Search results for: heat transfer and pressure drop
4144 Nanofluidic Cell for Resolution Improvement of Liquid Transmission Electron Microscopy
Authors: Deybith Venegas-Rojas, Sercan Keskin, Svenja Riekeberg, Sana Azim, Stephanie Manz, R. J. Dwayne Miller, Hoc Khiem Trieu
Abstract:
Liquid Transmission Electron Microscopy (TEM) is a growing area with a broad range of applications from physics and chemistry to material engineering and biology, in which it is possible to image in-situ unseen phenomena. For this, a nanofluidic device is used to insert the nanoflow with the sample inside the microscope in order to keep the liquid encapsulated because of the high vacuum. In the last years, Si3N4 windows have been widely used because of its mechanical stability and low imaging contrast. Nevertheless, the pressure difference between the inside fluid and the outside vacuum in the TEM generates bulging in the windows. This increases the imaged fluid volume, which decreases the signal to noise ratio (SNR), limiting the achievable spatial resolution. With the proposed device, the membrane is fortified with a microstructure capable of stand higher pressure differences, and almost removing completely the bulging. A theoretical study is presented with Finite Element Method (FEM) simulations which provide a deep understanding of the membrane mechanical conditions and proves the effectiveness of this novel concept. Bulging and von Mises Stress were studied for different membrane dimensions, geometries, materials, and thicknesses. The microfabrication of the device was made with a thin wafer coated with thin layers of SiO2 and Si3N4. After the lithography process, these layers were etched (reactive ion etching and buffered oxide etch (BOE) respectively). After that, the microstructure was etched (deep reactive ion etching). Then the back side SiO2 was etched (BOE) and the array of free-standing micro-windows was obtained. Additionally, a Pyrex wafer was patterned with windows, and inlets/outlets, and bonded (anodic bonding) to the Si side to facilitate the thin wafer handling. Later, a thin spacer is sputtered and patterned with microchannels and trenches to guide the nanoflow with the samples. This approach reduces considerably the common bulging problem of the window, improving the SNR, contrast and spatial resolution, increasing substantially the mechanical stability of the windows, allowing a larger viewing area. These developments lead to a wider range of applications of liquid TEM, expanding the spectrum of possible experiments in the field.Keywords: liquid cell, liquid transmission electron microscopy, nanofluidics, nanofluidic cell, thin films
Procedia PDF Downloads 2574143 A Large-Strain Thermoviscoplastic Damage Model
Authors: João Paulo Pascon
Abstract:
A constitutive model accounting for large strains, thermoviscoplasticity, and ductile damage evolution is proposed in the present work. To this end, a fully Lagrangian framework is employed, considering plane stress conditions and multiplicative split of the deformation gradient. The full model includes Gurson’s void growth, nucleation and coalescence, plastic work heating, strain and strain-rate hardening, thermal softening, and heat conductivity. The contribution of the work is the combination of all the above-mentioned features within the finite-strain setting. The model is implemented in a computer code using triangular finite elements and nonlinear analysis. Two mechanical examples involving ductile damage and finite strain levels are analyzed: an inhomogeneous tension specimen and the necking problem. Results demonstrate the capabilities of the developed formulation regarding ductile fracture and large deformations.Keywords: ductile damage model, finite element method, large strains, thermoviscoplasticity
Procedia PDF Downloads 894142 Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil
Authors: Moez Selmi, Mariem Kacem, Mehrez Jamei, Philippe Dubujet
Abstract:
Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil.Keywords: EPB, clay soils, foam agent, hydro-mechanical properties, degradation
Procedia PDF Downloads 3754141 Validation of a Reloading Vehicle Design by Finite Element Analysis
Authors: Tuğrul Aksoy, Hüseyin Karabıyık
Abstract:
Reloading vehicles are the vehicles which are generally equipped with a crane and used to carry a stowage from a point and locate onto the vehicle or vice versa. In this study, structural analysis of a reloading vehicle was performed under the loads which are predicted to be exposed under operating conditions via the finite element method. Among the finite element analysis results, the stress and displacement distributions of the vehicle and the contact pressure distributions of the guide rings within the stabilization legs were examined. Vehicle design was improved by strengthening certain parts according to the analysis results. The analyses performed for the final design were verified by the experiments involving strain gauge measurements.Keywords: structural analysis, reloading vehicle, crane, strain gauge
Procedia PDF Downloads 734140 Effect of Rotation Speed on Microstructure and Microhardness of AA7039 Rods Joined by Friction Welding
Authors: H. Karakoc, A. Uzun, G. Kırmızı, H. Çinici, R. Çitak
Abstract:
The main objective of this investigation was to apply friction welding for joining of AA7039 rods produced by powder metallurgy. Friction welding joints were carried out using a rotational friction welding machine. Friction welds were obtained under different rotational speeds between (2700 and 2900 rpm). The friction pressure of 10 MPa and friction time of 30 s was kept constant. The cross sections of joints were observed by optical microscopy. The microstructures were analyzed using scanning electron microscope/energy dispersive X-ray spectroscopy. The Vickers micro hardness measurement of the interface was evaluated using a micro hardness testing machine. Finally the results obtained were compared and discussed.Keywords: Aluminum alloy, powder metallurgy, friction welding, microstructure
Procedia PDF Downloads 3654139 Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings
Authors: Yi-Hua Chen, Hsiang-Wen Tang, I-Ling Chang, Lien-Wen Chen
Abstract:
The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings.Keywords: defect mode, Archimedean tilings, phononic crystals, whispering-gallery modes
Procedia PDF Downloads 5124138 A Secure Routing Algorithm for Underwater Wireless Sensor Networks
Authors: Seyed Mahdi Jameii
Abstract:
Underwater wireless sensor networks have been attracting the interest of many researchers lately, and the past three decades have beheld the rapid progress of underwater acoustic communication. One of the major problems in underwater wireless sensor networks is how to transfer data from the moving node to the base stations and choose the optimized route for data transmission. Secure routing in underwater wireless sensor network (UWCNs) is necessary for packet delivery. Some routing protocols are proposed for underwater wireless sensor networks. However, a few researches have been done on secure routing in underwater sensor networks. In this article, a secure routing protocol is provided to resist against wormhole and sybil attacks. The results indicated acceptable performance in terms of increasing the packet delivery ratio with regards to the attacks, increasing network lifetime by creating balance in the network energy consumption, high detection rates against the attacks, and low-end to end delay.Keywords: attacks, routing, security, underwater wireless sensor networks
Procedia PDF Downloads 4234137 Effects of Carbon Dioxide on the Sensory of Pumpkin seed and Its Toxicity Against Oryzaephilus mercator
Authors: Reza Sadeghi
Abstract:
Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches. In the present study, the mortalities of Oryzaephilus mercator as the key pest of stored products, especially nuts, were studied after being exposed to different CO2 pressures (0.1, 0.2, 0.3, 0.4 and 0.5 bar) within 24 hours. The mortality percentages of O. mercator increased with an increase in CO2 pressure. The results obtained from experiments on the qualitative characteristics of the studied dates through the sensory test revealed that CO2 pressures did not affect their aroma, color, crispness, firmness, and overall acceptance. Therefore, it could be concluded that the atmospheric CO2 gas provided a cost-effective and environmentally friendly method for controlling the insect pests of pumpkin seed, besides preserving their sensory and quality properties.Keywords: carbon dioxide, control, seed, qualitative characteristics
Procedia PDF Downloads 1184136 Eating Patterns and Food Coping Strategy for Students of Prof. Dr. Hamka University During Covid-19 Pandemic
Authors: Chica Riska Ashari, Yoli Farradika
Abstract:
Background: Nutritional problems arise due to food security problems in the family, such as the ability of families to obtain food which is common in poor people due to lack of economic access to buy food. For this reason, it is hoped that there will be actions or behaviors that can be taken to fulfill their food or known as the Food Coping Strategy. The purpose of this study is to identify the eating patterns and Food Coping strategies of household students of prof. DR. HAMKA Muhammadiyah University Jakarta during the covid-19 pandemic. Methods: This study is a quantitative observational study with a cross-sectional approach. The dependent variable in this study is food coping strategies and eating patterns. The location of this research is Prof. DR. Hamka Muhammadiyah University. The population in this study were all students of Prof. DR. HAMKA Muhammadiyah University. The sampling technique is purposive sampling. The minimum number of samples in this study is 97 people with a response rate or drop out an estimate of 10%, so the total number of samples was 107 people. Statistical analysis with descriptive analysis. Results: The results showed that most of the food coping strategies were carried out by the students of the household of Prof. DR. HAMKA Muhammadiyah University, were buying the cheaper food (91.6%), then changing the priority of buying food (75.7%) and household members who carry out this food coping strategy are mothers (59.8%) then followed by students themselves (57, 9%). The diet of most students at the Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks) (98.1%) then eggs (97.2%). Conclusion: Food coping strategies are mostly used by households students at Prof. DR. HAMKA Muhammadiyah University who were buying the cheaper food and the member who did this behavior the most were the mothers. The diet of most students at Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks).Keywords: behavior, eating patterns, food coping strategies, food security, students
Procedia PDF Downloads 1884135 Investigation of Clustering Algorithms Used in Wireless Sensor Networks
Authors: Naim Karasekreter, Ugur Fidan, Fatih Basciftci
Abstract:
Wireless sensor networks are networks in which more than one sensor node is organized among themselves. The working principle is based on the transfer of the sensed data over the other nodes in the network to the central station. Wireless sensor networks concentrate on routing algorithms, energy efficiency and clustering algorithms. In the clustering method, the nodes in the network are divided into clusters using different parameters and the most suitable cluster head is selected from among them. The data to be sent to the center is sent per cluster, and the cluster head is transmitted to the center. With this method, the network traffic is reduced and the energy efficiency of the nodes is increased. In this study, clustering algorithms were examined in terms of clustering performances and cluster head selection characteristics to try to identify weak and strong sides. This work is supported by the Project 17.Kariyer.123 of Afyon Kocatepe University BAP Commission.Keywords: wireless sensor networks (WSN), clustering algorithm, cluster head, clustering
Procedia PDF Downloads 5164134 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System
Authors: Christian Luarca
Abstract:
The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.Keywords: cloud platform, e-Training, efficiency, onboarding
Procedia PDF Downloads 1544133 A Profile of Out-of-Hospital Cardiac Arrest in ‘Amang’ Rodriguez Memorial Medical Center: A Prospective Cohort Study
Authors: Donna Erika E. De Jesus
Abstract:
Introduction: Cardiac arrest occurs when abrupt cessation of cardiac function results in loss of effective circulation and complete cardiovascular collapse. For every minute of cardiac arrest without early intervention (cardiopulmonary resuscitation [CPR], defibrillation), chances of survival drop by 7-10%. It is crucial that CPR be initiated within 4-6 minutes to avoid brain death. Most out-of-hospital cardiac arrests (OHCA) occur in a residential setting where access to trained personnel and equipment is not readily available, resulting in poor victim outcomes. Methods: This is a descriptive study done from August to November 2021 using a prospective cohort design. Participants of the study include adult patients aged 18 years and above brought to the emergency room who suffered from out-of-hospital cardiac arrest. Out of the total 102 cases of OHCA, 63 participants were included in the study. Descriptive statistics were used to summarize the demographic and clinical characteristics of the patients. Results: 43 were male patients, comprising the majority at 73.02%. Hypertension was identified as the top co-morbidity, followed by diabetes mellitus, heart failure, and chronic kidney disease (CKD). Medical causes of arrest were identified in 96.83% of the cases. 90.48% of cardiac arrests occurred at home. Only 26 patients (41.27%) received pre-hospital intervention prior to ER arrival, which comprised only hands-only CPR. Twenty-three of which were performed by individuals with background knowledge of CPR. 60.32% were brought via self-conduction, the remainder by ambulances, which were noted to have no available equipment necessary to provide proper resuscitation. The average travel time from dispatch to ER arrival is 20 minutes. Conclusion: Overall survival of OHCA in our local setting remains dismal, as a return of spontaneous circulation was not achieved in any of the patients. The small number of patients having pre-hospital CPR indicates the need for emphasis on training and community education.Keywords: out-of-hospital cardiac arrest, cardiopulmonary resuscitation, basic life support, emergency medical services
Procedia PDF Downloads 1104132 The Review of Coiled Tubing Intelligent Sidetracking Steering Technology
Authors: Zhao Xueran, Yang Dong
Abstract:
In order to improve the problem that old wells in oilfields are shut down due to low oil recovery, sidetracking has become one of the main technical means to restore the vitality of old wells. A variety of sidetracking technologies have been researched and formed internationally. Among them, coiled tubing sidetracking horizontal wells have significant advantages over conventional sidetracking methods: underbalanced pressure operations; reducing the number of trips of tubing, while drilling and production, saving construction costs, less ground equipment and less floor space, orienter guidance to reduce drilling friction, etc. This paper mainly introduces the steering technology in coiled tubing intelligent sidetracking at home and abroad, including the orienter and the rotary steerable system.Keywords: sidetracking, coiled tubing, orienter, rotary steering system
Procedia PDF Downloads 1774131 Flexible Design of Triboelectric Nanogenerators for Efficient Vibration Energy Harvesting
Authors: Meriam Khelifa
Abstract:
In recent years, many studies have focused on the harvesting of the vibrations energy to produce electrical energy using contact separation (CS) triboelectric nanogenerators (TENG). The simplest design for a TENG consists of a capacitor comprising a single moving electrode. The conversion efficiency of vibration energy into electrical energy can, in principle, reach 100%. But to actually achieve this objective, it is necessary to optimize the parameters of the TENG, such as the dielectric constant and the thickness of the insulator, the load resistance, etc. In particular, the use of a switch which is actioned at optimal times within the TENG cycle is essential. Using numerical modeling and experimental design, we applied a methodology to find the TENG parameters which optimize the energy transfer efficiency (ETE) to almost 100% for any vibration frequency and amplitude. The rather simple design of a TENG is promising as an environment friendly device. It opens the doors for harvesting acoustic vibrations from the environment and to design effective protection against environmental noise.Keywords: vibrations, CS TENG, efficiency, design of experiments
Procedia PDF Downloads 934130 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts
Authors: Velid Demir, Mesut Akgün
Abstract:
The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations.Keywords: biodiesel, heterogeneous catalyst, jatropha oil, supercritical methanol, transesterification
Procedia PDF Downloads 934129 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness
Authors: Sy-Wei Lo, Chi-Heng Yu
Abstract:
A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/µm of typical bearing to 349.85 N/µm at bearing elevation 9.5 µm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.Keywords: aerostatic, bearing, polymer, static stiffness
Procedia PDF Downloads 3774128 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces
Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji
Abstract:
Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization
Procedia PDF Downloads 1494127 Dowry System and Gender Discrimination
Authors: Vanitha Dapparabail
Abstract:
Dowry is a system attached to Indian marriage system, it is practice of exchanging the goods and articles in a majority of Indian weddings. Although its practice became illegal in 1961, dowry flourishes among all social classes. Families of the bride and groom negotiate transfer of assets to the groom and his family in exchange for marrying the bride, often within the context of an arranged marriage. Dissatisfaction with the amount of dowry may result in abuse of the bride. In extreme cases “dowry deaths” or the murder of the bride by her husband and his family take place. This article conducts a feminist psychological analysis of the dowry phenomenon, its link to domestic violence against women, and the role of the perpetrators. Existing and new explanations of the dowry system and its ramifications are explored. Psychologically dowry system is greater mental stress for the Indian women and it is a really a part of gender discrimination. This part of the study can explore the amount of gender discrimination in Indian society.Keywords: Dowry system, violence, gender discrimination, India
Procedia PDF Downloads 4924126 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator
Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas
Abstract:
The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm
Procedia PDF Downloads 1024125 Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants
Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005).Keywords: coal, ignition, plasma-fuel system, plasma torch, thermal power plant
Procedia PDF Downloads 2804124 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling
Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça
Abstract:
This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy
Procedia PDF Downloads 3154123 Beneficial Ownership in Islamic Finance: The Need for Shari'ah Parameters
Authors: Nik Abdul Rahim Nik Abdul Ghani, Mat Noor Mat Zain, Ahmad Dahlan Salleh
Abstract:
Ownership of asset is an important aspect in ensuring the validity of sale contract. Nevertheless, in Islamic finance, the issue of beneficial ownership as practiced in the current system is seriously debated among Shariah scholars. It has been argued as violating the real concept of ownership (milkiyyah) in Shariah law. This article aims at studying the status of beneficial ownership from the Shariah perspective. This study begins with examining the meaning of ownership and its attributes from the Islamic point of view and followed by the discussion on the origin of beneficial ownership from the legal perspective. The approach that is applied to clarify the concept of beneficial ownership is content analysis. Subsequently, this study explains some current applications of beneficial ownership in Islamic finance to be analyzed further from the Shariah aspect. The research finding suggests that beneficial ownership should be recognized as a real ownership due to the fact that Shariah allows the transfer of ownership after the execution of offer (ijab) and acceptance (qabul).Keywords: beneficial ownership, ownership, Islamic finance, parameter
Procedia PDF Downloads 2724122 Study of the Mental Toughness of the Basketball Players
Authors: Jaswinder Singh
Abstract:
The purpose of the study was to compare the mental toughness between male and female basketball players of District shri muktsar sahib Panjab. A sample of fifty male players (N=50) age ranging 18 to 25 years and Fifty female player(N=50) age ranging 18 to 25 years. The Data was collected by using mental toughness questionnaire developed by Goldberg (1998). The t-test was applied to assess the differences male and female basketball players. The level of significance was set at 0.05. Study revealed that there were significant differences male and female basketball players with regard to Rebound Ability, Ability to Handle Pressure, Confidence and Overall Mental Toughness and insignificant differences with regard to Concentration and Motivation.Keywords: mental toughness, basketball, psychological, competitive
Procedia PDF Downloads 2574121 New Kinetic Effects in Spatial Distribution of Electron Flux and Excitation Rates in Glow Discharge Plasmas in Middle and High Pressures
Authors: Kirill D. Kapustin, Mikhail B. Krasilnikov, Anatoly A. Kudryavtsev
Abstract:
Physical formation mechanisms of differential electron fluxes is high pressure positive column gas discharge are discussed. It is shown that the spatial differential fluxes of the electrons are directed both inward and outward depending on the energy relaxation law. In some cases the direction of energy differential flux at intermediate energies (5-10eV) in whole volume, except region near the wall, appeared to be down directed, so electron in this region dissipate more energy than gain from axial electric field. Paradoxical behaviour of electron flux in spatial-energy space is presented.Keywords: plasma kinetics, electron distribution function, excitation and radiation rates, local and nonlocal EDF
Procedia PDF Downloads 4064120 Nonlinear Mathematical Model of the Rotor Motion in a Thin Hydrodynamic Gap
Authors: Jaroslav Krutil, Simona Fialová, , František Pochylý
Abstract:
A nonlinear mathematical model of mutual fluid-structure interaction is presented in the work. The model is applicable to the general shape of sealing gaps. An in compressible fluid and turbulent flow is assumed. The shaft carries a rotational and procession motion, the gap is axially flowed through. The achieved results of the additional mass, damping and stiffness matrices may be used in the solution of the rotor dynamics. The usage of this mathematical model is expected particularly in hydraulic machines. The method of control volumes in the ANSYS Fluent was used for the simulation. The obtained results of the pressure and velocity fields are used in the mathematical model of additional effects.Keywords: nonlinear mathematical model, CFD modeling, hydrodynamic sealing gap, matrices of mass, stiffness, damping
Procedia PDF Downloads 5404119 Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids
Authors: Sameh Frikha, Mohamed Salah Abid
Abstract:
We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture.Keywords: coefficient of performance, environment friendly zeotropic mixture, integrated cascade, ultra low temperature, vapor compression refrigeration cycles
Procedia PDF Downloads 2644118 Competitive Advantage Challenges in the Apparel Manufacturing Industries of South Africa: Application of Porter’s Factor Conditions
Authors: Sipho Mbatha, Anne Mastament-Mason
Abstract:
South African manufacturing global competitiveness was ranked 22nd (out of 38 countries), dropped to 24th in 2013 and is expected to drop further to 25th by 2018. These impacts negatively on the industrialisation project of South Africa. For industrialization to be achieved through labour intensive industries like the Apparel Manufacturing Industries of South Africa (AMISA), South Africa needs to identify and respond to factors negatively impacting on the development of competitive advantage This paper applied factor conditions from Porter’s Diamond Model (1990) to understand the various challenges facing the AMISA. Factor conditions highlighted in Porter’s model are grouped into two groups namely, basic and advance factors. Two AMISA associations representing over 10 000 employees were interviewed. The largest Clothing, Textiles and Leather (CTL) apparel retail group was also interviewed with a government department implementing the industrialisation policy were interviewed The paper points out that while AMISA have basic factor conditions necessary for competitive advantage in the clothing and textiles industries, Advance factor coordination has proven to be a challenging task for the AMISA, Higher Education Institutions (HEIs) and government. Poor infrastructural maintenance has contributed to high manufacturing costs and poor quick response as a result of lack of advanced technologies. The use of Porter’s Factor Conditions as a tool to analyse the sector’s competitive advantage challenges and opportunities has increased knowledge regarding factors that limit the AMISA’s competitiveness. It is therefore argued that other studies on Porter’s Diamond model factors like Demand conditions, Firm strategy, structure and rivalry and Related and supporting industries can be used to analyse the situation of the AMISA for the purposes of improving competitive advantage.Keywords: compliance rule, apparel manufacturing industry, factor conditions, advance skills and South African industrial policy
Procedia PDF Downloads 3644117 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics
Authors: M. Khorshed Alam, H. Takaba
Abstract:
The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo
Procedia PDF Downloads 1964116 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example
Authors: Yue Huang, Yiheng Feng
Abstract:
Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing
Procedia PDF Downloads 974115 Thermal Transformation and Structural on Se90Te7Cu3 Chalcogenide Glass
Authors: Farid M. Abdel-Rahim
Abstract:
In this study, Se90Te7Cu3 chalcogenide glass was prepared using the melt quenching technique. The amorphous nature of the as prepared samples was confirmed by scanning electron microscope (SEM). Result of differential scanning calorimetric (DSC) under nonisothermal condition on composition bulk materials are reported and discussed. It shows that these glasses exhibit a single-stage glass transition and a single-stage crystallization on heating rates. The glass transition temperature (Tg), the onset crystallization (Tc), the crystallization temperature (Tp), were found by dependent on the composition and heating rates. Activation energy for glass transition (Et), activation energy of the amorphous –crystalline transformation (Ec), crystallization reaction rate constant (Kp), (n) and (m) are constants related to crystallization mechanism of the bulk samples have been determined by different formulations.Keywords: chalcogenides, heat treatment, DSC, SEM, glass transition, thermal analysis
Procedia PDF Downloads 400