Search results for: optical surface metrology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7934

Search results for: optical surface metrology

3254 Green Technologies and Sustainability in the Care and Maintenance of Protective Textiles

Authors: R. Nayak, T. Panwar, R. Padhye

Abstract:

Protective textiles get soiled, stained and even worn during their use, which may not be usable after a certain period due to the loss of protective performance. They need regular cleaning and maintenance, which helps to extend the durability of the clothing, retains their useful properties and ensures that fresh clothing is ready to wear when needed. Generally, the cleaning processes used for various protective clothing include dry-cleaning (using solvents) or wet cleaning (using water). These cleaning processes can alter the fabric surface properties, dimensions, and physical, mechanical and performance properties. The technology of laundering and dry-cleaning has undergone several changes. Sustainable methods and products are available for faster, safer and improved cleaning of protective textiles. We performed a comprehensive and systematic review of green technologies and eco-friendly products for sustainable cleaning of protective textiles. Special emphasis is given on the care and maintenance procedures of protective textiles for protection from fire, bullets, chemical and other types of protective clothing.

Keywords: Sustainable cleaning, protective textiles, ecofriendly cleaning, ozone laundering, ultrasonic cleaning

Procedia PDF Downloads 239
3253 CO2 Sequestration for Enhanced Coal Bed Methane Recovery: A New Approach

Authors: Abhinav Sirvaiya, Karan Gupta, Pankaj Garg

Abstract:

The global warming due to the increased atmospheric carbon dioxide (CO2) concentration is the most prominent issue of environment that the world is facing today. To solve this problem at global level, sequestration of CO2 in deep and unmineable coal seams has come out as one of the attractive alternatives to reduce concentration in atmosphere. This sequestration technology is not only going to help in storage of CO2 beneath the sub-surface but is also playing a major role in enhancing the coal bed methane recovery (ECBM) by displacing the adsorbed methane. This paper provides the answers for the need of CO2 injection in coal seams and how recovery is enhanced. We have discussed the recent development in enhancing the coal bed methane recovery and the economic scenario of the same. The effect of injection on the coal reservoir has also been discussed. Coal is a good absorber of CO2. That is why the sequestration of CO2 is emerged out to be a great approach, not only for storage purpose but also for enhancing coal bed methane recovery.

Keywords: global warming, carbon dioxide (CO2), CO2 sequestration, enhance coal bed methane (ECBM)

Procedia PDF Downloads 506
3252 The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness

Authors: Bo-Gaun Chen, Chiung-Hui Huang, Mei-Ching Chiang, Kuo-Hsing Lee, Chia-Chen Ho, Chin-Ping Huang, Chin-Heng Tien

Abstract:

It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes.

Keywords: binding energy, color fastness, density functional theory (DFT), natural dyeing, metallic mordant

Procedia PDF Downloads 561
3251 Effects of Flexible Flat Feet on Electromyographic Activity of Erector Spinae and Multifidus

Authors: Abdallah Mohamed Kamel Mohamed Ali, Samah Saad Zahran, Mohamed Hamed Rashad

Abstract:

Background: Flexible flatfoot (FFF) has been considered as a risk factor for several lower limb injuries and mechanical low back pain. This was attributed to the dysfunction of the lumbopelvic-hip complex musculature. Objective: To investigate the influence of FFF on electromyographic activities of erector spinae and multifidus. Methods: A cross-section study was held between an FFF group (20 subjects) and a normal foot group (20 subjects). A surface electromyography was used to assess the electromyographic activity of erector spinae and multifidus. Group differences were assessed by the T-test. Results: There was a significant increase in EMG activities of erector spinae and multifidus in the FFF group compared with the normal group. Conclusion: There is an increase in EMG activities in erector spinae and multifidus in FFF subjects compared with normal subjects.

Keywords: electromyography, flatfoot, low back pain, paraspinal muscles

Procedia PDF Downloads 219
3250 Developing Models for Predicting Physiologically Impaired Arm Reaching Paths

Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Mustafa Mhawesh, Reza Langari

Abstract:

This paper describes the development of a model of an impaired human arm performing a reaching motion, which will be used to predict hand path trajectories for people with reduced arm joint mobility. Assuming that the arm was in contact with a surface during the entire movement, the contact conditions at the initial and final task locations were determined and used to generate the entire trajectory. The model was validated by comparing it to experimental data, which simulated an arm joint impairment by physically constraining the joint motion with a brace. Future research will include using the model in the development of physical training protocols that avoid early recruitment of “healthy” Degrees-Of-Freedom (DOF) for reaching motions, thus facilitating an Active Range-Of-Motion Recovery (AROM) for a particular impaired joint.

Keywords: higher order kinematic specifications, human motor coordination, impaired movement, kinematic synthesis

Procedia PDF Downloads 340
3249 Diversity of Microbial Ground Improvements

Authors: V. Ivanov, J. Chu, V. Stabnikov

Abstract:

Low cost, sustainable, and environmentally friendly microbial cements, grouts, polysaccharides and bioplastics are useful in construction and geotechnical engineering. Construction-related biotechnologies are based on activity of different microorganisms: urease-producing, acidogenic, halophilic, alkaliphilic, denitrifying, iron- and sulphate-reducing bacteria, cyanobacteria, algae, microscopic fungi. The bio-related materials and processes can be used for the bioaggregation, soil biogrouting and bioclogging, biocementation, biodesaturation of water-satured soil, bioencapsulation of soft clay, biocoating, and biorepair of the concrete surface. Altogether with the most popular calcium- and urea based biocementation, there are possible and often are more effective such methods of ground improvement as calcium- and magnesium based biocementation, calcium phosphate strengthening of soil, calcium bicarbonate biocementation, and iron- or polysaccharide based bioclogging. The construction-related microbial biotechnologies have a lot of advantages over conventional construction materials and processes.

Keywords: ground improvement, biocementation, biogrouting, microorganisms

Procedia PDF Downloads 230
3248 Delamination of Scale in a Fe Carbon Steel Surface by Effect of Interface Roughness and Oxide Scale Thickness

Authors: J. M. Lee, W. R. Noh, C. Y. Kim, M. G. Lee

Abstract:

Delamination of oxide scale has been often discovered at the interface between Fe carbon steel and oxide scale. Among several mechanisms of this delamination behavior, the normal tensile stress to the substrate-scale interface has been described as one of the main factors. The stress distribution at the interface is also known to be affected by thermal expansion mismatch between substrate and oxide scale, creep behavior during cooling and the geometry of the interface. In this study, stress states near the interface in a Fe carbon steel with oxide scale have been investigated using FE simulations. The thermal and mechanical properties of oxide scales are indicated in literature and Fe carbon steel is measured using tensile testing machine. In particular, the normal and shear stress components developed at the interface during bending are investigated. Preliminary numerical sensitivity analyses are provided to explain the effects of the interface geometry and oxide thickness on the delamination behavior.

Keywords: oxide scale, delamination, Fe analysis, roughness, thickness, stress state

Procedia PDF Downloads 346
3247 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances

Authors: Shabnam Pashaei, Mohammadali Badamchizadeh

Abstract:

This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.

Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization

Procedia PDF Downloads 411
3246 Ancient Egyptian Industry Technology of Canopic Jars, Analytical Study and Conservation Processes of Limestone Canopic Jar

Authors: Abd El Rahman Mohamed

Abstract:

Canopic jars made by the ancient Egyptians from different materials were used to preserve the viscera during the mummification process. The canopic jar studied here dates back to the Late Period (712-332 BC). It is found in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar was carved from limestone and covered with a monkey head lid with painted eyes and ears with red pigment and surrounded with black pigment. The jar contains bandages of textile containing mummy viscera with resin and black resin blocks. The canopic jars were made using the sculpting tools that were used by the ancient Egyptians, such as metal chisels (made of copper) and hammers and emptying the mass of the jar from the inside using a tool invented by the ancient Egyptians, which called the emptying drill. This study also aims to use analytical techniques to identify the components of the jar, its contents, pigments, and previous restoration materials and to understand its deterioration aspects. Visual assessment, isolation and identification of fungi, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used in our study. The jar showed different signs of deterioration, such as dust, dirt, stains, scratches, classifications, missing parts, and breaks; previous conservation materials include using iron wire, completion mortar and an adhesive for assembly. The results revealed that the jar was carved from Dolomite Limestone, red Hematite pigment, Mastic resin, and Linen textile bandages. The previous adhesive was Animal Glue and used Gypsum for the previous completion. The most dominant Microbial infection on the jar was found in the fungi of (Penicillium waksmanii), (Nigrospora sphaerica), (Actinomycetes sp) and (Spore-Forming Gram-Positive Bacilli). Conservation procedures have been applied with high accuracy to conserve the jar, including mechanical and chemical cleaning, re-assembling, completion and consolidation.

Keywords: Canopic jar, Consolidation, Mummification, Resin, Viscera.

Procedia PDF Downloads 74
3245 Investigations on Microstructural and Raman Scattering Properties of B2O3 Doped Ba(Ti1-xZrx)O3 Nanoceramics

Authors: Keri̇m Emre Öksüz, Şaduman Şen, Uğur Şen

Abstract:

0.5 wt. % B2O3–doped Ba (Ti1-xZrx) O3, (x=0-0.4) lead-free nanoceramics were synthesized using the solid-state reaction method by adopting the ball milling technique. The influence of the substitution content on crystallographic structure, phase transition, microstructure and sintering behaviour of BT and BZT ceramics were investigated. XRD analysis at room temperature revealed a structural transformation from tetragonal to rhombohedral with enhancement of ZrO2 content in the barium titanate matrix. The scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate microstructure and surface morphology of the sintered samples. The evolution of the Raman spectra was studied for various compositions, and the spectroscopic signature of the corresponding phase was determined. Scanning Electron Microscope (SEM) observations revealed enhanced microstructural uniformity and retarded grain growth with increasing Zr content.

Keywords: BaTiO3, barium-titanate-zirconate, nanoceramics, raman spectroscopy

Procedia PDF Downloads 344
3244 Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based on Passivity Approach

Authors: Jenn-Yih Chen, Bean-Yin Lee, Yuan-Chuan Hsu, Jui-Cheng Lin, Kuang-Chyi Lee

Abstract:

In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.

Keywords: adaptive law, passivity theorem, permanent magnet synchronous motor, sliding mode control

Procedia PDF Downloads 468
3243 Decorative Plant Motifs in Traditional Art and Craft Practices: Pedagogical Perspectives

Authors: Geetanjali Sachdev

Abstract:

This paper explores the decorative uses of plant motifs and symbols in traditional Indian art and craft practices in order to assess their pedagogical significance within the context of plant study in higher education in art and design. It examines existing scholarship on decoration and plants in Indian art and craft practices. The impulse to elaborate upon an existing form or surface is an intrinsic part of many Indian traditional art and craft traditions where a deeply ingrained love for decoration exists. Indian craftsmen use an array of motifs and embellishments to adorn surfaces across a range of practices, and decoration is widely seen in textiles, jewellery, temple sculptures, vehicular art, architecture, and various other art, craft, and design traditions. Ornamentation in Indian cultural traditions has been attributed to religious and spiritual influences in the lives of India’s art and craft practitioners. Through adornment, surfaces and objects were ritually transformed to function both spiritually and physically. Decorative formations facilitate spiritual development and attune our minds to concepts that support contemplation. Within practices of ornamentation and adornment, there is extensive use of botanical motifs as Indian art and craft practitioners have historically been drawn towards nature as a source of inspiration. This is due to the centrality of agriculture in the lives of Indian people as well as in religion, where plants play a key role in religious rituals and festivals. Plant representations thus abound in two-dimensional and three-dimensional surface designs and patterns where the motifs range from being realistic, highly stylized, and curvilinear forms to geometric and abstract symbols. Existing scholarship reveals that these botanical embellishments reference a wide range of plants that include native and non-indigenous plants, as well as imaginary and mythical plants. Structural components of plant anatomy, such as leaves, stems, branches and buds, and flowers, are part of the repertoire of design motifs used, as are plant forms indicating different stages of growth, such as flowering buds and flowers in full bloom. Symmetry is a characteristic feature, and within the decorative register of various practices, plants are part of border zones and bands, connecting corners and all-over patterns, used as singular motifs and floral sprays on panels, and as elements within ornamental scenes. The results of the research indicate that decoration as a mode of inquiry into plants can serve as a platform to learn about local and global biodiversity and plant anatomy and develop artistic modes of thinking symbolically, metaphorically, imaginatively, and relationally about the plant world. The conclusion is drawn that engaging with ornamental modes of plant representation in traditional Indian art and craft practices is pedagogically significant for two reasons. Decoration as a mode of engagement cultivates both botanical and artistic understandings of plants. It also links learners with the indigenous art and craft traditions of their own culture.

Keywords: art and design pedagogy, decoration, plant motifs, traditional art and craft

Procedia PDF Downloads 87
3242 A Case Study of Kick Control in Tough Potohar Region

Authors: Iftikhar Raza

Abstract:

Well control is the management of the hazardous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling. Oil well control is one of the most important aspects of drilling operations. Improper handling of kicks in oil well control can result in blowouts with very grave consequences, including the loss of valuable resources. Even though the cost of a blowout (as a result of improper/no oil well control) can easily reach several millions of US dollars, the monetary loss is not as serious as the other damages that can occur: irreparable damage to the environment, waste of valuable resources, ruined equipment, and most importantly, the safety and lives of personnel on the drilling rig. In this paper, case study of a well is discussed with field data showing the properties of the well. The whole procedure of controlling this well is illustrated in this which may be helpful for professional dealing with such kind of problems.

Keywords: kick control, kill sheet, oil well, gas drilling

Procedia PDF Downloads 512
3241 Fire Safety Engineering of Wood Dust Layer or Cloud

Authors: Marzena Półka, Bożena Kukfisz

Abstract:

This paper presents an analysis of dust explosion hazards in the process industries. It includes selected testing method of dust explosibility and presentation two of them according to experimental standards used by Department of Combustion and Fire Theory in The Main School of Fire Service in Warsaw. In the article are presented values of maximum acceptable surface temperature (MAST) of machines operating in the presence of dust cloud and chosen dust layer with thickness of 5 and 12,5mm. The comparative analysis, points to the conclusion that the value of the minimum ignition temperature of the layer (MITL) and the minimum ignition temperature of dust cloud (MTCD) depends on the granularity of the substance. Increasing the thickness of the dust layer reduces minimum ignition temperature of dust layer. Increasing the thickness of dust at the same time extends the flameless combustion and delays the ignition.

Keywords: fire safety engineering, industrial hazards, minimum ignition temperature, wood dust

Procedia PDF Downloads 320
3240 A Construct to Perform in Situ Deformation Measurement of Material Extrusion-Fabricated Structures

Authors: Daniel Nelson, Valeria La Saponara

Abstract:

Material extrusion is an additive manufacturing modality that continues to show great promise in the ability to create low-cost, highly intricate, and exceedingly useful structural elements. As more capable and versatile filament materials are devised, and the resolution of manufacturing systems continues to increase, the need to understand and predict manufacturing-induced warping will gain ever greater importance. The following study presents an in situ remote sensing and data analysis construct that allows for the in situ mapping and quantification of surface displacements induced by residual stresses on a specified test structure. This proof-of-concept experimental process shows that it is possible to provide designers and manufacturers with insight into the manufacturing parameters that lead to the manifestation of these deformations and a greater understanding of the behavior of these warping events over the course of the manufacturing process.

Keywords: additive manufacturing, deformation, digital image correlation, fused filament fabrication, residual stress, warping

Procedia PDF Downloads 91
3239 Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim

Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Dae-Gyu Park

Abstract:

Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes.

Keywords: sound absorption and insulation, insulator covering shelf trim, nonwoven fabric, honeycomb

Procedia PDF Downloads 733
3238 Offshore Power Transition Project

Authors: Kashmir Johal

Abstract:

Within a wider context of improving whole-life effectiveness of gas and oil fields, we have been researching how to generate power local to the wellhead. (Provision of external power to a subsea wellhead can be prohibitively expensive and results in uneconomic fields. This has been an oil/gas industry challenge for many years.) We have been developing a possible approach to “local” power generation and have been conducting technical, environmental, (and economic) research to develop a viable approach. We sought to create a workable design for a new type of power generation system that makes use of differential pressure that can exist between the sea surface and a gas (or oil reservoir). The challenge has not just been to design a system capable of generating power from potential energy but also to design it in such a way that it anticipates and deals with the wide range of technological, environmental, and chemical constraints faced in such environments. We believe this project shows the enormous opportunity in deriving clean, economic, and zero emissions renewable energy from offshore sources. Since this technology is not currently available, a patent has been filed to protect the advancement of this technology.

Keywords: renewable, energy, power, offshore

Procedia PDF Downloads 66
3237 Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters

Authors: G. Krishna Mohana Rao, P. Ravi Kumar

Abstract:

Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters.

Keywords: damping inserts, end milling, vibrations, nonlinear dynamic analysis, number of fingers

Procedia PDF Downloads 527
3236 CFD Analysis of Solar Floor Radiant Heating System with ‎PCM

Authors: Mohammad Nazififard, Reihane Faghihi

Abstract:

This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.

Keywords: solar floor, heating system, phase change material, computational fluid dynamics

Procedia PDF Downloads 246
3235 Optimization of Cu (In, Ga)Se₂ Based Thin Film Solar Cells: Simulation

Authors: Razieh Teimouri

Abstract:

Electrical modelling of Cu (In,Ga)Se₂ thin film solar cells is carried out with compositionally graded absorber and CdS buffer layer. Simulation results are compared with experimental data. Surface defect layers (SDL) are located in CdS/CIGS interface for improving open circuit voltage simulated structure through the analysis of the interface is investigated with or without this layer. When SDL removed, by optimizing the conduction band offset (CBO) position of the buffer/absorber layers with its recombination mechanisms and also shallow donor density in the CdS, the open circuit voltage increased significantly. As a result of simulation, excellent performance can be obtained when the conduction band of window layer positions higher by 0.2 eV than that of CIGS and shallow donor density in the CdS was found about 1×10¹⁸ (cm⁻³).

Keywords: CIGS solar cells, thin film, SCAPS, buffer layer, conduction band offset

Procedia PDF Downloads 230
3234 Experimental Study on Floating Breakwater Anchored by Piles

Authors: Yessi Nirwana Kurniadi, Nira Yunita Permata

Abstract:

Coastline is vulnerable to coastal erosion which damage infrastructure and buildings. Floating breakwaters are applied in order to minimize material cost but still can reduce wave height. In this paper, we investigated floating breakwater anchored by piles based on experimental study in the laboratory with model scale 1:8. Two type of floating model were tested with several combination wave height, wave period and surface water elevation to determined transmission coefficient. This experimental study proved that floating breakwater with piles can prevent wave height up to 27 cm. The physical model shows that ratio of depth to wave length is less than 0.6 and ratio of model width to wave length is less than 0.3. It is confirmed that if those ratio are less than those value, the transmission coefficient is 0.5. The result also showed that the first type model of floating breakwater can reduce wave height by 60.4 % while the second one can reduce up to 55.56 %.

Keywords: floating breakwater, experimental study, pile, transimission coefficient

Procedia PDF Downloads 533
3233 Waste from Drinking Water Treatment: The Feasibility for Application in Building Materials

Authors: Marco Correa

Abstract:

The increasing reduction of the volumes of surface water sources supplying most municipalities, as well as the rising demand for treated water, combined with the disposal of effluents from washing of decanters and filters of water treatment plants generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows alternatives for sludge dehydration from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, it is presented a case study for drainage in tanks geotextile, full-scale, which involve five sledge drainage tanks from WTP of the city of Rio Verde. Aiming to the reutilization of drained water from the sledge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to in the production of building materials.

Keywords: dehydration, effluent discharges, re-use, sludge, WTP sludge

Procedia PDF Downloads 313
3232 Cellolytic Activity of Bacteria of the Bacillus Genus Isolated from the Soil of Zailiskiy Alatau Slopes

Authors: I. Savitskaya, A. Kistaubayeva, A. Zhubanova, I. Blavachinskaiya, D. Ibrayeva, M. Abdulzhanova, A. Otarbay, A.Isabekova

Abstract:

This study was conducted for the investigation of number of cellulolytic bacteria and their ability in decomposition. Seven samples surface soil were collected on cellulose Zailiskii Alatau slopes. Cellulolitic activity of new strains of Bacillus, isolated from soil is determined. Isolated cellulose degrading bacteria were screened for determination of the highest cellulose activity by quantitative assay using Congo red, gravimetric assay and colorimetric DNS method trough of the determination of the parameters of sugar reduction. Strains are assigned to: B.subtilis, B.licheniformis, B. cereus and, В. megaterium. Bacillus strains consisting of several different types of cellulases have broad substrate specificity of cellulase complexes formed by them. Cellulolitic bacteria were recorded to have highest cellulase activity and selected for optimization of cellulase enzyme production.

Keywords: cellulose-degrading bacteria, cellulase complex, foothills soil, screening

Procedia PDF Downloads 455
3231 A Study on ZnO Nanoparticles Properties: An Integration of Rietveld Method and First-Principles Calculation

Authors: Kausar Harun, Ahmad Azmin Mohamad

Abstract:

Zinc oxide (ZnO) has been extensively used in optoelectronic devices, with recent interest as photoanode material in dye-sensitize solar cell. Numerous methods employed to experimentally synthesized ZnO, while some are theoretically-modeled. Both approaches provide information on ZnO properties, but theoretical calculation proved to be more accurate and timely effective. Thus, integration between these two methods is essential to intimately resemble the properties of synthesized ZnO. In this study, experimentally-grown ZnO nanoparticles were prepared by sol-gel storage method with zinc acetate dihydrate and methanol as precursor and solvent. A 1 M sodium hydroxide (NaOH) solution was used as stabilizer. The optimum time to produce ZnO nanoparticles were recorded as 12 hours. Phase and structural analysis showed that single phase ZnO produced with wurtzite hexagonal structure. Further work on quantitative analysis was done via Rietveld-refinement method to obtain structural and crystallite parameter such as lattice dimensions, space group, and atomic coordination. The lattice dimensions were a=b=3.2498Å and c=5.2068Å which were later used as main input in first-principles calculations. By applying density-functional theory (DFT) embedded in CASTEP computer code, the structure of synthesized ZnO was built and optimized using several exchange-correlation functionals. The generalized-gradient approximation functional with Perdew-Burke-Ernzerhof and Hubbard U corrections (GGA-PBE+U) showed the structure with lowest energy and lattice deviations. In this study, emphasize also given to the modification of valence electron energy level to overcome the underestimation in DFT calculation. Both Zn and O valance energy were fixed at Ud=8.3 eV and Up=7.3 eV, respectively. Hence, the following electronic and optical properties of synthesized ZnO were calculated based on GGA-PBE+U functional within ultrasoft-pseudopotential method. In conclusion, the incorporation of Rietveld analysis into first-principles calculation was valid as the resulting properties were comparable with those reported in literature. The time taken to evaluate certain properties via physical testing was then eliminated as the simulation could be done through computational method.

Keywords: density functional theory, first-principles, Rietveld-refinement, ZnO nanoparticles

Procedia PDF Downloads 309
3230 Thermal Spraying of Titanium-Based Alloys on Steel and Aluminum Substrates

Authors: Ionut Claudiu Roata, Catalin Croitoru

Abstract:

Thermal spraying emerges as a versatile and robust technique for enhancing construction steel with protective coatings tailored for anti-corrosion, insulation, and aesthetics. This study showcases the successful application of flame thermal sprayed titanium-based coatings on EN-S273JR steel substrates and on aluminum. Optimizing the process at a 150 mm spray distance and employing argon as a carrier gas, we achieved coatings with characteristic morphologies and a minimal amount of oxides presence at particle boundaries. Corrosion tests in 3.5% wt. NaCl solution confirmed the coatings’ superior performance, displaying an improved corrosion resistance increase over uncoated steel or aluminum. These results underscore the efficacy of thermal spraying in significantly bolstering the durability of construction steel and aluminum, marking it as a pivotal technique for multifunctional coating applications.

Keywords: thermal spraying, corrosion resistance, surface properties, mechanical properties

Procedia PDF Downloads 29
3229 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation

Procedia PDF Downloads 112
3228 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing

Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong

Abstract:

Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe

Procedia PDF Downloads 309
3227 Agriculture Yield Prediction Using Predictive Analytic Techniques

Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee

Abstract:

India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.

Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models

Procedia PDF Downloads 317
3226 Stream Extraction from 1m-DTM Using ArcGIS

Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo

Abstract:

Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.

Keywords: digital terrain models, hydrology tools, strahler method, stream classification

Procedia PDF Downloads 275
3225 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study

Authors: Laidi Maamar, Hanini Salah

Abstract:

The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.

Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria

Procedia PDF Downloads 499