Search results for: innovative fashion design process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25548

Search results for: innovative fashion design process

20868 A Review on the Impact of Institutional Setting on Land Use Conflicts in Coastal Areas

Authors: Roni Susman, Thomas Weith

Abstract:

This article explores how institutional setting, mainly from institutionalism, could clearly explain the understanding of land use conflict analysis in coastal areas and has been used in current practices. Institutional setting appears as a guideline that is committed by the stakeholders who are involved directly or indirectly in land management process. This paper is aimed to identify the setting of institutional and to measure how the conflicts occur, how the actors act and influence the process, how is the condition to apply the appropriate framework for adequate solution of land use conflict in coastal area in order to enhance better decisions. To reflect the current practice and use of theories a qualitative review of 150 scientific peer-reviewed papers regarding the issue of land use conflicts in coastal areas as well as institutional process is included. The selection of peer-reviewed papers is obtained through a structured literature survey of the recently published database in a way to investigate the variances of institutional between theory and practices specifically in the case of coastal land management.

Keywords: coastal areas, institutional settings, land use conflict, land governance, actors’ constellation, analytical framework

Procedia PDF Downloads 165
20867 GE as a Channel Material in P-Type MOSFETs

Authors: S. Slimani, B. Djellouli

Abstract:

Novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials like Ge is a very promising material due to its high mobility and is being considered to replace Si in the channel to achieve higher drive currents and switching speeds .Various approaches to circumvent the scaling limits to benchmark the performance of nanoscale MOSFETS with different channel materials, the optimized structure is simulated within nextnano in order to highlight the quantum effects on DG MOSFETs when Si is replaced by Ge and SiO2 is replaced by ZrO2 and HfO2as the gate dielectric. The results have shown that Ge MOSFET have the highest mobility and high permittivity oxides serve to maintain high drive current. The simulations show significant improvements compared with DGMOSFET using SiO2 gate dielectric and Si channel.

Keywords: high mobility, high-k, quantum effects, SOI-DGMOSFET

Procedia PDF Downloads 342
20866 Near Infrared Spectrometry to Determine the Quality of Milk, Experimental Design Setup and Chemometrics: Review

Authors: Meghana Shankara, Priyadarshini Natarajan

Abstract:

Infrared (IR) spectroscopy has revolutionized the way we look at materials around us. Unraveling the pattern in the molecular spectra of materials to analyze the composition and properties of it has been one of the most interesting challenges in modern science. Applications of the IR spectrometry are numerous in the field’s pharmaceuticals, health, food and nutrition, oils, agriculture, construction, polymers, beverage, fabrics and much more limited only by the curiosity of the people. Near Infrared (NIR) spectrometry is applied robustly in analyzing the solids and liquid substances because of its non-destructive analysis method. In this paper, we have reviewed the application of NIR spectrometry in milk quality analysis and have presented the modes of measurement applied in NIRS measurement setup, Design of Experiment (DoE), classification/quantification algorithms used in the case of milk composition prediction like Fat%, Protein%, Lactose%, Solids Not Fat (SNF%) along with different approaches for adulterant identification. We have also discussed the important NIR ranges for the chosen milk parameters. The performance metrics used in the comparison of the various Chemometric approaches include Root Mean Square Error (RMSE), R^2, slope, offset, sensitivity, specificity and accuracy

Keywords: chemometrics, design of experiment, milk quality analysis, NIRS measurement modes

Procedia PDF Downloads 248
20865 Effectiveness Factor for Non-Catalytic Gas-Solid Pyrolysis Reaction for Biomass Pellet Under Power Law Kinetics

Authors: Haseen Siddiqui, Sanjay M. Mahajani

Abstract:

Various important reactions in chemical and metallurgical industries fall in the category of gas-solid reactions. These reactions can be categorized as catalytic and non-catalytic gas-solid reactions. In gas-solid reaction systems, heat and mass transfer limitations put an appreciable influence on the rate of the reaction. The consequences can be unavoidable for overlooking such effects while collecting the reaction rate data for the design of the reactor. Pyrolysis reaction comes in this category that involves the production of gases due to the interaction of heat and solid substance. Pyrolysis is also an important step in the gasification process and therefore, the gasification reactivity majorly influenced by the pyrolysis process that produces the char, as a feed for the gasification process. Therefore, in the present study, a non-isothermal transient 1-D model is developed for a single biomass pellet to investigate the effect of heat and mass transfer limitations on the rate of pyrolysis reaction. The obtained set of partial differential equations are firstly discretized using the concept of ‘method of lines’ to obtain a set of ordinary differential equation with respect to time. These equations are solved, then, using MATLAB ode solver ode15s. The model is capable of incorporating structural changes, porosity variation, variation in various thermal properties and various pellet shapes. The model is used to analyze the effectiveness factor for different values of Lewis number and heat of reaction (G factor). Lewis number includes the effect of thermal conductivity of the solid pellet. Higher the Lewis number, the higher will be the thermal conductivity of the solid. The effectiveness factor was found to be decreasing with decreasing Lewis number due to the fact that smaller Lewis numbers retard the rate of heat transfer inside the pellet owing to a lower rate of pyrolysis reaction. G factor includes the effect of the heat of reaction. Since the pyrolysis reaction is endothermic in nature, the G factor takes negative values. The more the negative value higher will be endothermic nature of the pyrolysis reaction. The effectiveness factor was found to be decreasing with more negative values of the G factor. This behavior can be attributed to the fact that more negative value of G factor would result in more energy consumption by the reaction owing to a larger temperature gradient inside the pellet. Further, the analytical expressions are also derived for gas and solid concentrations and effectiveness factor for two limiting cases of the general model developed. The two limiting cases of the model are categorized as the homogeneous model and unreacted shrinking core model.

Keywords: effectiveness factor, G-factor, homogeneous model, lewis number, non-catalytic, shrinking core model

Procedia PDF Downloads 114
20864 Economic Development Process: A Compartmental Analysis of a Model with Two Delays

Authors: Amadou Banda Ndione, Charles Awono Onana

Abstract:

In this paper the compartmental approach is applied to build a macroeconomic model characterized by countries. We consider a total of N countries that are subdivided into three compartments according to their economic status: D(t) denotes the compartment of developing countries at time t, E(t) stands for the compartment of emerging countries at time t while A(t) represents advanced countries at time t. The model describes the process of economic development and includes the notion of openness through collaborations between countries. Two delays appear in this model to describe the average time necessary for collaborations between countries to become efficient for their development process. Our model represents the different stages of development. It further gives the conditions under which a country can change its economic status and demonstrates the short-term positive effect of openness on economic growth. In addition, we investigate bifurcation by considering the delay as a bifurcation parameter and examine the onset and termination of Hopf bifurcations from a positive equilibrium. Numerical simulations are provided in order to illustrate the theoretical part and to support discussion.

Keywords: compartmental systems, delayed dynamical system, economic development, fiscal policy, hopf bifurcation

Procedia PDF Downloads 121
20863 Reintegrating Forensic Mental Health Service Users into Communities in the Western Cape, South Africa

Authors: Zolani Metu

Abstract:

The death of more than 140 psychiatric patients who were unethically deinstitutionalized from the Life Esidimeni hospital Johannesburg, in 2016, shined a light on South Africa’s failing public mental healthcare system. Compounded by insufficient research evidence on African deinstitutionalization, this necessitates inquiries into deinstitutionalized mental healthcare, reintegration and community-based mental healthcare within the South African context. This study employed a quantitative research approach which utilized a cross-sectional research design, to investigate experiences with the reintegration of institutionalized forensic mental health service users into communities in the Western Cape, South Africa. A convenience sample of 100 mental health care workers from different occupational and organizational backgrounds in the Western Cape was purposively selected using the Western Cape Health Directorate as a sampling frame. A self-administered questionnaire (SAQ) was used as the data collection instrument. The results of the study indicate that criminogenic factors such as substance use, history of violent behaviour, criminal history and disruptive social behaviour complicate the reintegration of forensic mental health service users into communities. The current extent of reintegration of forensic mental health service users was found to be 'poor' (46%; n= 46); and financial difficulties, criminogenic factors and limited Community-Based Care (CBC) facilities were identified as key barriers to the reintegration process. 56% of all job applications for forensic mental health service users were unsuccessful, and 53% of all applications for their admission into CBC facilities were declined. Although social support (informal) was found to be essential for successful reintegration, institutional support (formal) through assertive community treatment (35%; n= 35) and CBC facilities (21%) and the disability grant (DG=50%) was found to be more important for family coping and reintegration. Moreover, 72% of respondents had positive perceptions about the process of reintegration; no statistically significant relationship was found between years of experience and perceptions about reintegration (P-value = 0.062); and perceptions were not found to be a barrier to reintegration. No statistically significant relationship was found between years of working experience and understanding the legislative framework of deinstitutionalization (P-Value =.0.061). However, using a Chi-square test, a significant relationship (P-value = 0.021) was found between sex and understanding the legal framework involved in the process of reintegration. The study recommends a post-2020 deinstitutionalization agenda that factors-in criminogenic realities associated with forensic mental health service users, and affirms the strengthening of PHC and community based care systems as precedents of successful deinstitutionalization and reintegration of mental health service users.

Keywords: forensic mental health, deinstitutionalization, reintegration, mental health service users

Procedia PDF Downloads 144
20862 Countercurrent Flow Simulation of Gas-Solid System in a Purge Column Using Computational Fluid Dynamics Techniques

Authors: T. J. Jamaleddine

Abstract:

Purge columns or degasser vessels are widely used in the polyolefin process for removing trapped hydrocarbons and in-excess catalyst residues from the polymer particles. A uniform distribution of purged gases coupled with a plug-flow characteristic inside the column system is desirable to obtain optimum desorption characteristics of trapped hydrocarbon and catalyst residues. Computational Fluid Dynamics (CFD) approach is a promising tool for design optimization of these vessels. The success of this approach is profoundly dependent on the solution strategy and the choice of geometrical layout at the vessel outlet. Filling the column with solids and initially solving for the solids flow minimized numerical diffusion substantially. Adopting a cylindrical configuration at the vessel outlet resulted in less numerical instability and resembled the hydrodynamics flow of solids in the hopper segment reasonably well.

Keywords: CFD, degasser vessel, gas-solids flow, gas purging, purge column, species transport

Procedia PDF Downloads 110
20861 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method

Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad

Abstract:

The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.

Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance

Procedia PDF Downloads 432
20860 Assessing Justice, Security and Human Rights Violations in Crisis Situations: The Case of Cameroon

Authors: Forbah Julius Ajamah

Abstract:

The protection of human rights and respect of the rule of law in Sub-Saharan African is a constant challenge due to ongoing and protracted conflict situations, political instability, shrinking democratic space and allegations of large-scale corruption in some countries. Conflict and/or crisis is most often resulting from constant violations of individual rights, with the risk increasing when many human rights are violated in a systematic or widespread fashion. Violations related to economic, social and cultural rights at times are as significant as violations of civil and political rights. Cameroon a country in Sub-Saharan African, for many years now has been confronted by numerous crises across different regions. Despite measures carried out, it has been reported that lesser and lesser attention has been placed on various conflict/crisis across Cameroon. To reach a common understanding of how both the economic, social and cultural rights has been violated and related impact on the quality of life, this paper evaluates justice, security and human rights violations in the present crisis situations. Without the prevention of human rights violations, wider conflict and/or crisis, will continue to have a negative impact in the lives of the inhabitants. This paper aims at providing evidence to support the fact that effective prevention requires early identification of risks that could allow for preventive and/or mitigatory measures to be designed and implemented.

Keywords: justice, security, human rights abuses, conflicts, crisis

Procedia PDF Downloads 68
20859 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 50
20858 The Risks of 'Techtopia': Reviewing the Negative Lessons of Smart City Development

Authors: Amanda Grace Ahl, Matthew Brummer

Abstract:

‘Smart cities’ are not always as ‘smart’ as the term suggests, which is not often covered in the associated academic and public policy literatures. In what has become known as the smart city approach to urban planning, governments around the world are seeking to harness the power of information and communications technology with increasingly advanced data analytics to address major social, economic, and environmental issues reshaping the ways people live. The definitional and theoretical boundaries of the smart city framework are broad and at times ambiguous, as is empirical treatment of the topic. However, and for all the disparity, in investigating any number of institutional and policy prescriptions to the challenges faced by current and emerging metropoles, scholarly thought has hinged overwhelmingly on value-positive conceptions of informatics-centered design. From enhanced quality of services, to increased efficiency of resources, to improved communication between societal stakeholders, the smart city design is championed as a technological wellspring capable of providing answers to the systemic issues stymying a utopian image of the city. However, it is argued that this ‘techtopia’, has resulted in myopia within the discipline as to value-negative implications of such planning, such as weaknesses in practicality, scalability, social equity and affordability of solutions. In order to more carefully examine this observation - that ‘stupid’ represents an omitted variable bias in the study of ‘smart’ - this paper reviews critical cases of unsuccessful smart city developments. It is argued that also understanding the negative factors affiliated with the development processes is imperative for the advancement of theoretical foundations, policies, and strategies to further the smart city as an equitable, holistic urban innovation. What emerges from the process-tracing carried out in this study are distinctly negative lessons of smart city projects, the significance of which are vital for understanding how best to conceive smart urban planning in the 21st century.

Keywords: case study, city management, innovation system, negative lessons, smart city development

Procedia PDF Downloads 394
20857 Design of a 28-nm CMOS 2.9-64.9-GHz Broadband Distributed Amplifier with Floating Ground CPW

Authors: Tian-Wei Huang, Wei-Ting Bai, Yu-Tung Cheng, Jeng-Han Tsai

Abstract:

In this paper, a 1-stage 6-section conventional distributed amplifier (CDA) structure distributed power amplifier (DPA) fabricated in a 28-nm HPC+ 1P9M CMOS process is proposed. The transistor size selection is introduced to achieve broadband power matching and thus remains a high flatness output power and power added efficiency (PAE) within the bandwidth. With the inductive peaking technique, the high-frequency pole appears and the high-frequency gain is increased; the gain flatness becomes better as well. The inductive elements used to form an artificial transmission line are built up with a floating ground coplanar waveguide plane (CPWFG) rather than a microstrip line, coplanar waveguide (CPW), or spiral inductor to get better performance. The DPA achieves 12.6 dB peak gain at 52.5 GHz with 2.9 to 64.9 GHz 3-dB bandwidth. The Psat is 11.4 dBm with PAEMAX of 10.6 % at 25 GHz. The output 1-dB compression point power is 9.8 dBm.

Keywords: distributed power amplifier (DPA), gain bandwidth (GBW), floating ground CPW, inductive peaking, 28-nm, CMOS, 5G.

Procedia PDF Downloads 61
20856 Standardized Description and Modeling Methods of Semiconductor IP Interfaces

Authors: Seongsoo Lee

Abstract:

IP reuse is an effective design methodology for modern SoC design to reduce effort and time. However, description and modeling methods of IP interfaces are different due to different IP designers. In this paper, standardized description and modeling methods of IP interfaces are proposed. It consists of 11 items such as IP information, model provision, data type, description level, interface information, port information, signal information, protocol information, modeling level, modeling information, and source file. The proposed description and modeling methods enables easy understanding, simulation, verification, and modification in IP reuse.

Keywords: interface, standardization, description, modeling, semiconductor IP

Procedia PDF Downloads 481
20855 Co-Creation of Content with the Students in Entrepreneurship Education to Capture Entrepreneurship Phenomenon in an Innovative Way

Authors: Prema Basargekar

Abstract:

Facilitating the subject ‘Entrepreneurship Education’ in higher education, such as management studies, can be exhilarating as well as challenging. It is a multi-disciplinary and ever-evolving subject. Capturing entrepreneurship as a phenomenon in a holistic manner is a daunting task as it requires covering various dimensions such as new ideas generation, entrepreneurial traits, business opportunities scanning, the role of policymakers, value creation, etc., to name a few. Implicit entrepreneurship theory and effectuation are two different theories that focus on engaging the participants to create content by using their own experiences, perceptions, and belief systems. It helps in understanding the phenomenon holistically. The assumption here is that all of us are part of the entrepreneurial ecosystem, and effective learning can come through active engagement and peer learning by all the participants together. The present study is an attempt to use these theories in the class assignment given to the students at the beginning of the course to build the course content and understand entrepreneurship as a phenomenon in a better way through peer learning. The assignment was given to three batches of MBA post-graduate students doing the program in one of the private business schools in India. The subject of ‘Entrepreneurship Management’ is facilitated in the third trimester of the first year. At the beginning of the course, the students were given the assignment to submit a brief write-up/ collage/picture/poem or in any other format about “What entrepreneurship means to you?” They were asked to give their candid opinions about entrepreneurship as a phenomenon as they perceive it. Nearly 156 students doing post-graduate MBA submitted the assignment. These assignments were further used to find answers to two research questions. – 1) Are students able to use divergent and innovative forms to express their opinions, such as poetry, illustrations, videos, etc.? 2) What are various dimensions of entrepreneurship which are emerging to understand the phenomenon in a better way? The study uses the Brawn and Clark framework of reflective thematic analysis for qualitative analysis. The study finds that students responded to this assignment enthusiastically and expressed their thoughts in multiple ways, such as poetry, illustration, personal narrative, videos, etc. The content analysis revealed that there could be seven dimensions to looking at entrepreneurship as a phenomenon. They are 1) entrepreneurial traits, 2) entrepreneurship as a journey, 3) value creation by entrepreneurs in terms of economic and social value, 4) entrepreneurial role models, 5) new business ideas and innovations, 6) personal entrepreneurial experiences and aspirations, and 7) entrepreneurial ecosystem. The study concludes that an implicit approach to facilitate entrepreneurship education helps in understanding it as a live phenomenon. It also encourages students to apply divergent and convergent thinking. It also helps in triggering new business ideas or stimulating the entrepreneurial aspirations of the students. The significance of the study lies in the application of implicit theories in the classroom to make higher education more engaging and effective.

Keywords: co-creation of content, divergent thinking, entrepreneurship education, implicit theory

Procedia PDF Downloads 54
20854 A Novel Design of Inset Feed Patch Antenna for Ultra Wide Band Application

Authors: Priyanka Aggarwal, Priyanka Mangla

Abstract:

This work has focused on the aspect of UWB antenna design, which is very suitable for portable UWB applications. The design of new UWB antenna faces some challenges. The antenna should be compact, preferably conformal, and low cost for manufacture, and have good electrical performance, such as good matching, directional radiation performance over a wide band, good time response, etc. Keeping these goals in mind a compact and directional compact open-slot antenna was built. The antenna radiating structure is in the form of two exponentially tapered arms that lie on the opposite sides of the substrate. The antenna operates over the frequency band from 2.95 GHz to more than 12.1 GHz. It exhibits a directive radiation performance with a peak gain which is between 5.4 dBi and 8.3 dBi in the specified band. The antenna has linear phase response over the entire UWB frequency range and hence constant group delay which is vital for transmission and reception of sub-nanosecond pulses. Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits.

Keywords: inset feed patch antenna, ultra wide band, radiation performance, geometry, antenna

Procedia PDF Downloads 417
20853 Q-Methodology to Identify Perceptions of Deceased Organ Donation in the UK

Authors: Reem Muaid, Thomas Chesney

Abstract:

Background: Attitude towards organ donation is predominantly positive in the UK; however, the donation rate remains low. To develop more effective interventions, this research aims to examine the behavioural barriers in organ donations using Q methodology to elicit patterns of overlap among different barriers and motivators. Method: A Q methodology study was conducted with 40 participants aged 19-64 who were asked to rank 47 statements on issues that are associated with organ donation. By-person factor analysis using Centroid method and Varimax rotation was conducted to bring out patterns in the way statements were ranked to obtain groupings of participants who had arranged the statements in similar fashion. Results: Four viewpoints were extracted: The Realist, the Optimist Hesitant, the Pessimist Determinant, and the Empathetic. Salient barriers to organ donation presented in each viewpoint suggest that perceived lack of knowledge, anxiety, mistrust in the healthcare system, and lack of cue to action are the main barriers to organ donation. Consensus statements suggest that religion and family agreement are inconsequential if the attitude to organ donation is well-formed. Conclusion: There are different attitudes around deceased organ donation that were uncovered using Q methodology. These results suggest that people respond to behavioural change campaigns differently depending on their own perceptions of organ donation. We argue that a paradigm shift in behavioural interventions is underpinned by understanding the overlapping yet distinctive nature of perceived perspectives.

Keywords: organ donation, Q methodology, behavioural interventions, post Q Survey

Procedia PDF Downloads 75
20852 Multi-Plane Wrist Movement: Pathomechanics and Design of a 3D-Printed Splint

Authors: Sigal Portnoy, Yael Kaufman-Cohen, Yafa Levanon

Abstract:

Introduction: Rehabilitation following wrist fractures often includes exercising flexion-extension movements with a dynamic splint. However, during daily activities, we combine most of our wrist movements with radial and ulnar deviations. Also, the multi-plane wrist motion, named the ‘dart throw motion’ (DTM), was found to be a more stable motion in healthy individuals, in term of the motion of the proximal carpal bones, compared with sagittal wrist motion. The aim of this study was therefore to explore the pathomechanics of the wrist in a common multi-plane movement pattern (DTM) and design a novel splint for rehabilitation following distal radius fractures. Methods: First, a multi-axis electro-goniometer was used to quantify the plane angle of motion of the dominant and non-dominant wrists during various activities, e.g. drinking from a glass of water and answering a phone in 43 healthy individuals. The following protocols were then implemented with a population following distal radius fracture. Two dynamic scans were performed, one of the sagittal wrist motion and DTM, in a 3T magnetic resonance imaging (MRI) device, bilaterally. The scaphoid and lunate carpal bones, as well as the surface of the distal radius, were manually-segmented in SolidWorks and the angles of motion of the scaphoid and lunate bones were calculated. Subsequently, a patient-specific splint was designed using 3D scans of the hand. The brace design comprises of a proximal attachment to the arm and a distal envelope of the palm. An axle with two wheels is attached to the proximal part. Two wires attach the proximal part with the medial-palmar and lateral-ventral aspects of the distal part: when the wrist extends, the first wire is released and the second wire is strained towards the radius. The opposite occurs when the wrist flexes. The splint was attached to the wrist using Velcro and constrained the wrist movement to the desired calculated multi-plane of motion. Results: No significant differences were found between the multi-plane angles of the dominant and non-dominant wrists. The most common daily activities occurred at a plane angle of approximately 20° to 45° from the sagittal plane and the MRI studies show individual angles of the plane of motion. The printed splint fitted the wrist of the subjects and constricted movement to the desired multi-plane of motion. Hooks were inserted on each part to allow the addition of springs or rubber bands for resistance training towards muscle strengthening in the rehabilitation setting. Conclusions: It has been hypothesized that activation of the wrist in a multi-plane movement pattern following distal radius fractures will accelerate the recovery of the patient. Our results show that this motion can be determined from either the dominant or non-dominant wrists. The design of the patient-specific dynamic splint is the first step towards assessing whether splinting to induce combined movement is beneficial to the rehabilitation process, compared to conventional treatment. The evaluation of the clinical benefits of this method, compared to conventional rehabilitation methods following wrist fracture, are a part of a PhD work, currently conducted by an occupational therapist.

Keywords: distal radius fracture, rehabilitation, dynamic magnetic resonance imaging, dart throw motion

Procedia PDF Downloads 282
20851 Film Sensors for the Harsh Environment Application

Authors: Wenmin Qu

Abstract:

A capacitance level sensor with a segmented film electrode and a thin-film volume flow sensor with an innovative by-pass sleeve is presented as industrial products for the application in a harsh environment. The working principle of such sensors is well known; however, the traditional sensors show some limitations for certain industrial measurements. The two sensors presented in this paper overcome this limitation and enlarge the application spectrum. The problem is analyzed, and the solution is given. The emphasis of the paper is on developing the problem-solving concepts and the realization of the corresponding measuring circuits. These should give advice and encouragement, how we can still develop electronic measuring products in an almost saturated market.

Keywords: by-pass sleeve, charge transfer circuit, fixed ΔT circuit, harsh environment, industrial application, segmented electrode

Procedia PDF Downloads 102
20850 An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding

Authors: Baghdasaryan Marinka

Abstract:

The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors.

Keywords: synchronous motor, abnormal operating mode, electric drive, algorithm, energy factor, technological factor

Procedia PDF Downloads 119
20849 BIM Application Research Based on the Main Entrance and Garden Area Project of Shanghai Disneyland

Authors: Ying Yuken, Pengfei Wang, Zhang Qilin, Xiao Ben

Abstract:

Based on the main entrance and garden area (ME&G) project of Shanghai Disneyland, this paper introduces the application of BIM technology in this kind of low-rise comprehensive building with complex facade system, electromechanical system and decoration system. BIM technology is applied to the whole process of design, construction and completion of the whole project. With the construction of BIM application framework of the whole project, the key points of BIM modeling methods of different systems and the integration and coordination of BIM models are elaborated in detail. The specific application methods of BIM technology in similar complex low-rise building projects are sorted out. Finally, the paper summarizes the benefits of BIM technology application, and puts forward some suggestions for BIM management mode and practical application of similar projects in the future.

Keywords: BIM, complex low-rise building, BIM modeling, model integration and coordination, 3D scanning

Procedia PDF Downloads 147
20848 Impact of Curvatures in the Dike Line on Wave Run-up and Wave Overtopping, ConDike-Project

Authors: Malte Schilling, Mahmoud M. Rabah, Sven Liebisch

Abstract:

Wave run-up and overtopping are the relevant parameters for the dimensioning of the crest height of dikes. Various experimental as well as numerical studies have investigated these parameters under different boundary conditions (e.g. wave conditions, structure type). Particularly for the dike design in Europe, a common approach is formulated where wave and structure properties are parameterized. However, this approach assumes equal run-up heights and overtopping discharges along the longitudinal axis. However, convex dikes have a heterogeneous crest by definition. Hence, local differences in a convex dike line are expected to cause wave-structure interactions different to a straight dike. This study aims to assess both run-up and overtopping at convexly curved dikes. To cast light on the relevance of curved dikes for the design approach mentioned above, physical model tests were conducted in a 3D wave basin of the Ludwig-Franzius-Institute Hannover. A dike of a slope of 1:6 (height over length) was tested under both regular waves and TMA wave spectra. Significant wave heights ranged from 7 to 10 cm and peak periods from 1.06 to 1.79 s. Both run-up and overtopping was assessed behind the curved and straight sections of the dike. Both measurements were compared to a dike with a straight line. It was observed that convex curvatures in the longitudinal dike line cause a redirection of incident waves leading to a concentration around the center point. Measurements prove that both run-up heights and overtopping rates are higher than on the straight dike. It can be concluded that deviations from a straight longitudinal dike line have an impact on design parameters and imply uncertainties within the design approach in force. Therefore, it is recommended to consider these influencing factors for such cases.

Keywords: convex dike, longitudinal curvature, overtopping, run-up

Procedia PDF Downloads 279
20847 Prediction of Finned Projectile Aerodynamics Using a Lattice-Boltzmann Method CFD Solution

Authors: Zaki Abiza, Miguel Chavez, David M. Holman, Ruddy Brionnaud

Abstract:

In this paper, the prediction of the aerodynamic behavior of the flow around a Finned Projectile will be validated using a Computational Fluid Dynamics (CFD) solution, XFlow, based on the Lattice-Boltzmann Method (LBM). XFlow is an innovative CFD software developed by Next Limit Dynamics. It is based on a state-of-the-art Lattice-Boltzmann Method which uses a proprietary particle-based kinetic solver and a LES turbulent model coupled with the generalized law of the wall (WMLES). The Lattice-Boltzmann method discretizes the continuous Boltzmann equation, a transport equation for the particle probability distribution function. From the Boltzmann transport equation, and by means of the Chapman-Enskog expansion, the compressible Navier-Stokes equations can be recovered. However to simulate compressible flows, this method has a Mach number limitation because of the lattice discretization. Thanks to this flexible particle-based approach the traditional meshing process is avoided, the discretization stage is strongly accelerated reducing engineering costs, and computations on complex geometries are affordable in a straightforward way. The projectile that will be used in this work is the Army-Navy Basic Finned Missile (ANF) with a caliber of 0.03 m. The analysis will consist in varying the Mach number from M=0.5 comparing the axial force coefficient, normal force slope coefficient and the pitch moment slope coefficient of the Finned Projectile obtained by XFlow with the experimental data. The slope coefficients will be obtained using finite difference techniques in the linear range of the polar curve. The aim of such an analysis is to find out the limiting Mach number value starting from which the effects of high fluid compressibility (related to transonic flow regime) lead the XFlow simulations to differ from the experimental results. This will allow identifying the critical Mach number which limits the validity of the isothermal formulation of XFlow and beyond which a fully compressible solver implementing a coupled momentum-energy equations would be required.

Keywords: CFD, computational fluid dynamics, drag, finned projectile, lattice-boltzmann method, LBM, lift, mach, pitch

Procedia PDF Downloads 397
20846 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 29
20845 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 299
20844 Establishing Control Chart Limits for Rounded Measurements

Authors: Ran Etgar

Abstract:

The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X̄ chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter ȳ is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.

Keywords: SPC, round-off data, control limit, rounding error

Procedia PDF Downloads 56
20843 Simulation and Experimental Verification of Mechanical Response of Additively Manufactured Lattice Structures

Authors: P. Karlsson, M. Åsberg, R. Eriksson, P. Krakhmalev, N. Strömberg

Abstract:

Additive manufacturing of lattice structures is promising for lightweight design, but the mechanical response of the lattices structures is not fully understood. This investigation presents the results of simulation and experimental investigations of the grid and shell-based gyroid lattices. Specimens containing selected lattices were designed with an in-house software and manufactured from 316L steel with Renishaw AM400 equipment. Results of simulation and experimental investigations correlated well.

Keywords: additive manufacturing, computed tomography, material characterization, lattice structures, robust lightweight design

Procedia PDF Downloads 148
20842 Application of Digital Tools for Improving Learning

Authors: José L. Jiménez

Abstract:

The use of technology in the classroom is an issue that is constantly evolving. Digital age students learn differently than their teachers did, so now the teacher should be constantly evolving their methods and teaching techniques to be more in touch with the student. In this paper a case study presents how were used some of these technologies by accompanying a classroom course, this in order to provide students with a different and innovative experience as their teacher usually presented the activities to develop. As students worked in the various activities, they increased their digital skills by employing unknown tools that helped them in their professional training. The twenty-first century teacher should consider the use of Information and Communication Technologies in the classroom thinking in skills that students of the digital age should possess. It also takes a brief look at the history of distance education and it is also highlighted the importance of integrating technology as part of the student's training.

Keywords: digital tools, on-line learning, social networks, technology

Procedia PDF Downloads 380
20841 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 59
20840 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation

Procedia PDF Downloads 261
20839 Design, Development and Evaluation of a Portable Recording System to Capture Dynamic Presentations using the Teacher´s Tablet PC

Authors: Enrique Barra, Abel Carril, Aldo Gordillo, Joaquin Salvachua, Juan Quemada

Abstract:

Computers and multimedia equipment have improved a lot in the last years. They have reduced costs and size while at the same time has increased their capabilities. These improvements allowed us to design and implement a portable recording system that also integrates the teacher´s tablet PC to capture what he/she writes on the slides and all that happens in it. This paper explains this system in detail and the validation of the recordings that we did after using it to record all the lectures of a course in our university called “Communications Software”. The results show that pupils used the recordings for different purposes and consider them useful for a variety of things, especially after missing a lecture.

Keywords: recording system, capture dynamic presentations, lecture recording

Procedia PDF Downloads 346