloads 95
3369 Controlling Dimensions and Shape of Carbon Nanotubes Using Nanoporous Anodic Alumina under Different Conditions

Authors: Amine Mezni, Merfat Algethami, Ali Aldalbahi, Arwa Alrooqi, Abel Santos, Dusan Losic, Sarah Alharthi, Tariq Altalhi

Abstract:

In situ synthesis of carbon nanotubes featuring different diameters (10-200 nm), lengths (1 to 100 µm) and periodically nanostructured shape was performed in a custom designed chemical vapor deposition (CVD) system using nanoporous anodic alumina (NAA) under different conditions. The morphology of the resulting CNTs/NAA composites and free-standing CNTs were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results confirm that highly ordered arrays of CNTs with precise control of nanotube dimensions in the range 20-200 nm with tube length in the range < 1 µm to > 100 μm and with periodically shaped morphology can be fabricated using nanostructured NAA templates prepared by anodization. This technique allows us to obtain tubes open at one / both ends with a uniform diameter along the pore length without using any metal catalyst. Our finding suggests that this fabrication strategy for designing new CNTs membranes and structures can be significant for emerging applications as molecular separation/transport, optical biosensing, and drug delivery.

Keywords: carbon nanotubes, CVD approach, composites membrane, nanoporous anodic alumina

Procedia PDF Downloads 277
3368 Lean and Six Sigma in the Freight Railway Supplier Base in South Africa: Factors Leading to Their Application

Authors: Hilda Kundai Chikwanda, Lawrence Thabo Mokhadi

Abstract:

The study aimed to review the factors that lead the freight railway suppliers base in South Africa (SA) to apply the Lean and Six Sigma (L&SS) methodologies. A thorough review of the factors that lead organisations, in the different industries, to implement these methodologies was done. L&SS applications were found to be prominent in the automotive industry. In particular, the railway industry in SA and the region were reviewed in terms of challenges in capturing the freight logistics market and growing market share. Qualitative methods have been used to collect primary data and descriptive statistics was used to calculate, describe, and summarize collected research data. The results show that external factors have a greater influence on the implementation of L&SS. The study drew inferences between freight railway supplier base and the application of Lean and Six Sigma (L&SS) methodologies in the SA context. It identified challenges that leads the SA freight railway to lose market share to road freight users. It further observes and recommends that L&SS methodologies are the ideal strategy required to implement a turnaround in the trajectory of freight railways as a competitive freight transport solution.

Keywords: production, methodology, manufacturing, lean, six sigma

Procedia PDF Downloads 40
3367 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization

Procedia PDF Downloads 294
3366 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique

Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal

Abstract:

Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.

Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis

Procedia PDF Downloads 444
3365 Lean Thinking and E-Commerce as New Opportunities to Improve Partnership in Supply Chain of Construction Industries

Authors: Kaustav Kundu, Alberto Portioli Staudacher

Abstract:

Construction industry plays a vital role in the economy of the world. But due to high uncertainty and variability in the industry, its performance is not as efficient in terms of quality, lead times, productivity and costs as of other industries. Moreover, there are continuous conflicts among the different actors in the construction supply chains in terms of profit sharing. Previous studies suggested partnership as an important approach to promote cooperation among the different actors in the construction supply chains and thereby it improves the overall performance. Construction practitioners tried to focus on partnership which can enhance the performance of construction supply chains but they are not fully aware of different approaches and techniques for improving partnership. In this research, a systematic review on partnership in relation to construction supply chains is carried out to understand different elements influencing the partnership. The research development of this domain is analyzed by reviewing selected articles published from 1996 to 2015. Based on the papers, three major elements influencing partnership in construction supply chains are identified: “Lean approach”, “Relationship building” and “E-commerce applications”. This study analyses the contributions in the areas within each element and provides suggestions for future developments of partnership in construction supply chains.

Keywords: partnership, construction, lean, SCM, supply chain management

Procedia PDF Downloads 430
3364 Geometric Contrast of a 3D Model Obtained by Means of Digital Photogrametry with a Quasimetric Camera on UAV Classical Methods

Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Cristina Diego Soroa

Abstract:

Nowadays, the use of drones has been extended to practically any human activity. One of the main applications is focused on the surveying field. In this regard, software programs that process the images captured by the sensor from the drone in an almost automatic way have been developed and commercialized, but they only allow contrasting the results through control points. This work proposes the contrast of a 3D model obtained from a flight developed by a drone and a non-metric camera (due to its low cost), with a second model that is obtained by means of the historically-endorsed classical methods. In addition to this, the contrast is developed over a certain territory with a significant unevenness, so as to test the model generated with photogrammetry, and considering that photogrammetry with drones finds more difficulties in terms of accuracy in this kind of situations. Distances, heights, surfaces and volumes are measured on the basis of the 3D models generated, and the results are contrasted. The differences are about 0.2% for the measurement of distances and heights, 0.3% for surfaces and 0.6% when measuring volumes. Although they are not important, they do not meet the order of magnitude that is presented by salespeople.

Keywords: accuracy, classical topographic, model tridimensional, photogrammetry, Uav.

Procedia PDF Downloads 129
3363 Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction

Authors: Melba D. Horton

Abstract:

Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest.

Keywords: diatoms, algae, biofuel, lipid, photobioreactor, frustule

Procedia PDF Downloads 185
3362 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe

Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante

Abstract:

High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.

Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation

Procedia PDF Downloads 344
3361 Acceleration of Lagrangian and Eulerian Flow Solvers via Graphics Processing Units

Authors: Pooya Niksiar, Ali Ashrafizadeh, Mehrzad Shams, Amir Hossein Madani

Abstract:

There are many computationally demanding applications in science and engineering which need efficient algorithms implemented on high performance computers. Recently, Graphics Processing Units (GPUs) have drawn much attention as compared to the traditional CPU-based hardware and have opened up new improvement venues in scientific computing. One particular application area is Computational Fluid Dynamics (CFD), in which mature CPU-based codes need to be converted to GPU-based algorithms to take advantage of this new technology. In this paper, numerical solutions of two classes of discrete fluid flow models via both CPU and GPU are discussed and compared. Test problems include an Eulerian model of a two-dimensional incompressible laminar flow case and a Lagrangian model of a two phase flow field. The CUDA programming standard is used to employ an NVIDIA GPU with 480 cores and a C++ serial code is run on a single core Intel quad-core CPU. Up to two orders of magnitude speed up is observed on GPU for a certain range of grid resolution or particle numbers. As expected, Lagrangian formulation is better suited for parallel computations on GPU although Eulerian formulation represents significant speed up too.

Keywords: CFD, Eulerian formulation, graphics processing units, Lagrangian formulation

Procedia PDF Downloads 403
3360 Application of Proper Foundation in Building Construction

Authors: Chukwuma Anya, Mekwa Eme

Abstract:

Foundation is popularly defined as the lowest load-bearing part of a building, typically below the ground level. It serves as an underlying base which acts as the principle on which every building stands. There are various types of foundations in practice, which includes the strip, pile, pad, and raft foundations, and each of these have their various applications in building construction. However due to lack of professional knowledge, cost, or scheduled time frame to complete a certain project, some of these foundation types are some times neglected or used interchangeably, resulting to misuse or abuse of the building materials man, power, and some times altering the stability, balance and aesthetics of most buildings. This research work is aimed at educating the academic community on the proper application of the various foundation types to suit different environments such as the rain forest, desert, swampy area, rocky area etc. A proper application of the foundation will ensure the safety of the building from acid grounds, damping and weakening of foundation, even building settlement and stability. In addition to those, it will improve aesthetics, maintain cost effectiveness both construction cost and maintenance cost. Finally it will ensure the safety of the building and its inhabitants. At the end of this research work we will be able to differentiate the various foundation types and there proper application in the design and construction of buildings.

Keywords: foundation, application, stability, aesthetics

Procedia PDF Downloads 69
3359 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 101
3358 Lake Bardawil Water Quality

Authors: Mohamed Elkashouty, Mohamed Elkammar, Mohamed Gomma, Menal Elminiami

Abstract:

Lake Bardawil is considered as one of the major morphological features of northern Sinai. It represents the largest fish production lake for export in Egypt. Nineteen and thirty one samples were collected from lake water during winter and summer (2005). TDS, cations, anions, Cd, Cu, Fe, Mn, Zn, Ni, Co and Pb concentrations were measured within winter and summer seasons. During summer, in the eastern sector of the lake, TDS concentration is decreased due northeastern part (38000 ppm), it is attributed to dilution from seawater through Boughaz II. The TDS concentration increased generally in the central and southern parts of the lake (44000 and 42000 ppm, respectively). It is caused by they are far from dilution from seawater, disconnected water body, shallow depth (mean 2 m), and high evaporation rate. In the western sector, the TDS content ranged from low (38000 ppm) in the northeastern part to high (50000 ppm) in the western part. Generally, the TDS concentration in the western sector is higher than those in the eastern. It is attributed to low volume of water body for the former, high evaporation rate, and therefore increase in TDS content in the lake water.During winter season, in the eastern sector, the wind velocity is high which enhance the water current to inflow into the lake through Boughaz I and II. The resultant water lake is diluted by seawater and rainfall in the winter season. The TDS concentration increased due southern part of the lake (42000 ppm) and declined in the northern part (36000 ppm). The concentration of Co, Ni, Pb, Fe, Cd, Zn, Cu, Mn and Pb within winter and summery seasons, in lake water are low, which considered as background concentrations with respect to seawater. Therefore, there are no industrial, agricultural and sanitary wastewaters dump into the lake. This confirms the statement that has been written at the entrance of Lake Bardawil at El-Telool area "Lake Bardawil, one of the purest lakes in the world". It indicate that the Lake Bardawil is excellent area for fish production for export (current state) and is the second main fish source in Egypt after the Mediterranean Sea after the illness of Lake Manzala.

Keywords: lake Bardawil, water quality, major ions, toxic metals

Procedia PDF Downloads 516
3357 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion

Authors: Adnan A. Y. Mustafa

Abstract:

Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.

Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping

Procedia PDF Downloads 149
3356 Correlates of Cost Effectiveness Analysis of Rating Scale and Psycho-Productive Multiple Choice Test for Assessing Students' Performance in Rice Production in Secondary Schools in Ebonyi State, Nigeria

Authors: Ogbonnaya Elom, Francis N. Azunku, Ogochukwu Onah

Abstract:

This study was carried out to determine the correlates of cost effectiveness analysis of rating scale and psycho-productive multiple choice test for assessing students’ performance in rice production. Four research questions were developed and answered, while one hypothesis was formulated and tested. Survey and correlation designs were adopted. The population of the study was 20,783 made up of 20,511 senior secondary (SSII) students and 272 teachers of agricultural science from 221 public secondary schools. Two schools with one intact class of 30 students each was purposely selected as sample based on certain criteria. Four sets of instruments were used for data collection. One of the instruments-the rating scale, was subjected to face and content validation while the other three were subjected to face validation only. Cronbach alpha technique was utilized to determine the internal consistency of the rating scale items which yielded a coefficient of 0.82 while the Kudder-Richardson (K-R 20) formula was involved in determining the stability of the psycho-productive multiple choice test items which yielded a coefficient of 0.80. Method of data collection involved a step-by-step approach in collecting data. Data collected were analyzed using percentage, weighted mean and sign test to answer the research questions while the hypothesis was tested using Spearman rank-order of correlation and t-test statistic. Findings of the study revealed among others, that psycho-productive multiple choice test is more effective than rating scale when the former is applied on the two groups of students. It was recommended among others, that the external examination bodies should integrate the use of psycho- productive multiple choice test into their examination policy and direct secondary schools to comply with it.

Keywords: correlates, cost-effectiveness, psycho-productive multiple-choice scale, rating scale

Procedia PDF Downloads 134
3355 Model of a Context-Aware Middleware for Mobile Workers

Authors: Esraa Moustafa, Gaetan Rey, Stephane Lavirotte, Jean-Yves Tigli

Abstract:

With the development of Internet of Things and Web of Things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services that meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We, therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service that is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent Observation Channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.

Keywords: auto-adaptation, context-awareness, middleware, reasoning engine

Procedia PDF Downloads 245
3354 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model

Authors: Fatemah A. Alqallaf, Debasis Kundu

Abstract:

The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.

Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators

Procedia PDF Downloads 137
3353 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials

Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco

Abstract:

Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.

Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites

Procedia PDF Downloads 259
3352 Significance of Treated Wasteater in Facing Consequences of Climate Change in Arid Regions

Authors: Jamal A. Radaideh, A. J. Radaideh

Abstract:

Being a problem threatening the planet and its ecosystems, the climate change has been considered for a long time as a disturbing topic impacting water resources in Jordan. Jordan is expected for instance to be highly vulnerable to climate change consequences given its unbalanced distribution between water resources availability and existing demands. Thus, action on adaptation to climate impacts is urgently needed to cope with the negative consequences of climate change. Adaptation to global change must include prudent management of treated wastewater as a renewable resource, especially in regions lacking groundwater or where groundwater is already over exploited. This paper highlights the expected negative effects of climate change on the already scarce water sources and to motivate researchers and decision makers to take precautionary measures and find alternatives to keep the level of water supplies at the limits required for different consumption sectors in terms of quantity and quality. The paper will focus on assessing the potential for wastewater recycling as an adaptation measure to cope with water scarcity in Jordan and to consider wastewater as integral part of the national water budget to solve environmental problems. The paper also identified a research topic designed to help the nation progress in making the most appropriate use of the resource, namely for agricultural irrigation. Wastewater is a promising alternative to fill the shortage in water resources, especially due to climate changes, and to preserve the valuable fresh water to give priority to securing drinking water for the population from these resources and at the same time raise the efficiency of the use of available resources. Jordan has more than 36 wastewater treatment plants distributed throughout the country and producing about 386,000 CM/day of reclaimed water. According to the reports of water quality control programs, more than 85 percent of this water is of a quality that is completely identical to the quality suitable for irrigation of field crops and forest trees according to the requirements of Jordanian Standard No. 893/2006.

Keywords: climate change effects on water resources, adaptation on climate change, treated wastewater recycling, arid and semi-arid regions, Jordan

Procedia PDF Downloads 110
3351 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 445
3350 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability

Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo

Abstract:

Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.

Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory

Procedia PDF Downloads 456
3349 Gasification of Trans-4-Hydroxycinnamic Acid with Ethanol at Elevated Temperatures

Authors: Shyh-Ming Chern, Wei-Ling Lin

Abstract:

Lignin is a major constituent of woody biomass, and exists abundantly in nature. It is the major byproducts from the paper industry and bioethanol production processes. The byproducts are mainly used for low-valued applications. Instead, lignin can be converted into higher-valued gaseous fuel, thereby helping to curtail the ever-growing price of oil and to slow down the trend of global warming. Although biochemical treatment is capable of converting cellulose into liquid ethanol fuel, it cannot be applied to the conversion of lignin. Alternatively, it is possible to convert lignin into gaseous fuel thermochemically. In the present work, trans-4-hydroxycinnamic acid, a model compound for lignin, which closely resembles the basic building blocks of lignin, is gasified in an autoclave with ethanol at elevated temperatures and pressures, that are above the critical point of ethanol. Ethanol, instead of water, is chosen, because ethanol dissolves trans-4-hydroxycinnamic acid easily and helps to convert it into lighter gaseous species relatively well. The major operating parameters for the gasification reaction include temperature (673-873 K), reaction pressure (5-25 MPa) and feed concentration (0.05-0.3 M). Generally, more than 80% of the reactant, including trans-4-hydroxycinnamic acid and ethanol, were converted into gaseous products at an operating condition of 873 K and 5 MPa.

Keywords: ethanol, gasification, lignin, supercritical

Procedia PDF Downloads 235