Search results for: online training
1711 Medication Errors in a Juvenile Justice Youth Development Center
Authors: Tanja Salary
Abstract:
This paper discusses a study conducted in a juvenile justice facility regarding medication errors. It includes an introduction to data collected about medication errors in a juvenile justice facility from 2011 - 2019 and explores contributing factors that relate to those errors. The data was obtained from electronic incident records of medication errors that were documented from the years 2011 through 2019. In addition, the presentation reviews both current and historical research of empirical data about patient safety standards and quality care comparing traditional health care facilities to juvenile justice residential facilities and acknowledges a gap in research. The theoretical/conceptual framework for the research study was Bandura and Adams’s self-efficacy theory of behavioral change and Mark Friedman’s results-based accountability theory. Despite the lack of evidence in previous studies addressing medication errors in juvenile justice facilities, this presenter will share information that adds to the body of knowledge, including the potential relationship of medication errors and contributing factors of race and age. Implications for future research include the effect that education and training will have on the communication among juvenile justice staff, including nurses, who administer medications to juveniles to ensure adherence to patient safety standards. There are several opportunities for future research concerning other characteristics about factors that may affect medication administration errors within the residential juvenile justice facility.Keywords: Juvenile justice, medication errors, juveniles, error reduction strategies
Procedia PDF Downloads 661710 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2961709 The AI Method and System for Analyzing Wound Status in Wound Care Nursing
Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu
Abstract:
This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance
Procedia PDF Downloads 1151708 The Factors for Developing Trainers in Auto Parts Manufacturing Factories at Amata Nakon Industrial Estate in Cholburi Province
Authors: Weerakarj Dokchan
Abstract:
The purposes of this research are to find out the factors for developing trainers in the auto part manufacturing factories (AMF) in Amata Nakon Industrial Estate Cholburi. Population in this study included 148 operators to complete the questionnaires and 10 trainers to provide the information on the interview. The research statistics consisted of percentage, mean, standard deviation and step-wise multiple linear regression analysis.The analysis of the training model revealed that: The research result showed that the development factors of trainers in AMF consisted of 3 main factors and 8 sub-factors: 1) knowledge competency consisting of 4 sub-factors; arrangement of critical thinking, organizational loyalty, working experience of the trainers, analysis of behavior, and work and organization loyalty which could predict the success of the trainers at 55.60%. 2) Skill competency consisted of 4 sub-factors, arrangement of critical thinking, organizational loyalty and analysis of behavior and work and the development of emotional quotient. These 4 sub-factors could predict the success of the trainers in skill aspect 55.90%. 3) The attitude competency consisted of 4 sub-factors, arrangement of critical thinking, intention of trainee computer competency and teaching psychology. In conclusion, these 4 sub-factors could predict the success of the trainers in attitude aspect 58.50%.Keywords: the development factors, trainers development, trainer competencies, auto part manufacturing factory (AMF), AmataNakon Industrial Estate Cholburi
Procedia PDF Downloads 3041707 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection
Authors: Amir Shahab Shahabi, Mohsen Hasirian
Abstract:
Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks
Procedia PDF Downloads 141706 Aural Skills Pedagogy for Students with Absolute Pitch
Authors: Rika Uchida
Abstract:
In teaching sophomore level aural skills, I have dealt with students with absolute pitch do poorly in my courses, particularly in harmonic dictation. They can identify triads; however, identifying quality of seventh chords or chromatic chords poses serious challenges. Most often, they need to spell all the pitches before identifying the chord qualities and Roman Numerals. Growing up in a country where acquiring absolute pitch is considered essential, I started my early music training with fixed do system at age three and learned all my music with solfege. When I was assigned as a TA in aural skills courses at graduate school in US, I had to learn relative pitch quickly. My survival method was listening to music with absolute pitch first, then quickly "translate" to relative pitch. In teaching my courses, I have been using chord progressions (5-8 chords total), in which students are asked to sing chord arpeggiation with movable do solfege. I use same progressions for harmonic dictation; I hoped that students learn to incorporate singing and listening skills by overlapping same materials. This method has proven to be successful for most students; in particular, it has helped students with absolute pitch to hear chord quality and function. Although original progressions are written in C as a tonic, they can identify chords in harmonic dictation in other keys as well. In short, I believe singing chord progression with movable do arpeggiation helps students with absolute pitch to improve hearing function and quality of chords in harmonic dictation.Keywords: aural skills pedagogy, music theory, absolute pitch, harmonic dictation
Procedia PDF Downloads 1451705 Raising Awareness to Health Professionals about Emotional Needs of Families Suffering Perinatal Loss through a Short Documentary
Authors: Elisenda Camprecios, Alicia Macarrila, Montse Albiol, Neus Garriga Garriga
Abstract:
The loss of a child during pregnancy, or shortly after birth, is not a common occurrence, but it is a prevalent fact in our society. When this loss happens, life and death walk together. The grief that parents experience following a perinatal loss is a devastating experience. Professionals are aware that the quality of care offered during this first period is crucial to support the families experiencing a perinatal loss and meet their needs. However, it is not always easy for the health care professionals to know what to say and what to do in these difficult circumstances. Given the complexity of the Health, painful process that a family must face when is affected by such loss, we believe that the creation of a protocol that pays special attention to the emotional needs of those couples can be a very valuable tool for the professionals. The short documentary named ‘When the illusion vanished’ was created as part of the material of this protocol, which focuses on the emotional needs of the families who have suffered a perinatal loss. This video is designed to see what impact has a perinatal death and to raise awareness among professionals working in this field. The methodology is based on interviews with couples who have experienced perinatal death and to professionals who accompany families suffering from perinatal loss. The use of sensitive and empathized words, being encouraged to express feelings, respect the time, appropriate training for the professionals are some of the issues reflected in this documentary. We believe that this video has contributed to help health care professionals to empathize and understand the need to be able to accompany these families with the appropriate care, respectful, empathetic attitude and professionalism so that they can start the path to a ‘healthy’ mourning.Keywords: neonatal loss, midwifery, perinatal bereavement, perinatal loss
Procedia PDF Downloads 1501704 Injection Practices among Private Medical Practitioners of Karachi Pakistan
Authors: Mohammad Tahir Yousafzai, Nighat Nisar, Rehana Khalil
Abstract:
The aim of this study is to assess the practices of sharp injuries and factors leading to it among medical practitioners in slum areas of Karachi, Pakistan. A cross sectional study was conducted in slum areas of Landhi Town Karachi. All medical practitioners (317) running the private clinics in the areas were asked to participate in the study. Data was collected on self administered pre-tested structured questionnaires. The frequency with percentage and 95% confidence interval was calculated for at least one sharp injury (SI) in the last one year. The factors leading to sharp injuries were assessed using multiple logistic regressions. About 80% of private medical practitioners consented to participate. Among these 87% were males and 13% were female. The mean age was 38±11 years and mean work experience was 12±9 years. The frequency of at least one sharp injury in the last one year was 27%(95% CI: 22.2-32). Almost 47% of Sharp Injuries were caused by needle recapping, less work experience, less than 14 years of schooling, more than 20 patients per day, administering more than 30 injections per day, reuse of syringes and needle recapping after use were significantly associated with sharp injuries. Injection practices were found inadequate among private medical practitioners in slum areas of Karachi, and the frequency of Sharp Injuries was found high in these areas. There is a risk of occupational transmission of blood borne infections among medical practitioners warranting an urgent need for launching awareness and training on standard precautions for private medical practitioners in the slum areas of Karachi.Keywords: injection practices, private practitioners, sharp injuries, blood borne infections
Procedia PDF Downloads 4211703 Bilateral Relations in Matter of Defense between Argentina-United States and Argentina-China along the Period 2005-2015: Advice to Develop a Rational Defense Foreign Policy for Peripheral Countries
Authors: Alvarez Magañini, María Victoria-Rubbi, Lautaro Nahuel
Abstract:
At present, we are facing an unstable international context, conditioned by a relative decline of the US power, primarily in the economic sphere and, to a lesser extent, in the military sphere. This scenario of multipolarity creates tension and uncertainty in the peripheral countries when the issue of their foreign policy arises. This paper presents an analysis of the bilateral relations that were maintained by the Argentine Republic, a peripheral country, along with the United States and China during the period of 2005-2015 in matters of defense in order to identify the empirical consequences resulted from the Argentine actions. Based on the conceptual framework of Peripheral Realism, we analyze indicators related to the weapon trade, defense loans, joint exercises, and personnel training, among others. There will also be a comparative analysis of the conventional military forces of the two powers in question, United States and China. As a conclusion, the cost of having closer relations with China instead of the United States in the defense agenda has been clearly higher than the benefits obtained. The conclusions drawn are empirically aligned with the theoretical paradigm of peripheral realism. Although there are certain conceptual and methodological digressions, these conclusions they could be useful to update and adapt the theory to the current complex international scenario.Keywords: China, United States, Argentine, peripheral country, peripheral realism
Procedia PDF Downloads 3791702 Social Responsibility in Reducing Gap between High School and 1st Year University Maths: SMU Case, South Africa
Authors: Solly M. Seeletse, Joel L. Thabane
Abstract:
Students enrolling at the Sefako Makgatho Health Sciences University (SMU) come mostly from the previously disadvantaged communities of South Africa. Their backgrounds are deprived in resources and modern technologies of education. Most of those admitted in the basic sciences were rejected in medicine and health related study programmes in SMU. Mathematics (maths) is the main subject for admission into SMU study programmes. However, maths results are usually low. In an attempt to help to prepare the students in the neighbourhood schools of SMU, some Maths educators partnered with local schools to communicate the needs and investigate the causes of poor maths results. They embarked on an action research to determine the level of educators’ maths education. The general aim of the research was to investigate the causes of deficiencies in maths teaching and results in the local secondary schools, focusing on teachers and learners. Asking the teachers about their education and learners about maths concepts of most difficulty, these were identified. The researchers assisted in teaching the difficult concepts. The study highlighted the most difficult concepts and the teachers’ lack of training in some content. Intervention of the researchers showed to be effective only for the very poor performing schools. Those with descent pass rates of over 50% did not benefit from it. This was the sign of lack of optimality in the methods used. The research recommendations suggested that intervention methods should be improved to be effective in all schools, and extension of the endeavours to more schools.Keywords: action research, intervention, social responsibility, support
Procedia PDF Downloads 2681701 The Role of Trust in Intention to Use Prescribed and Non-prescribed Connected Devices
Authors: Jean-michel Sahut, Lubica Hikkerova, Wissal Ben Arfi
Abstract:
The Internet of Things (IoT) emerged over the last few decades in many fields. Healthcare can significantly benefit from IoT. This study aims to examine factors influencing the adoption of IoT in eHealth. To do so, an innovative framework has been developed which applies both the Technology Acceptance Model (TAM) and the United Theory of Acceptance and Use of Technology (UTAUT) model and builds on them by analyzing trust and perceived-risk dimensions to predict intention to use IoT in eHealth. In terms of methodology, a Partial Least Approach Structural Equation Modelling was carried out on a sample of 267 French users. The findings of this research support the significant positive effect of constructs set out in the TAM (perceived ease of use) on predicting behavioral intention by adding the effects identified for UTAUT variables. This research also demonstrates how perceived risk and trust are significant factors for models examining behavioral intentions to use IoT. Perceived risk enhanced by the trust has a significant effect on patients’ behavioral intentions. Moreover, the results highlight the key role of prescription as a moderator of IoT adoption in eHealth. Depending on whether an individual has a prescription to use connected devices or not, ease of use has a stronger impact on adoption, while trust has a negative impact on adoption for users without a prescription. In accordance with the empirical results, several practical implications can be proposed. All connected devices applied in a medical context should be divided into groups according to their functionality: whether they are essential for the patient’s health and whether they require a prescription or not. Devices used with a prescription are easily accepted because the intention to use them is moderated by the medical trust (discussed above). For users without a prescription, ease of use is a more significant factor than for users who have a prescription. This suggests that currently, connected e-Health devices and online healthcare systems have to take this factor into account to better meet the needs and expectations of end-users.Keywords: internet of things, Healthcare, trust, consumer acceptance
Procedia PDF Downloads 1441700 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: distribution network, machine learning, network topology, phase identification, smart grid
Procedia PDF Downloads 3001699 Formal Sector Employment, Economic Capital and Human Capacity Development: Voices of Single Mothers from South Africa and Germany
Authors: Tanusha Raniga, Michael Boecker, Maud Mthembu
Abstract:
This paper considers the formal employment sector, human capacity development and economic capital of single-mother households’ as they strive to sustain livelihoods. This paper advances empirical data in the field of economic and social development policy. The correlation between educational level, human capacity development and economic self-reliance of single-mother households is considered. This paper presents empirical evidence obtained from qualitative in-depth interviews conducted with twenty-five single mothers who were working in the formal work sector in Hagen, Germany and two provinces, namely KwaZulu-Natal and Gauteng in South Africa. This is an underexplored research area as most of the international literature focuses on pathology and victimhood related to single-mother households. Instead, this paper presents the biographic profiles and discusses two key themes that emerged from the data analysis namely; formal and informal streams of income enhanced human capital development through access to further education and training opportunities. The women perceived these themes as facilitating factors which helped them sustain their households. The paper presents some suggestions for policymakers and social work practitioners to consider to improve support systems and avoid economic exclusion of single mothers who work within the first economy.Keywords: single mothers, formal work sector, economic capital, human capital
Procedia PDF Downloads 1491698 Establishing a Change Management Model for Precision Machinery Industry in Taiwan
Authors: Feng-Tsung Cheng, Shu-Li Wang, Mei-Fang Wu, , Hui-Yu Chuang
Abstract:
Due to the rapid development of modern technology, the widespread usage of the Internet makes business environment changing quickly. In order to be a leader in the global competitive market and to pursuit survive, “changing” becomes an unspoken rules need to follow for the company survival. The purpose of this paper is to build change model by using SWOT, strategy map, and balance scorecard, KPI and change management theory. The research findings indicate that organizational change plan formulated by the case company should require the employee to resist change factors and performance management system issues into consideration and must be set organizational change related programs, such as performance appraisal reward system, consulting and counseling mechanisms programs to improve motivation and reduce staff negative emotions. Then according to the model revised strategy maps and performance indicators proposed in this paper, such as strategy maps add and modify corporate culture, improve internal processes management, increase the growth rate of net income and other strategies. The performance indicators are based on strategy maps new and modified by adding net income growth rate, to achieve target production rate, manpower training achievement rates and other indicators, through amendments to achieve the company’s goal, be a leading brand of precision machinery industry.Keywords: organizational change, SWOT analysis, strategy maps, performance indicators
Procedia PDF Downloads 2841697 Modeling Fertility and Production of Hazelnut Cultivars through the Artificial Neural Network under Climate Change of Karaj
Authors: Marziyeh Khavari
Abstract:
In recent decades, climate change, global warming, and the growing population worldwide face some challenges, such as increasing food consumption and shortage of resources. Assessing how climate change could disturb crops, especially hazelnut production, seems crucial for sustainable agriculture production. For hazelnut cultivation in the mid-warm condition, such as in Iran, here we present an investigation of climate parameters and how much they are effective on fertility and nut production of hazelnut trees. Therefore, the climate change of the northern zones in Iran has investigated (1960-2017) and was reached an uptrend in temperature. Furthermore, the descriptive analysis performed on six cultivars during seven years shows how this small-scale survey could demonstrate the effects of climate change on hazelnut production and stability. Results showed that some climate parameters are more significant on nut production, such as solar radiation, soil temperature, relative humidity, and precipitation. Moreover, some cultivars have produced more stable production, for instance, Negret and Segorbe, while the Mervill de Boliver recorded the most variation during the study. Another aspect that needs to be met is training and predicting an actual model to simulate nut production through a neural network and linear regression simulation. The study developed and estimated the ANN model's generalization capability with different criteria such as RMSE, SSE, and accuracy factors for dependent and independent variables (environmental and yield traits). The models were trained and tested while the accuracy of the model is proper to predict hazelnut production under fluctuations in weather parameters.Keywords: climate change, neural network, hazelnut, global warming
Procedia PDF Downloads 1321696 Efficiency of Information Technology Based Learning and Teaching in Higher Educations
Authors: Mahalingam Palaniandi
Abstract:
Higher education plays vital role in the nation building process for a country and the rest of world. The higher education sector develops the change-agents for the various fields which will help the human-kind wheel to run further. Conventional and traditional class-room based learning and teaching was followed in many decades which is one-to-one and one-to-many. In a way, these are simplest form of learners to be assembled in a class room wherein the teacher used the blackboard to demonstrate the theory and laboratories used for practical. As the technology evolved tremendously for the last 40 years, the teaching and learning environment changed slowly, wherein, the learning community will be anywhere in the world and teacher deliver the content through internet based tools such as video conferencing, web based conferencing tools or E-learning platforms such as Blackboard or noodle. Present day, the mobile technologies plays an important tool to deliver the teaching content on-the-go. Both PC based and mobile based learning technology brought the learning and teaching community together in various aspects. However, as the learning technology also brought various hurdles for learning processes such as plagiarism and not using the reference books entirely as most of the students wants the information instantaneously using internet without actually going to the library to take the notes from the millions of the books which are not available online as e-books which result lack of fundamental knowledge of the concepts complex theories. However, technology is inseparable in human life, now-a-days and every part of it contains piece of information technology right from computers to home appliances. To make use of the IT based learning and teaching at most efficiency, we should have a proper framework and recommendations laid to the learning community in order to derive the maximum efficiency from the IT based teaching and leaning. This paper discusses various IT based tools available for the learning community, efficiency from its usage and recommendations for the suitable framework that needs to be implemented at higher education institutions which makes the learners stronger in both theory as well as real-time knowledge of their studies that is going to be used in their future for the better world.Keywords: higher education, e-learning, teaching learning, eLearning tools
Procedia PDF Downloads 4261695 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 3401694 Difficulties in Providing Palliative Care in Rural India, West Bengal: Experience of an NGO
Authors: Aditya Manna
Abstract:
Introduction: As in any developing countries state of West Bengal in India has a huge burden of cancer patients in advanced stage coming from rural area where awareness regarding the usefulness of palliative care in rather poor. Objective: Our goal is to give a pain free good quality of life in these advanced stage cancer patients. Objective of this study is to identify the main difficulties in achieving the above goal in a rural village setting in India. Method: Advanced cancer patients in need of palliative care in various villages in of rural India were selected for this study. Their symptoms and managements in that rural surroundings were evaluated by an NGO (under the guidance of a senior palliative care specialist) working in that area. An attempt was made to identify the main obstacles in getting proper palliative care in a rural setting. Results: Pain, fatigue are the main symptoms effecting these patients. In most patients pain and other symptoms control were grossly inadequate due to lack of properly trained manpower in the rural India. However regular homecare visits by a group of social workers were of immense help in the last few months of life. NGO team was well guided by a palliative care specialist. Conclusion: There is a wide gap of trained manpower in this filled in rural areas of India. Dedicated groups from rural area itself need encouragement and proper training, so that difficult symptoms can be managed locally along with necessary social and psychological support to these patients.Keywords: palliative care, NGO, rural India, home care
Procedia PDF Downloads 2951693 Understanding Student Engagement through Sentiment Analytics of Response Times to Electronically Shared Feedback
Authors: Yaxin Bi, Peter Nicholl
Abstract:
The rapid advancement of Information and communication technologies (ICT) is extremely influencing every aspect of Higher Education. It has transformed traditional teaching, learning, assessment and feedback into a new era of Digital Education. This also introduces many challenges in capturing and understanding student engagement with their studies in Higher Education. The School of Computing at Ulster University has developed a Feedback And Notification (FAN) Online tool that has been used to send students links to personalized feedback on their submitted assessments and record students’ frequency of review of the shared feedback as well as the speed of collection. The feedback that the students initially receive is via a personal email directing them through to the feedback via a URL link that maps to the feedback created by the academic marker. This feedback is typically a Word or PDF report including comments and the final mark for the work submitted approximately three weeks before. When the student clicks on the link, the student’s personal feedback is viewable in the browser and they can view the contents. The FAN tool provides the academic marker with a report that includes when and how often a student viewed the feedback via the link. This paper presents an investigation into student engagement through analyzing the interaction timestamps and frequency of review by the student. We have proposed an approach to modeling interaction timestamps and use sentiment classification techniques to analyze the data collected over the last five years for a set of modules. The data studied is across a number of final years and second-year modules in the School of Computing. The paper presents the details of quantitative analysis methods and describes further their interactions with the feedback overtime on each module studied. We have projected the students into different groups of engagement based on sentiment analysis results and then provide a suggestion of early targeted intervention for the set of students seen to be under-performing via our proposed model.Keywords: feedback, engagement, interaction modelling, sentiment analysis
Procedia PDF Downloads 1031692 Expanding the World: Public and Global Health Experiences for Undergraduate Nursing Students
Authors: Kristen Erekson, Sarah Spendlove Caswell
Abstract:
Nurse educators have the challenge of training future nurses that will provide compassionate care to an increasingly diverse population of patients in a culturally sensitive way. One approach to this challenge is an immersive public and global health experience as part of the nursing program curriculum. Undergraduate nursing students at our institution are required to participate in a Public and Global Health course. They participate in a didactic preparatory course followed by a 3-to-4-week program in one of the following locations: The Czech Republic, Ecuador, Finland/Poland, Ghana, India, Spain, Taiwan, Tonga, an Honor Flight to Washington D.C. with Veterans, or in local (Utah) communities working with marginalized populations (including incarcerated individuals, refugees, etc.). The students are required to complete 84 clinical hours and 84 culture hours (which involve exposure to local history, art, architecture, customs, etc.). As Faculty, we feel strongly that these public and global health experiences help cultivate cultural awareness in our students and prepare nurses who are better prepared to serve a diverse population of patients throughout their careers. This presentation will highlight our experiences and provide ideas for other nurse educators who have an interest in developing similar programs in their schools but do not know where to start. Suggestions about how to start building relationships that can lead to these opportunities, along with logistics for continuing the programs, will be highlighted.Keywords: global health nursing, nursing education, clinical education, public health nursing
Procedia PDF Downloads 781691 The Library as a Metaphor: Perceptions, Evolution, and the Shifting Role in Society Through a Librarian's Lens
Authors: Nihar Kanta Patra, Akhtar Hussain
Abstract:
This comprehensive study, through the perspective of librarians, explores the library as a metaphor and its profound significance in representing knowledge and learning. It delves into how librarians perceive the library as a metaphor and the ways in which it symbolizes the acquisition, preservation, and dissemination of knowledge. The research investigates the most common metaphors used to describe libraries, as witnessed by librarians, and analyzes how these metaphors reflect the evolving role of libraries in society. Furthermore, the study examines how the library metaphor influences the perception of librarians regarding academic libraries as physical places and academic library websites as virtual spaces, exploring their potential for learning and exploration. It investigates the evolving nature of the library as a metaphor over time, as seen by librarians, considering the changing landscape of information and technology. The research explores the ways in which the library metaphor has expanded beyond its traditional representation, encompassing digital resources, online connectivity, and virtual realms, and provides insights into its potential evolution in the future. Drawing on the experiences of librarians in their interactions with library users, the study uncovers any specific cultural or generational differences in how people interpret or relate to the library as a metaphor. It sheds light on the diverse perspectives and interpretations of the metaphor based on cultural backgrounds, educational experiences, and technological familiarity. Lastly, the study investigates the evolving roles of libraries as observed by librarians and explores how these changing roles can influence the metaphors we use to represent them. It examines the dynamic nature of libraries as they adapt to societal needs, technological advancements, and new modes of information dissemination. By analyzing these various dimensions, this research provides a comprehensive understanding of the library as a metaphor through the lens of librarians, illuminating its significance, evolution, and its transformative impact on knowledge, learning, and the changing role of libraries in society.Keywords: library, librarians, metaphor, perception
Procedia PDF Downloads 951690 Pattern of Refractive Error, Knowledge, Attitude and Practice about Eye Health among the Primary School Children in Bangladesh
Authors: Husain Rajib, K. S. Kishor, D. G. Jewel
Abstract:
Background: Uncorrected refractive error is a common cause of preventable visual impairment in pediatric age group which can be lead to blindness but early detection of visual impairment can reduce the problem that will have good effective in education and more involve in social activities. Glasses are the cheapest and commonest form of correction of refractive errors. To achieve this, patient must exhibit good compliance to spectacle wear. Patient’s attitude and perception of glasses and eye health could affect compliance. Material and method: A Prospective community based cross sectional study was designed in order to evaluate the knowledge, attitude and practices about refractive errors and eye health amongst the primary school going children. Result: Among 140 respondents, 72 were males and 68 were females. We found 50 children were myopic and out of them 26 were male and 24 were female, 27 children were hyperopic and out of them 14 were male and 13 were female. About 63 children were astigmatic and out of them 32 were male and 31 were female. The level of knowledge, attitude was satisfactory. The attitude of the students, teachers and parents was cooperative which helps to do cycloplegic refraction. Practice was not satisfactory due to social stigma and information gap. Conclusion: Knowledge of refractive error and acceptance of glasses for the correction of uncorrected refractive error. Public awareness program such as vision screening program, eye camp, and teachers training program are more beneficial for wearing and prescribing spectacle.Keywords: refractive error, stigma, knowledge, attitude, practice
Procedia PDF Downloads 2641689 Modelling, Assessment, and Optimisation of Rules for Selected Umgeni Water Distribution Systems
Authors: Khanyisile Mnguni, Muthukrishnavellaisamy Kumarasamy, Jeff C. Smithers
Abstract:
Umgeni Water is a water board that supplies most parts of KwaZulu Natal with bulk portable water. Currently, Umgeni Water is running its distribution system based on required reservoir levels and demands and does not consider the energy cost at different times of the day, number of pump switches, and background leakages. Including these constraints can reduce operational cost, energy usage, leakages, and increase performance. Optimising pump schedules can reduce energy usage and costs while adhering to hydraulic and operational constraints. Umgeni Water has installed an online hydraulic software, WaterNet Advisor, that allows running different operational scenarios prior to implementation in order to optimise the distribution system. This study will investigate operation scenarios using optimisation techniques and WaterNet Advisor for a local water distribution system. Based on studies reported in the literature, introducing pump scheduling optimisation can reduce energy usage by approximately 30% without any change in infrastructure. Including tariff structures in an optimisation problem can reduce pumping costs by 15%, while including leakages decreases cost by 10%, and pressure drop in the system can be up to 12 m. Genetical optimisation algorithms are widely used due to their ability to solve nonlinear, non-convex, and mixed-integer problems. Other methods such as branch and bound linear programming have also been successfully used. A suitable optimisation method will be chosen based on its efficiency. The objective of the study is to reduce energy usage, operational cost, and leakages, and the feasibility of optimal solution will be checked using the Waternet Advisor. This study will provide an overview of the optimisation of hydraulic networks and progress made to date in multi-objective optimisation for a selected sub-system operated by Umgeni Water.Keywords: energy usage, pump scheduling, WaterNet Advisor, leakages
Procedia PDF Downloads 921688 Effects of Work Load and Surface Acting on Emotional Exhaustion and Work Satisfaction of Social Worker Students: Chinese Indigenous Ren-Qing Shi-Ku Trait as Moderator
Authors: Chung-Kwei Wang, Kuo-Ying Lo
Abstract:
The study is aimed to examine main and moderation effect of Chinese traditional social wisdom ‘Ren-qing Shi-kuon' the adjustment of social worker students during their practicum. Ren-qing Shi-ku as a social wisdom has been emphasized by collective-oriented Chinese society for thousand years. Based on interview and literature review, we operationalized the concept as four factors, including ‘harmonious interaction’, ‘understanding and tolerance’, ‘empathetic communication’ and ‘rule abiding’. We administer the scale to 96 social worker senior students before their summer practicums begins and collect their response on emotion labor, emotional exhaustion, work load, work satisfaction. We also ask their supervisors rated their performance on empathy, interpersonal relationships, performance on practicum and their Ren-qing Shi-ku performance. Results indicated that self-ratings of students on Ren-qing Shi-ku scale are correlated with rating from their supervisors. Students who have higher Ren-qing Shi-ku have better adjustment and higher ratings from their supervisor. Ren-qing Shi-ku also moderate effects of surface acting labor and work load on emotional exhaustion and work satisfaction. However, Ren-qing Shi-ku seems more beneficial under low work load situations. The finding of this study suggested traditional social skill training might be very effective for social service providers in a collective-oriented culture.Keywords: emotion labor, ren-qing shi-ku, emotional exhaustion, work satisfaction and performance
Procedia PDF Downloads 4911687 Security as the Key Factor in Contemporary Tourism: Specificities Identified from the Analysis of Responders' Attitudes
Authors: Petar Kurecic, Josipa Penic
Abstract:
The paper represents a product of mentor-graduate student cooperation, developed at the graduate study of Business Economics, major Tourism. The analysis was made through the anonymous questionnaire filled by the respondents from Croatia. Following the latest threatening events and having in mind those yet to come, it can be concluded that no country can benefit from the tourism industry if at the same time does not develop its security system as an integral part of the standard tourist offer. Analyzing the trends in contemporary tourism, the safety and security issues became the decisive factors for the choice of a certain destination. Consequently, countries must not perceive security systems and measures as an unnecessary expense but as an essential element in organizing their tourist services. All hotels and respectable tourist agencies should have a crisis management, with detailed, thoroughly elaborated procedures for emergency situations. Tourists should be timely informed about the potential dangers and risks and the measures taken to prevent them, as well as on procedures for emergency situations. Additionally, it would be good to have mobile applications that would enable tourists to make direct emergency calls with instructions on behavior in crisis situations. It is also essential to implement and put into effect sophisticated security measures such as using surveillance cameras, controlling access to buildings, information exchange with colleagues and neighbors, reporting the suspicious occurrences to the security services, and training staff for crisis management. The security issue is definitely one of the crucial factors in the development of tourism in a certain country.Keywords: security, security measures in tourism, tourism, tourist destinations
Procedia PDF Downloads 2811686 Classification of EEG Signals Based on Dynamic Connectivity Analysis
Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović
Abstract:
In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients
Procedia PDF Downloads 2141685 Fostering Inclusive Learning: The Role of Intercultural Communication in Multilingual Primary Education
Authors: Ozge Yalciner
Abstract:
Intercultural communication is crucial in the education of multilingual learners in primary grades, significantly influencing their academic and social development. This study explores how intercultural communication intersects with multilingual education, highlighting the importance of culturally responsive teaching practices. It addresses the challenges and opportunities presented by diverse linguistic backgrounds and proposes strategies for creating inclusive and supportive learning environments. The research emphasizes the need for teacher training programs that equip educators with the skills to recognize and address cultural differences, thereby enhancing student engagement and participation. This study was completed in an elementary school in a city in the Midwest, USA. The data was collected through observations and interviews with students and teachers. It discusses the integration of multicultural perspectives in curricula and the promotion of language diversity as an asset. Peer interactions and collaborative learning are highlighted as crucial for developing intercultural competence among young learners. The findings suggest that meaningful intercultural communication fosters a sense of belonging and mutual respect, leading to improved educational outcomes for multilingual students. Prioritizing intercultural communication in primary education is essential for supporting the linguistic and cultural identities of multilingual learners. By adopting inclusive pedagogical approaches and fostering an environment of cultural appreciation, educators can better support their students' academic success and personal growth.Keywords: diversity, intercultural communication, multilingual learners, primary grades
Procedia PDF Downloads 391684 A Personality-Based Behavioral Analysis on eSports
Authors: Halkiopoulos Constantinos, Gkintoni Evgenia, Koutsopoulou Ioanna, Antonopoulou Hera
Abstract:
E-sports and e-gaming have emerged in recent years since the increase in internet use have become universal and e-gamers are the new reality in our homes. The excessive involvement of young adults with e-sports has already been revealed and the adverse consequences have been reported in researches in the past few years, but the issue has not been fully studied yet. The present research is conducted in Greece and studies the psychological profile of video game players and provides information on personality traits, habits and emotional status that affect online gamers’ behaviors in order to help professionals and policy makers address the problem. Three standardized self-report questionnaires were administered to participants who were young male and female adults aged from 19-26 years old. The Profile of Mood States (POMS) scale was used to evaluate people’s perceptions of their everyday life mood; the personality features that can trace back to people’s habits and anticipated reactions were measured by Eysenck Personality Questionnaire (EPQ), and the Trait Emotional Intelligence Questionnaire (TEIQue) was used to measure which cognitive (gamers’ beliefs) and emotional parameters (gamers’ emotional abilities) mainly affected/ predicted gamers’ behaviors and leisure time activities?/ gaming behaviors. Data mining techniques were used to analyze the data, which resulted in machine learning algorithms that were included in the software package R. The research findings attempt to designate the effect of personality traits, emotional status and emotional intelligence influence and correlation with e-sports, gamers’ behaviors and help policy makers and stakeholders take action, shape social policy and prevent the adverse consequences on young adults. The need for further research, prevention and treatment strategies is also addressed.Keywords: e-sports, e-gamers, personality traits, POMS, emotional intelligence, data mining, R
Procedia PDF Downloads 2311683 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls
Authors: Tamar Trop, Michal Roffeh
Abstract:
One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.Keywords: green façade, green wall, living wall, willingness to pay
Procedia PDF Downloads 311682 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 102