Search results for: mitigation techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7556

Search results for: mitigation techniques

2876 Iodine-Doped Carbon Dots as a Catalyst for Water Remediation Application

Authors: Anurag Kumar Pandey, Tapan Kumar Nath, Santanu Dhara

Abstract:

Polluted water by industrial effluents or dyes has become a major global concern, particularly in developing countries. Such environmental contaminants constitute a serious threat to biodiversity, ecosystems, and human health worldwide; thus, their treatment is critical. The usage of nanoparticles has been discovered to be a potential water treatment method with high efficiency, cheap manufacturing costs, and green synthesis. Carbon dots have attracted the interest of researchers due to their unique properties, such as high water solubility, ease of production, great electron-donating ability, and low toxicity. In this context, we synthesized iodine-doped clove buds-derived carbon dots (I-CCDs) for the Fenton-like degradation of environmental contaminants in water (such as methylene blue (MB) and rhodamine-B (Rh-B) dye). The formation of I-CCDs has been confirmed using various spectroscopy techniques. I-CCDs have demonstrated remarkable optical, cytocompatibility, and antibacterial capabilities. The C-dots that were synthesized were found to be an effective catalyst for the reduction of MB and Rh-B utilizing NaBH4 as a reducing agent. UV-visible spectroscopy was used to construct a detailed pathway for dye reduction step by step. As-prepared I-CCDs have the potential to be a promising solution for wastewater purification and treatment systems.

Keywords: iodine-doped carbon dots, wastewater treatment and purification, environmental friendly, antibacterial

Procedia PDF Downloads 86
2875 A Review Of Blended Wing Body And Slender Delta Wing Performance Utilizing Experimental Techniques And Computational Fluid Dynamics

Authors: Abhiyan Paudel, Maheshwaran M Pillai

Abstract:

This paper deals with the optimization and comparison of slender delta wing and blended wing body. The objective is to study the difference between the two wing types and analyze the various aerodynamic characteristics of both of these types.The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. The purported advantages of the BWB approach are efficient high-lift wings and a wide airfoil-shaped body. Similarly, symmetric separation vortices over slender delta wing may become asymmetric as the angle of attack is increased beyond a certain value, causing asymmetric forces even at symmetric flight conditions. The transition of the vortex pattern from being symmetric to asymmetric over symmetric bodies under symmetric flow conditions is a fascinating fluid dynamics problem and of major importance for the performance and control of high-maneuverability flight vehicles that favor the use of slender bodies. With the use of Star CCM, we analyze both the fluid properties. The CL, CD and CM were investigated in steady state CFD of BWB at Mach 0.3 and through wind tunnel experiments on 1/6th model of BWB at Mach 0.1. From CFD analysis pressure variation, Mach number contours and turbulence area was observed.

Keywords: Coefficient of Lift, Coefficient of Drag, CFD=Computational Fluid Dynamics, BWB=Blended Wing Body, slender delta wing

Procedia PDF Downloads 540
2874 Influence of Instructors in Engaging Online Graduate Students in Active Learning in the United States

Authors: Ehi E. Aimiuwu

Abstract:

As of 2017, many online learning professionals, institutions, and journals are still wondering how instructors can keep student engaged in the online learning environment to facilitate active learning effectively. The purpose of this qualitative single-case and narrative research is to explore whether online professors understand their role as mentors and facilitators of students’ academic success by keeping students engaged in active learning based on personalized experience in the field. Data collection tools that were used in the study included an NVivo 12 Plus qualitative software, an interview protocol, a digital audiotape, an observation sheet, and a transcription. Seven online professors in the United States from LinkedIn and residencies were interviewed for this study. Eleven online teaching techniques from previous research were used as the study framework. Data analysis process, member checking, and key themes were used to achieve saturation. About 85.7% of professors agreed on rubric as the preferred online grading technique. About 57.1% agreed on professors logging in daily, students logging in about 2-5 times weekly, knowing students to increase accountability, email as preferred communication tool, and computer access for adequate online learning. About 42.9% agreed on syllabus for clear class expectations, participation to show what has been learned, and energizing students for creativity.

Keywords: class facilitation, class management, online teaching, online education, pedagogy

Procedia PDF Downloads 119
2873 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 88
2872 Pattern of Cybercrime Among Adolescents: An Exploratory Study

Authors: Mohamamd Shahjahan

Abstract:

Background: Cybercrime is common phenomenon at present both developed and developing countries. Young generation, especially adolescents now engaged internet frequently and they commit cybercrime frequently in Bangladesh. Objective: In this regard, the present study on the pattern of cybercrime among youngers of Bangladesh has been conducted. Methods and tools: This study was a cross-sectional study, descriptive in nature. Non-probability accidental sampling technique has been applied to select the sample because of the nonfinite population and the sample size was 167. A printed semi-structured questionnaire was used to collect data. Results: The study shows that adolescents mainly do hacking (94.6%), pornography (88.6%), software piracy (85 %), cyber theft (82.6%), credit card fraud (81.4%), cyber defamation (75.6%), sweet heart swindling (social network) (65.9%) etc. as cybercrime. According to findings the major causes of cybercrime among the respondents in Bangladesh were- weak laws (88.0%), defective socialization (81.4%), peer group influence (80.2%), easy accessibility to internet (74.3%), corruption (62.9%), unemployment (58.7%), and poverty (24.6%) etc. It is evident from the study that 91.0% respondents used password cracker as the techniques of cyber criminality. About 76.6%, 72.5%, 71.9%, 68.3% and 60.5% respondents’ technique was key loggers, network sniffer, exploiting, vulnerability scanner and port scanner consecutively. Conclusion: The study concluded that pattern of cybercrimes is frequently changing and increasing dramatically. Finally, it is recommending that the private public partnership and execution of existing laws can be controlling this crime.

Keywords: cybercrime, adolescents, pattern, internet

Procedia PDF Downloads 85
2871 AHP and TOPSIS Methods for Supplier Selection Problem in Medical Devices Company

Authors: Sevde D. Karayel, Ediz Atmaca

Abstract:

Supplier selection subject is vital because of development competitiveness and performance of firms which have right, rapid and with low cost procurement. Considering the fact that competition between firms is no longer on their supply chains, hence it is very clear that performance of the firms’ not only depend on their own success but also success of all departments in supply chain. For this purpose, firms want to work with suppliers which are cost effective, flexible in terms of demand and high quality level for customer satisfaction. However, diversification and redundancy of their expectations from suppliers, supplier selection problems need to be solved as a hard problem. In this study, supplier selection problem is discussed for critical piece, which is using almost all production of products in and has troubles with lead time from supplier, in a firm that produces medical devices. Analyzing policy in the current situation of the firm in the supplier selection indicates that supplier selection is made based on the purchasing department experience and other authorized persons’ general judgments. Because selection do not make based on the analytical methods, it is caused disruptions in production, lateness and extra cost. To solve the problem, AHP and TOPSIS which are multi-criteria decision making techniques, which are effective, easy to implement and can analyze many criteria simultaneously, are used to make a selection among alternative suppliers.

Keywords: AHP-TOPSIS methods, multi-criteria decision making, supplier selection problem, supply chain management

Procedia PDF Downloads 266
2870 Economic Efficiency and Profitability of Cowpea Production in Billiri Local Government Area of Gombe State, Nigeria

Authors: Salihu Umaru Biye, Ali Disa, Y. Adamu, Muhammad Elhafiz Ahmad

Abstract:

This study evaluated the economic efficiency and profitability of cowpea production in Billiri Local Government Area of Gombe State, Nigeria. The objectives were to describe the socioeconomic characteristics of cowpea farmers, analyze the costs and returns of production, determine technical and allocative efficiencies, and identify constraints to cowpea farming. Using multistage, purposive, and simple random sampling techniques, we selected 200 cowpea farmers. Data were collected through structured questionnaires and analyzed using descriptive and inferential statistics. Results indicated that 76% of farmers were under 45 years old, with a mean age of 36.3 years. The majority (74%) were male, 73% married, and had an average family size of 8. About 46% were full-time farmers, 95.5% were literate, with an average farming experience of 15.45 years and an average farm size of 3.08 hectares. Cowpea production proved profitable with a gross margin of ₦326,740.25 per hectare, a gross income of ₦525,020.00 per hectare, and total variable costs of ₦198,279.75 per hectare, resulting in an operating ratio of 0.61. The return on investment was 2.21, with a mean technical efficiency of 0.75 and a mean economic efficiency of 0.71. The findings suggest that cowpea production is profitable, yielding ₦2.21 for every ₦1.00 invested. Enhancing farming practices could further improve efficiency and profitability.

Keywords: economic efficiency, profitability, cowpea production, technical efficiency, allocative efficiency, Gombe State

Procedia PDF Downloads 12
2869 A Comparative Study on Creep Modeling in Composites

Authors: Roham Rafiee, Behzad Mazhari

Abstract:

Composite structures, having incredible properties, have gained considerable popularity in the last few decades. Among all types, polymer matrix composites are being used extensively due to their unique characteristics including low weight, convenient fabrication process and low cost. Having polymer as matrix, these type of composites show different creep behavior when compared to metals and even other types of composites since most polymers undergo creep even in room temperature. One of the most challenging topics in creep is to introduce new techniques for predicting long term creep behavior of materials. Depending on the material which is being studied the appropriate method would be different. Methods already proposed for predicting long term creep behavior of polymer matrix composites can be divided into five categories: (1) Analytical Modeling, (2) Empirical Modeling, (3) Superposition Based Modeling (Semi-empirical), (4) Rheological Modeling, (5) Finite Element Modeling. Each of these methods has individual characteristics. Studies have shown that none of the mentioned methods can predict long term creep behavior of all PMC composites in all circumstances (loading, temperature, etc.) but each of them has its own priority in different situations. The reason to this issue can be found in theoretical basis of these methods. In this study after a brief review over the background theory of each method, they are compared in terms of their applicability in predicting long-term behavior of composite structures. Finally, the explained materials are observed through some experimental studies executed by other researchers.

Keywords: creep, comparative study, modeling, composite materials

Procedia PDF Downloads 446
2868 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 425
2867 A Comparison between Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process for Rationality Evaluation of Land Use Planning Locations in Vietnam

Authors: X. L. Nguyen, T. Y. Chou, F. Y. Min, F. C. Lin, T. V. Hoang, Y. M. Huang

Abstract:

In Vietnam, land use planning is utilized as an efficient tool for the local government to adjust land use. However, planned locations are facing disapproval from people who live near these planned sites because of environmental problems. The selection of these locations is normally based on the subjective opinion of decision-makers and is not supported by any scientific methods. Many researchers have applied Multi-Criteria Analysis (MCA) methods in which Analytic Hierarchy Process (AHP) is the most popular techniques in combination with Fuzzy set theory for the subject of rationality assessment of land use planning locations. In this research, the Fuzzy set theory and Analytic Network Process (ANP) multi-criteria-based technique were used for the assessment process. The Fuzzy Analytic Hierarchy Process was also utilized, and the output results from two methods were compared to extract the differences. The 20 planned landfills in Hung Ha district, Thai Binh province, Vietnam was selected as a case study. The comparison results indicate that there are different between weights computed by AHP and ANP methods and the assessment outputs produced from these two methods also slight differences. After evaluation of existing planned sites, some potential locations were suggested to the local government for possibility of land use planning adjusts.

Keywords: Analytic Hierarchy Process, Analytic Network Process, Fuzzy set theory, land use planning

Procedia PDF Downloads 426
2866 Interaction of Hemoglobin with Sodium Dodecyl Sulfate and Ascorbic Acid: A Chemometrics Study

Authors: Radnoosh Mirzajani, Ebrahim Mirzajani, Heshmatollah Ebrahimi-Najafabadi

Abstract:

Introduction: Hydrogen peroxide can be produced over the interaction of sodium dodecyl sulfate (SDS) with hemoglobin which would facilitate the oxidation process of hemoglobin. The presence of ascorbic acid (AA) can hinder the extreme oxidation of oxyhemoglobin. Methods: Hemoglobin was purified from blood samples according to the method of Williams. UV-V is spectra of Hb solutions mixed with different concentrations of SDS and AA were recorded. Chemical components, concentration, and spectral profiles were estimated using MCR-ALS techniques. Results: The intensity of soret band of OxyHb decreased due to the interaction of Hb with SDS. Furthermore, changes were also observed for peaks at 575 and 540. Subspace plots confirm the presence of OxyHb, MetHb, and Hemichrom in each mixture. The resolved concentration profiles using MCR-ALS reveal that the mole fraction of OxyHb increased upon the presence of AA up to a concentration level of 3 mM. The higher concentration of AA shows a reverse effect. AA demonstrated a dual effect on the interaction of hemoglobin with SDS. AA disturbs the interaction of SDS and hemoglobin and exhibits an antioxidative effect. However, it caused a tiny decrease in the mole fraction of OxyHb. Conclusions: H2O2 produces upon the interaction of OxyHb with SDS. Oxidation of OxyHb facilitates due to overproduction of H2O2. Ascorbic acid interacts with H2O2 to form dehydroascorbic acid. Furthermore, the available free SDS was reduced because the Gibbs free energy for micelle production of SDS became more negative in the presence of AA.

Keywords: hemoglobin, ascorbic acid, sodium dodecyl sulfate, multivariate curve resolution, antioxidant

Procedia PDF Downloads 122
2865 DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease

Authors: Rasha M. Hussein, Reem M. Hashem, Laila A. Rashed

Abstract:

Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism.

Keywords: , Alzheimer’s disease, chaperone, DNAJB6, aggregation

Procedia PDF Downloads 519
2864 Chemical Analysis and Cytotoxic Evaluation of Asphodelus Aestivus Brot. Flowers

Authors: Mai M. Farid, Mona El-Shabrawy, Sameh R. Hussein, Ahmed Elkhateeb, El-Said S. Abdel-Hameed, Mona M. Marzouk

Abstract:

Asphodelus aestivus Brot. Is a wild plant distributed in Egypt and is considered one of the five Asphodelus spp. from the family Asphodelaceae; it grows in dry grasslands and on rocky or sandy soil. The chemical components of A. aestivus flowers extract were analyzed using different chromatographic and spectral techniques and led to the isolation of two anthraquinones identified as emodin and emodin-O-glucoside. In addition to, five flavonoid compounds;kaempferol,Kaempferol-3-O-glucoside,Apigenin-6-C-glucoside-7-O-glucoside (Saponarine), luteolin 7-O-β-glucopyranoside, Isoorientin-O-malic acid which is a new compound in nature. The LC-ESI-MS/MS analysis of the flower extract of A. aestivus led to the identification of twenty- two compounds characterized by the presence of flavones, flavonols, and flavone C-glycosides. While GC/MS analysis led to the identification of 24 compounds comprising 98.32% of the oil, the major components of the oil were 9, 12, 15-Octadecatrieoic acid methyl ester 28.72%, and 9, 12-Octadecadieroic acid (Z, Z)-methyl ester 19.96%. In vitro cytotoxic activity of the aqueous methanol extract of A. aestivus flowers against HEPG2, HCT-116, MCF-7, and A549 culture was examined and showed moderate inhibition (62.3±1.1)% on HEPG2 cell line followed by (36.8±0.2)% inhibition on HCT-116 and a weak inhibition (5.7± 0.0.2) on MCF-7 cell line followed by (4.5± 0.4) % inhibition on A549 cell line and this is considered the first cytotoxic report of A. aestivus flowers.

Keywords: Anthraquinones, Asphodelus aestivus, Cytotoxic activity, Flavonoids, LC-ESI-MS/MS

Procedia PDF Downloads 226
2863 Application to Molecular Electronics of Thin Layers of Organic Materials

Authors: M. I. Benamrani, H. Benamrani

Abstract:

In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.

Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution

Procedia PDF Downloads 93
2862 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 131
2861 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements

Authors: Zhidong Zhang, Amanda Resendez

Abstract:

This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.

Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis

Procedia PDF Downloads 137
2860 Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques

Authors: Mohd Asim, K. Nageswara Rao

Abstract:

The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east.

Keywords: river migration, remote sensing, river Yamuna, anthropogenic impacts, DSAS, Delhi-NCR

Procedia PDF Downloads 129
2859 Corporate Foundation Giving and Female Labour Force Participation in Ghana

Authors: Shaibu Salifu, Ofori Boachie

Abstract:

Philanthropy is part and parcel of African identity; it is intrinsically embedded in the life of Africans where at any point in time people contribute to philanthropy through giving or receiving. Even though, research on corporate philanthropy has gained attention in the academic space of Ghana, little have been done on the effects of corporate foundation giving on female labour force participation in Ghana. We investigate the effects of corporate foundations giving on female labour force participation in Ghana. We applied convenient and purposive sampling techniques to collect qualitative data from thirty (30) women in Ghana through interviews and open-ended questionnaires. We used Nvivo to carryout analysis on the data and our results indicate that corporate foundation giving has significant effect on female labour force participation in Ghana. In addition, contrary to the feminization U-Shape Hypothesis, evidence suggest that, to a larger extent marriage and fertility (birth) of women positively contribute to the female labour force participation in Ghana. Nevertheless, the study was limited by the number of women who were interviewed, time constraints of women for elaborate discussions on the issues (constructs) of the study and fear of victimization by authorities on most of their responses to the interviews. The findings have implications for all stakeholders of philanthropy: academia, governments, civil society organizations, corporate foundations, women of Ghana and other relevant bodies.

Keywords: corporate philanthropy, corporate foundations, corporate foundation giving, female labour force participation, women, Ghana

Procedia PDF Downloads 87
2858 High-Performance Supercapacitors with Activated Carbon and Nickel Sulfide Composite

Authors: Sarita Sindhu, Vinay Kumar

Abstract:

The growing demand for efficient energy storage in applications such as portable electronics, electric vehicles, and renewable energy systems has emphasized the need for advanced energy storage materials. This study addresses the pressing need for efficient energy storage materials by exploring the synthesis and application of a composite of activated carbon (AC) and nickel sulfide (NiS) for supercapacitors. Activated carbon, possessing high surface area and excellent electrochemical stability, was combined with nickel sulfide, a transition metal sulfide with high theoretical capacitance, to enhance the electrochemical performance of the composite material. Characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), were employed to analyze the morphology, crystalline structure, and bonding characteristics, confirming the successful formation of a uniformly distributed AC/NiS composite. Electrochemical evaluations revealed that the AC/NiS composite exhibited superior capacitance, excellent rate capability, and enhanced cycling stability compared to pure AC and NiS. The synergistic effect of the large surface area from activated carbon and redox-active sites of nickel sulfide provided an improved energy storage capacity, making this composite a promising electrode material for high-performance supercapacitors.

Keywords: activated carbon, energy storage, sulfide, surface area

Procedia PDF Downloads 19
2857 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India

Authors: Alisha Sinha, Laxmi Kant Sharma

Abstract:

Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.

Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters

Procedia PDF Downloads 27
2856 A Comparative Analysis of Asymmetric Encryption Schemes on Android Messaging Service

Authors: Mabrouka Algherinai, Fatma Karkouri

Abstract:

Today, Short Message Service (SMS) is an important means of communication. SMS is not only used in informal environment for communication and transaction, but it is also used in formal environments such as institutions, organizations, companies, and business world as a tool for communication and transactions. Therefore, there is a need to secure the information that is being transmitted through this medium to ensure security of information both in transit and at rest. But, encryption has been identified as a means to provide security to SMS messages in transit and at rest. Several past researches have proposed and developed several encryption algorithms for SMS and Information Security. This research aims at comparing the performance of common Asymmetric encryption algorithms on SMS security. The research employs the use of three algorithms, namely RSA, McEliece, and RABIN. Several experiments were performed on SMS of various sizes on android mobile device. The experimental results show that each of the three techniques has different key generation, encryption, and decryption times. The efficiency of an algorithm is determined by the time that it takes for encryption, decryption, and key generation. The best algorithm can be chosen based on the least time required for encryption. The obtained results show the least time when McEliece size 4096 is used. RABIN size 4096 gives most time for encryption and so it is the least effective algorithm when considering encryption. Also, the research shows that McEliece size 2048 has the least time for key generation, and hence, it is the best algorithm as relating to key generation. The result of the algorithms also shows that RSA size 1024 is the most preferable algorithm in terms of decryption as it gives the least time for decryption.

Keywords: SMS, RSA, McEliece, RABIN

Procedia PDF Downloads 167
2855 Natural Fibre Composite Structural Sections for Residential Stud Wall Applications

Authors: Mike R. Bambach

Abstract:

Increasing awareness of environmental concerns is leading a drive towards more sustainable structural products for the built environment. Natural fibres such as flax, jute and hemp have recently been considered for fibre-resin composites, with a major motivation for their implementation being their notable sustainability attributes. While recent decades have seen substantial interest in the use of such natural fibres in composite materials, much of this research has focused on the materials aspects, including fibre processing techniques, composite fabrication methodologies, matrix materials and their effects on the mechanical properties. The present study experimentally investigates the compression strength of structural channel sections of flax, jute and hemp, with a particular focus on their suitability for residential stud wall applications. The section geometry is optimised for maximum strength via the introduction of complex stiffeners in the webs and flanges. Experimental results on both natural fibre composite channel sections and typical steel and timber residential wall studs are compared. The geometrically optimised natural fibre composite channels are shown to have compression capacities suitable for residential wall stud applications, identifying them as a potentially viable alternative to traditional building materials in such application, and potentially other light structural applications.

Keywords: channel sections, natural fibre composites, residential stud walls, structural composites

Procedia PDF Downloads 317
2854 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand

Authors: Gaurav Kumar Sinha

Abstract:

The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.

Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning

Procedia PDF Downloads 39
2853 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control

Procedia PDF Downloads 343
2852 The Effectiveness of Video Clips to Enhance Students’ Achievement and Motivation on History Learning and Facilitation

Authors: L. Bih Ni, D. Norizah Ag Kiflee, T. Choon Keong, R. Talip, S. Singh Bikar Singh, M. Noor Mad Japuni, R. Talin

Abstract:

The purpose of this study is to determine the effectiveness of video clips to enhance students' achievement and motivation towards learning and facilitating of history. We use narrative literature studies to illustrate the current state of the two art and science in focused areas of inquiry. We used experimental method. The experimental method is a systematic scientific research method in which the researchers manipulate one or more variables to control and measure any changes in other variables. For this purpose, two experimental groups have been designed: one experimental and one groups consisting of 30 lower secondary students. The session is given to the first batch using a computer presentation program that uses video clips to be considered as experimental group, while the second group is assigned as the same class using traditional methods using dialogue and discussion techniques that are considered a control group. Both groups are subject to pre and post-trial in matters that are handled by the class. The findings show that the results of the pre-test analysis did not show statistically significant differences, which in turn proved the equality of the two groups. Meanwhile, post-test analysis results show that there was a statistically significant difference between the experimental group and the control group at an importance level of 0.05 for the benefit of the experimental group.

Keywords: Video clips, Learning and Facilitation, Achievement, Motivation

Procedia PDF Downloads 157
2851 How Context and Problem Based Learning Effects Students Behaviors in Teaching Thermodynamics

Authors: Mukadder Baran, Mustafa Sözbilir

Abstract:

The purpose of this paper is to investigate the applicabillity of the Context- and Problem-Based Learning (CPBL) in general chemistry course to the subject of “Thermodynamics” but also the influence of CPBL on students’ achievement, retention of knowledge, their interest, attitudes, motivation and problem-solving skills. The study group included 13 freshman students who were selected with the sampling method appropriate to the purpose among those taking the course of General Chemistry within the Program of Medical Laboratory Techniques at Hakkari University. The application was carried out in the Spring Term of the academic year of 2012-2013. As the data collection tool, Lesson Observation form were used. In the light of the observations held, it was revealed that CPBL increased the students’ intragroup and intergroup communication skills as well as their self-confidence and developed their skills in time management, presentation, reporting, and technology use; and that they were able to relate chemistry to daily life. Depending on these findings, it could be suggested that the area of use of CPBL be widened; that seminars related to constructive methods be organized for teachers. In this way, it is believed that students will not be passive in the group any longer. In addition, it was concluded that in order to avoid the negative effects of the socio-cultural structure on the education system, research should be conducted in places where there is socio-cultural obstacles, and appropriate solutions should be suggested and put into practice.

Keywords: chemistry, education, science, context-based learning

Procedia PDF Downloads 410
2850 Integrated Electric Resistivity Tomography and Magnetic Techniques in a Mineralization Zone, Erkowit, Red Sea State, Sudan

Authors: Khalid M. Kheiralla, Georgios Boutsis, Mohammed Y. Abdelgalil, Mohammed A. Ali, Nuha E. Mohamed

Abstract:

The present study focus on integrated geoelectrical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. By itself, no geophysical anomaly can simply be correlated with lithology, instead, magnetic and ERT anomalies raised due to variations in some specific physical properties of rocks which were extremely useful in mineral exploration.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 434
2849 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel

Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi

Abstract:

Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.

Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray

Procedia PDF Downloads 437
2848 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment

Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha

Abstract:

When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.

Keywords: contract risk assessment, NLP, transfer learning, question answering

Procedia PDF Downloads 134
2847 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct

Procedia PDF Downloads 232