Search results for: data mining applications and discovery
26252 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria
Authors: Khaled Mawardi
Abstract:
Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.Keywords: microwaves, extraction, Laurel oil, solvent-free
Procedia PDF Downloads 7326251 Agglomerative Hierarchical Clustering Using the Tθ Family of Similarity Measures
Authors: Salima Kouici, Abdelkader Khelladi
Abstract:
In this work, we begin with the presentation of the Tθ family of usual similarity measures concerning multidimensional binary data. Subsequently, some properties of these measures are proposed. Finally, the impact of the use of different inter-elements measures on the results of the Agglomerative Hierarchical Clustering Methods is studied.Keywords: binary data, similarity measure, Tθ measures, agglomerative hierarchical clustering
Procedia PDF Downloads 48626250 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests
Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani
Abstract:
Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.Keywords: expanded clay, direct shear test, triaxial test, shear properties, energy absorption
Procedia PDF Downloads 16926249 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine
Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup
Procedia PDF Downloads 26726248 The Influence of Bentonite on the Rheology of Geothermal Grouts
Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana
Abstract:
This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties
Procedia PDF Downloads 13026247 Development of Mobile Application for Internship Program Management Using the Concept of Model View Controller (MVC) Pattern
Authors: Shutchapol Chopvitayakun
Abstract:
Nowadays, especially for the last 5 years, mobile devices, mobile applications and mobile users, through the deployment of wireless communication and mobile phone cellular network, all these components are growing significantly bigger and stronger. They are being integrated into each other to create multiple purposes and pervasive deployments into every business and non-business sector such as education, medicine, traveling, finance, real estate and many more. Objective of this study was to develop a mobile application for seniors or last-year students who enroll the internship program at each tertiary school (undergraduate school) and do onsite practice at real field sties, real organizations and real workspaces. During the internship session, all students as the interns are required to exercise, drilling and training onsite with specific locations and specific tasks or may be some assignments from their supervisor. Their work spaces are both private and government corporates and enterprises. This mobile application is developed under schema of a transactional processing system that enables users to keep daily work or practice log, monitor true working locations and ability to follow daily tasks of each trainee. Moreover, it provides useful guidance from each intern’s advisor, in case of emergency. Finally, it can summarize all transactional data then calculate each internship cumulated hours from the field practice session for each individual intern.Keywords: internship, mobile application, Android OS, smart phone devices, mobile transactional processing system, guidance and monitoring, tertiary education, senior students, model view controller (MVC)
Procedia PDF Downloads 31926246 High Resolution Sandstone Connectivity Modelling: Implications for Outcrop Geological and Its Analog Studies
Authors: Numair Ahmed Siddiqui, Abdul Hadi bin Abd Rahman, Chow Weng Sum, Wan Ismail Wan Yousif, Asif Zameer, Joel Ben-Awal
Abstract:
Advances in data capturing from outcrop studies have made possible the acquisition of high-resolution digital data, offering improved and economical reservoir modelling methods. Terrestrial laser scanning utilizing LiDAR (Light detection and ranging) provides a new method to build outcrop based reservoir models, which provide a crucial piece of information to understand heterogeneities in sandstone facies with high-resolution images and data set. This study presents the detailed application of outcrop based sandstone facies connectivity model by acquiring information gathered from traditional fieldwork and processing detailed digital point-cloud data from LiDAR to develop an intermediate small-scale reservoir sandstone facies model of the Miocene Sandakan Formation, Sabah, East Malaysia. The software RiScan pro (v1.8.0) was used in digital data collection and post-processing with an accuracy of 0.01 m and point acquisition rate of up to 10,000 points per second. We provide an accurate and descriptive workflow to triangulate point-clouds of different sets of sandstone facies with well-marked top and bottom boundaries in conjunction with field sedimentology. This will provide highly accurate qualitative sandstone facies connectivity model which is a challenge to obtain from subsurface datasets (i.e., seismic and well data). Finally, by applying this workflow, we can build an outcrop based static connectivity model, which can be an analogue to subsurface reservoir studies.Keywords: LiDAR, outcrop, high resolution, sandstone faceis, connectivity model
Procedia PDF Downloads 23326245 Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013
Authors: Sumiko Anno, Keiji Imaoka, Takeo Tadono, Tamotsu Igarashi, Subramaniam Sivaganesh, Selvam Kannathasan, Vaithehi Kumaran, Sinnathamby Noble Surendran
Abstract:
Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.Keywords: ALOS/AVNIR-2, dengue, space-time clustering analysis, Sri Lanka
Procedia PDF Downloads 48126244 Promoting Public Participation in the Digital Memory Project: Experience from My Peking Memory Project(MPMP)
Authors: Xiaoshuang Jia, Huiling Feng, Li Niu, Wei Hai
Abstract:
Led by Humanistic Beijing Studies Center in Renmin University of China, My Peking Memory Project(MPMP) is a long-time digital memory project under guarantee of public participation to enable the cultural and intellectual memory of Beijing to be collected, organized, preserved and promoted for discovery and research. Taking digital memory as a new way, MPMP is an important part of Peking Memory Project(PMP) which is aimed at using digital technologies to protect and (re)present the cultural heritage in Beijing. The key outcome of MPMP is the co-building of a total digital collection of knowledge assets about Beijing. Institutional memories are central to Beijing’s collection and consist of the official published documentary content of Beijing. These have already fall under the archival collection purview. The advances in information and communication technology and the knowledge form social memory theory have allowed us to collect more comprehensively beyond institutional collections. It is now possible to engage citizens on a large scale to collect private memories through crowdsourcing in digital formats. Private memories go beyond official published content to include personal narratives, some of which are just in people’s minds until they are captured by MPMP. One aim of MPMP is to engage individuals, communities, groups or institutions who have formed memories and content about Beijing, and would like to contribute them. The project hopes to build a culture of remembering and it believes ‘Every Memory Matters’. Digital memory contribution was achieved through the development of the MPMP. In reducing barriers to digital contribution and promoting high public Participation, MPMP has taken explored the harvesting of transcribe service for digital ingestion, mobile platform and some off-line activities like holding social forum. MPMP has also cooperated with the ‘Implementation Plan of Support Plan for Growth of Talents in Renmin University of China’ to get manpower and intellectual support. After six months of operation, now MPMP have more than 2000 memories added and 7 Special Memory Collections now online. The work of MPMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.Keywords: digital memory, public participation, MPMP, cultural heritage, collection
Procedia PDF Downloads 17826243 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 7626242 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility
Authors: Fu Jinyu, Lin Jinguan
Abstract:
This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate
Procedia PDF Downloads 16626241 Exchanging Radiology Reporting System with Electronic Health Record: Designing a Conceptual Model
Authors: Azadeh Bashiri
Abstract:
Introduction: In order to better designing of electronic health record system in Iran, integration of health information systems based on a common language must be done to interpret and exchange this information with this system is required. Background: This study, provides a conceptual model of radiology reporting system using unified modeling language. The proposed model can solve the problem of integration this information system with electronic health record system. By using this model and design its service based, easily connect to electronic health record in Iran and facilitate transfer radiology report data. Methods: This is a cross-sectional study that was conducted in 2013. The student community was 22 experts that working at the Imaging Center in Imam Khomeini Hospital in Tehran and the sample was accorded with the community. Research tool was a questionnaire that prepared by the researcher to determine the information requirements. Content validity and test-retest method was used to measure validity and reliability of questioner respectively. Data analyzed with average index, using SPSS. Also, Visual Paradigm software was used to design a conceptual model. Result: Based on the requirements assessment of experts and related texts, administrative, demographic and clinical data and radiological examination results and if the anesthesia procedure performed, anesthesia data suggested as minimum data set for radiology report and based it class diagram designed. Also by identifying radiology reporting system process, use case was drawn. Conclusion: According to the application of radiology reports in electronic health record system for diagnosing and managing of clinical problem of the patient, provide the conceptual Model for radiology reporting system; in order to systematically design it, the problem of data sharing between these systems and electronic health records system would eliminate.Keywords: structured radiology report, information needs, minimum data set, electronic health record system in Iran
Procedia PDF Downloads 25726240 In Vivo Evaluation of Exposure to Electromagnetic Fields at 27 GHz (5G) of Danio Rerio: A Preliminary Study
Authors: Elena Maria Scalisi, Roberta Pecoraro, Martina Contino, Sara Ignoto, Carmelo Iaria, Santi Concetto Pavone, Gino Sorbello, Loreto Di Donato, Maria Violetta Brundo
Abstract:
5G Technology is evolving to satisfy a variety of service requirements that may allow high data-rate connections (1Gbps) and lower latency times than current (<1ms). In order to support a high data transmission speed and a high traffic service for eMBB (enhanced mobile broadband) use cases, 5G systems have the characteristic of using different frequency bands of the radio wave spectrum (700 MHz, 3.6-3.8 GHz and 26.5-27.5 GHz), thus taking advantage of higher frequencies than previous mobile radio generations (1G-4G). However, waves at higher frequencies have a lower capacity to propagate in free space and therefore, in order to guarantee the capillary coverage of the territory for high reliability applications, it will be necessary to install a large number of repeaters. Following the introduction of this new technology, there has been growing concern over the past few months about possible harmful effects on human health. The aim of this preliminary study is to evaluate possible short term effects induced by 5G-millimeter waves on embryonic development and early life stages of Danio rerio by Z-FET. We exposed developing zebrafish at frequency of 27 GHz, with a standard pyramidal horn antenna placed at 15 cm far from the samples holder ensuring an incident power density of 10 mW/cm2. During the exposure cycle, from 6 h post fertilization (hpf) to 96 hpf, we measured a different morphological endpoints every 24 hours. Zebrafish embryo toxicity test (Z-FET) is a short term test, carried out on fertilized eggs of zebrafish and it represents an effective alternative to acute test with adult fish (OECD, 2013). We have observed that 5G did not reveal significant impacts on mortality nor on morphology because exposed larvae showed a normal detachment of the tail, presence of heartbeat, well-organized somites, therefore hatching rate was lower than untreated larvae even at 48 h of exposure. Moreover, the immunohistochemical analysis performed on larvae showed a negativity to the HSP-70 expression used as a biomarkers. This is a preliminary study on evaluation of potential toxicity induced by 5G and it seems appropriate to underline the importance that further studies would take, aimed at clarifying the probable real risk of exposure to electromagnetic fields.Keywords: Biomarker of exposure, embryonic development, 5G waves, zebrafish embryo toxicity test
Procedia PDF Downloads 13426239 Verification of Geophysical Investigation during Subsea Tunnelling in Qatar
Authors: Gary Peach, Furqan Hameed
Abstract:
Musaimeer outfall tunnel is one of the longest storm water tunnels in the world, with a total length of 10.15 km. The tunnel will accommodate surface and rain water received from the drainage networks from 270 km of urban areas in southern Doha with a pumping capacity of 19.7m³/sec. The tunnel is excavated by Tunnel Boring Machine (TBM) through Rus Formation, Midra Shales, and Simsima Limestone. Water inflows at high pressure, complex mixed ground, and weaker ground strata prone to karstification with the presence of vertical and lateral fractures connected to the sea bed were also encountered during mining. In addition to pre-tender geotechnical investigations, the Contractor carried out a supplementary offshore geophysical investigation in order to fine-tune the existing results of geophysical and geotechnical investigations. Electric resistivity tomography (ERT) and Seismic Reflection survey was carried out. Offshore geophysical survey was performed, and interpretations of rock mass conditions were made to provide an overall picture of underground conditions along the tunnel alignment. This allowed the critical tunnelling area and cutter head intervention to be planned accordingly. Karstification was monitored with a non-intrusive radar system facility installed on the TBM. The Boring Electric Ahead Monitoring(BEAM) was installed at the cutter head and was able to predict the rock mass up to 3 tunnel diameters ahead of the cutter head. BEAM system was provided with an online system for real time monitoring of rock mass condition and then correlated with the rock mass conditions predicted during the interpretation phase of offshore geophysical surveys. The further correlation was carried by Samples of the rock mass taken from tunnel face inspections and excavated material produced by the TBM. The BEAM data was continuously monitored to check the variations in resistivity and percentage frequency effect (PFE) of the ground. This system provided information about rock mass condition, potential karst risk, and potential of water inflow. BEAM system was found to be more than 50% accurate in picking up the difficult ground conditions and faults as predicted in the geotechnical interpretative report before the start of tunnelling operations. Upon completion of the project, it was concluded that the combined use of different geophysical investigation results can make the execution stage be carried out in a more confident way with the less geotechnical risk involved. The approach used for the prediction of rock mass condition in Geotechnical Interpretative Report (GIR) and Geophysical Reflection and electric resistivity tomography survey (ERT) Geophysical Reflection surveys were concluded to be reliable as the same rock mass conditions were encountered during tunnelling operations.Keywords: tunnel boring machine (TBM), subsea, karstification, seismic reflection survey
Procedia PDF Downloads 25726238 Comparative Study of Seismic Isolation as Retrofit Method for Historical Constructions
Authors: Carlos H. Cuadra
Abstract:
Seismic isolation can be used as a retrofit method for historical buildings with the advantage that minimum intervention on super-structure is required. However, selection of isolation devices depends on weight and stiffness of upper structure. In this study, two buildings are considered for analyses to evaluate the applicability of this retrofitting methodology. Both buildings are located at Akita prefecture in the north part of Japan. One building is a wooden structure that corresponds to the old council meeting hall of Noshiro city. The second building is a brick masonry structure that was used as house of a foreign mining engineer and it is located at Ani town. Ambient vibration measurements were performed on both buildings to estimate their dynamic characteristics. Then, target period of vibration of isolated systems is selected as 3 seconds is selected to estimate required stiffness of isolation devices. For wooden structure, which is a light construction, it was found that natural rubber isolators in combination with friction bearings are suitable for seismic isolation. In case of masonry building elastomeric isolator can be used for its seismic isolation. Lumped mass systems are used for seismic response analysis and it is verified in both cases that seismic isolation can be used as retrofitting method of historical construction. However, in the case of the light building, most of the weight corresponds to the reinforced concrete slab that is required to install isolation devices.Keywords: historical building, finite element method, masonry structure, seismic isolation, wooden structure
Procedia PDF Downloads 16026237 Study and Analyze of Metallic Glasses for Biomedical Applications: From Soft to Bone Tissue Engineering
Authors: A. Monfared, S. Faghihi
Abstract:
Metallic glasses (MGs) are newcomers in the field of metals that show great potential for soft and bone tissue engineering due to the amorphous structure that endows unique properties. Up to now, various MGs based on Ti, Zr, Mg, Zn, Fe, Ca, and Sr in the form of a ribbon, bulk, thin-film, and powder have been investigated for biomedical purposes. This article reviews the compositions and biomedical properties of MGs as well as analyzes results in order to guide new approaches and future development of MGs.Keywords: metallic glasses, biomaterials, biocompatibility, biocorrosion
Procedia PDF Downloads 21826236 Performance Analysis of Geophysical Database Referenced Navigation: The Combination of Gravity Gradient and Terrain Using Extended Kalman Filter
Authors: Jisun Lee, Jay Hyoun Kwon
Abstract:
As an alternative way to compensate the INS (inertial navigation system) error in non-GNSS (Global Navigation Satellite System) environment, geophysical database referenced navigation is being studied. In this study, both gravity gradient and terrain data were combined to complement the weakness of sole geophysical data as well as to improve the stability of the positioning. The main process to compensate the INS error using geophysical database was constructed on the basis of the EKF (Extended Kalman Filter). In detail, two type of combination method, centralized and decentralized filter, were applied to check the pros and cons of its algorithm and to find more robust results. The performance of each navigation algorithm was evaluated based on the simulation by supposing that the aircraft flies with precise geophysical DB and sensors above nine different trajectories. Especially, the results were compared to the ones from sole geophysical database referenced navigation to check the improvement due to a combination of the heterogeneous geophysical database. It was found that the overall navigation performance was improved, but not all trajectories generated better navigation result by the combination of gravity gradient with terrain data. Also, it was found that the centralized filter generally showed more stable results. It is because that the way to allocate the weight for the decentralized filter could not be optimized due to the local inconsistency of geophysical data. In the future, switching of geophysical data or combining different navigation algorithm are necessary to obtain more robust navigation results.Keywords: Extended Kalman Filter, geophysical database referenced navigation, gravity gradient, terrain
Procedia PDF Downloads 35326235 An Application of Remote Sensing for Modeling Local Warming Trend
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 34226234 Scalable Learning of Tree-Based Models on Sparsely Representable Data
Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou
Abstract:
Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.Keywords: big data, sparsely representable data, tree-based models, scalable learning
Procedia PDF Downloads 27026233 Foreign Exchange Volatilities and Stock Prices: Evidence from London Stock Exchange
Authors: Mahdi Karazmodeh, Pooyan Jafari
Abstract:
One of the most interesting topics in finance is the relation between stock prices and exchange rates. During the past decades different stock markets in different countries have been the subject of study for researches. The volatilities of exchange rates and its effect on stock prices during the past 10 years have continued to be an attractive research topic. The subject of this study is one of the most important indices, FTSE 100. 20 firms with the highest market capitalization in 5 different industries are chosen. Firms are included in oil and gas, mining, pharmaceuticals, banking and food related industries. 5 different criteria have been introduced to evaluate the relationship between stock markets and exchange rates. Return of market portfolio, returns on broad index of Sterling are also introduced. The results state that not all firms are sensitive to changes in exchange rates. Furthermore, a Granger Causality test has been run to observe the route of changes between stock prices and foreign exchange rates. The results are consistent, to some level, with the previous studies. However, since the number of firms is not large, it is suggested that a larger number of firms being used to achieve the best results. However results showed that not all firms are affected by foreign exchange rates changes. After testing Granger Causality, this study found out that in some industries (oil and gas, pharmaceuticals), changes in foreign exchange rate will not cause any changes in stock prices (or vice versa), however, in banking sector the situation was different. This industry showed more reaction to these changes. The results are similar to the ones with Richards and Noel, where a variety of firms in different industries were evaluated.Keywords: stock prices, foreign exchange rate, exchange rate exposure, Granger Causality
Procedia PDF Downloads 44926232 Artificial Intelligence and Robotics in the Eye of Private Law with Special Regards to Intellectual Property and Liability Issues
Authors: Barna Arnold Keserű
Abstract:
In the last few years (what is called by many scholars the big data era) artificial intelligence (hereinafter AI) get more and more attention from the public and from the different branches of sciences as well. What previously was a mere science-fiction, now starts to become reality. AI and robotics often walk hand in hand, what changes not only the business and industrial life, but also has a serious impact on the legal system. The main research of the author focuses on these impacts in the field of private law, with special regards to liability and intellectual property issues. Many questions arise in these areas connecting to AI and robotics, where the boundaries are not sufficiently clear, and different needs are articulated by the different stakeholders. Recognizing the urgent need of thinking the Committee on Legal Affairs of the European Parliament adopted a Motion for a European Parliament Resolution A8-0005/2017 (of January 27th, 2017) in order to take some recommendations to the Commission on civil law rules on robotics and AI. This document defines some crucial usage of AI and/or robotics, e.g. the field of autonomous vehicles, the human job replacement in the industry or smart applications and machines. It aims to give recommendations to the safe and beneficial use of AI and robotics. However – as the document says – there are no legal provisions that specifically apply to robotics or AI in IP law, but that existing legal regimes and doctrines can be readily applied to robotics, although some aspects appear to call for specific consideration, calls on the Commission to support a horizontal and technologically neutral approach to intellectual property applicable to the various sectors in which robotics could be employed. AI can generate some content what worth copyright protection, but the question came up: who is the author, and the owner of copyright? The AI itself can’t be deemed author because it would mean that it is legally equal with the human persons. But there is the programmer who created the basic code of the AI, or the undertaking who sells the AI as a product, or the user who gives the inputs to the AI in order to create something new. Or AI generated contents are so far from humans, that there isn’t any human author, so these contents belong to public domain. The same questions could be asked connecting to patents. The research aims to answer these questions within the current legal framework and tries to enlighten future possibilities to adapt these frames to the socio-economical needs. In this part, the proper license agreements in the multilevel-chain from the programmer to the end-user become very important, because AI is an intellectual property in itself what creates further intellectual property. This could collide with data-protection and property rules as well. The problems are similar in the field of liability. We can use different existing forms of liability in the case when AI or AI led robotics cause damages, but it is unsure that the result complies with economical and developmental interests.Keywords: artificial intelligence, intellectual property, liability, robotics
Procedia PDF Downloads 20926231 On Estimating the Low Income Proportion with Several Auxiliary Variables
Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández
Abstract:
Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.Keywords: inclusion probability, poverty, poverty line, survey sampling
Procedia PDF Downloads 46026230 TessPy – Spatial Tessellation Made Easy
Authors: Jonas Hamann, Siavash Saki, Tobias Hagen
Abstract:
Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies
Procedia PDF Downloads 13226229 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies
Authors: Dmitry V. Fomichev, Vladimir V. Solonin
Abstract:
This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics
Procedia PDF Downloads 38626228 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 8226227 Analysis of Lead Time Delays in Supply Chain: A Case Study
Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry
Abstract:
Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis
Procedia PDF Downloads 73726226 A Unified Approach for Digital Forensics Analysis
Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles
Abstract:
Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool
Procedia PDF Downloads 20126225 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources
Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger
Abstract:
Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity
Procedia PDF Downloads 15726224 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis
Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare
Abstract:
The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test
Procedia PDF Downloads 40526223 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models
Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana
Abstract:
The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.Keywords: electricity demand forecasting, load shedding, demand side management, data science
Procedia PDF Downloads 68