Search results for: network complexity
1570 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 981569 Frequency Response of Complex Systems with Localized Nonlinearities
Authors: E. Menga, S. Hernandez
Abstract:
Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.Keywords: frequency response, nonlinear dynamics, structural dynamic modification, softening effect, rubber
Procedia PDF Downloads 2651568 Comprehensive Review of Ultralightweight Security Protocols
Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj
Abstract:
The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP
Procedia PDF Downloads 781567 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario
Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis
Abstract:
With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain
Procedia PDF Downloads 1741566 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3151565 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4961564 e-Learning Security: A Distributed Incident Response Generator
Authors: Bel G Raggad
Abstract:
An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection
Procedia PDF Downloads 4361563 Matching Law in Autoshaped Choice in Neural Networks
Authors: Giselle Maggie Fer Castañeda, Diego Iván González
Abstract:
The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.Keywords: matching law, neural networks, computational models, behavioral sciences
Procedia PDF Downloads 731562 Context Aware Anomaly Behavior Analysis for Smart Home Systems
Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu
Abstract:
The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.Keywords: Internet of Things, network security, context awareness, intrusion detection
Procedia PDF Downloads 1901561 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions
Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden
Abstract:
Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety
Procedia PDF Downloads 641560 Applying GIS Geographic Weighted Regression Analysis to Assess Local Factors Impeding Smallholder Farmers from Participating in Agribusiness Markets: A Case Study of Vihiga County, Western Kenya
Authors: Mwehe Mathenge, Ben G. J. S. Sonneveld, Jacqueline E. W. Broerse
Abstract:
Smallholder farmers are important drivers of agriculture productivity, food security, and poverty reduction in Sub-Saharan Africa. However, they are faced with myriad challenges in their efforts at participating in agribusiness markets. How the geographic explicit factors existing at the local level interact to impede smallholder farmers' decision to participates (or not) in agribusiness markets is not well understood. Deconstructing the spatial complexity of the local environment could provide a deeper insight into how geographically explicit determinants promote or impede resource-poor smallholder farmers from participating in agribusiness. This paper’s objective was to identify, map, and analyze local spatial autocorrelation in factors that impede poor smallholders from participating in agribusiness markets. Data were collected using geocoded researcher-administered survey questionnaires from 392 households in Western Kenya. Three spatial statistics methods in geographic information system (GIS) were used to analyze data -Global Moran’s I, Cluster and Outliers Analysis (Anselin Local Moran’s I), and geographically weighted regression. The results of Global Moran’s I reveal the presence of spatial patterns in the dataset that was not caused by spatial randomness of data. Subsequently, Anselin Local Moran’s I result identified spatially and statistically significant local spatial clustering (hot spots and cold spots) in factors hindering smallholder participation. Finally, the geographically weighted regression results unearthed those specific geographic explicit factors impeding market participation in the study area. The results confirm that geographically explicit factors are indispensable in influencing the smallholder farming decisions, and policymakers should take cognizance of them. Additionally, this research demonstrated how geospatial explicit analysis conducted at the local level, using geographically disaggregated data, could help in identifying households and localities where the most impoverished and resource-poor smallholder households reside. In designing spatially targeted interventions, policymakers could benefit from geospatial analysis methods in understanding complex geographic factors and processes that interact to influence smallholder farmers' decision-making processes and choices.Keywords: agribusiness markets, GIS, smallholder farmers, spatial statistics, disaggregated spatial data
Procedia PDF Downloads 1381559 Geodynamics Behaviour of Greater Cairo as Deduced from 4D Gravity and Seismic Activities
Authors: Elsayed A. Issawy, Anwar H. Radwan
Abstract:
Recent crustal deformations studies in Egypt are applied on the most active areas with relation to seismic activity. Temporal gravity variations in parallel with the geodetic technique (GPS) were used to monitor recent crustal movements in Egypt since 1997. The non-tidal gravity changes were constrained by the vertical component of surface movements derived from the GPS observations. The gravity changes were used to understand the surface tectonics and geodynamic modelling of the Greater Cairo region after the occurrence of an earthquake of 1992. It was found that there is a certain relation showed by increasing of gravity values before the main seismic activity. As example, relative considerable increase of gravity values was noticed for the network between the epochs of 2000 and 2004. Otherwise, the temporal gravity variations were reported a considerable decrease in gravity values between the two campaigns of 2004 and 2007 for the same stations. This behaviour could explain by compressive deformation and strain build-up stage before the South western Cairo earthquake (July 31, 2005 with magnitude of 4.3) and the stress release stage occurred after the main event. The geodetic measurements showed that, the estimated horizontal velocities for almost of points are 5.5 mm/year in approximately NW direction.Keywords: temporal gravity variations, geodynamics, greater Cairo, recent crustal movements, earthquakes
Procedia PDF Downloads 3661558 Robust Processing of Antenna Array Signals under Local Scattering Environments
Authors: Ju-Hong Lee, Ching-Wei Liao
Abstract:
An adaptive array beamformer is designed for automatically preserving the desired signals while cancelling interference and noise. Providing robustness against model mismatches and tracking possible environment changes calls for robust adaptive beamforming techniques. The design criterion yields the well-known generalized sidelobe canceller (GSC) beamformer. In practice, the knowledge of the desired steering vector can be imprecise, which often occurs due to estimation errors in the DOA of the desired signal or imperfect array calibration. In these situations, the SOI is considered as interference, and the performance of the GSC beamformer is known to degrade. This undesired behavior results in a reduction of the array output signal-to-interference plus-noise-ratio (SINR). Therefore, it is worth developing robust techniques to deal with the problem due to local scattering environments. As to the implementation of adaptive beamforming, the required computational complexity is enormous when the array beamformer is equipped with massive antenna array sensors. To alleviate this difficulty, a generalized sidelobe canceller (GSC) with partially adaptivity for less adaptive degrees of freedom and faster adaptive response has been proposed in the literature. Unfortunately, it has been shown that the conventional GSC-based adaptive beamformers are usually very sensitive to the mismatch problems due to local scattering situations. In this paper, we present an effective GSC-based beamformer against the mismatch problems mentioned above. The proposed GSC-based array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. We utilize the predefined steering vector and a presumed angle tolerance range to carry out the required estimation for obtaining an appropriate steering vector. A matrix associated with the direction vector of signal sources is first created. Then projection matrices related to the matrix are generated and are utilized to iteratively estimate the actual direction vector of the desired signal. As a result, the quiescent weight vector and the required signal blocking matrix required for performing adaptive beamforming can be easily found. By utilizing the proposed GSC-based beamformer, we find that the performance degradation due to the considered local scattering environments can be effectively mitigated. To further enhance the beamforming performance, a signal subspace projection matrix is also introduced into the proposed GSC-based beamformer. Several computer simulation examples show that the proposed GSC-based beamformer outperforms the existing robust techniques.Keywords: adaptive antenna beamforming, local scattering, signal blocking, steering mismatch
Procedia PDF Downloads 1111557 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing
Authors: Thomas Yeboah
Abstract:
Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing
Procedia PDF Downloads 6261556 Integrating System-Level Infrastructure Resilience and Sustainability Based on Fractal: Perspectives and Review
Authors: Qiyao Han, Xianhai Meng
Abstract:
Urban infrastructures refer to the fundamental facilities and systems that serve cities. Due to the global climate change and human activities in recent years, many urban areas around the world are facing enormous challenges from natural and man-made disasters, like flood, earthquake and terrorist attack. For this reason, urban resilience to disasters has attracted increasing attention from researchers and practitioners. Given the complexity of infrastructure systems and the uncertainty of disasters, this paper suggests that studies of resilience could focus on urban functional sustainability (in social, economic and environmental dimensions) supported by infrastructure systems under disturbance. It is supposed that urban infrastructure systems with high resilience should be able to reconfigure themselves without significant declines in critical functions (services), such as primary productivity, hydrological cycles, social relations and economic prosperity. Despite that some methods have been developed to integrate the resilience and sustainability of individual infrastructure components, more work is needed to enable system-level integration. This research presents a conceptual analysis framework for integrating resilience and sustainability based on fractal theory. It is believed that the ability of an ecological system to maintain structure and function in face of disturbance and to reorganize following disturbance-driven change is largely dependent on its self-similar and hierarchical fractal structure, in which cross-scale resilience is produced by the replication of ecosystem processes dominating at different levels. Urban infrastructure systems are analogous to ecological systems because they are interconnected, complex and adaptive, are comprised of interconnected components, and exhibit characteristic scaling properties. Therefore, analyzing resilience of ecological system provides a better understanding about the dynamics and interactions of infrastructure systems. This paper discusses fractal characteristics of ecosystem resilience, reviews literature related to system-level infrastructure resilience, identifies resilience criteria associated with sustainability dimensions, and develops a conceptual analysis framework. Exploration of the relevance of identified criteria to fractal characteristics reveals that there is a great potential to analyze infrastructure systems based on fractal. In the conceptual analysis framework, it is proposed that in order to be resilient, urban infrastructure system needs to be capable of “maintaining” and “reorganizing” multi-scale critical functions under disasters. Finally, the paper identifies areas where further research efforts are needed.Keywords: fractal, urban infrastructure, sustainability, system-level resilience
Procedia PDF Downloads 2731555 Behaviour of Polypropylene Fiber Reinforced Concrete under Dynamic Impact Loads
Authors: Masoud Abedini, Azrul A. Mutalib
Abstract:
A study of the used of additives which mixed with concrete in order to increase the strength and durability of concrete was examined to improve the quality of many aspects in the concrete. This paper presents a polypropylene (PP) fibre was added into concrete to study the dynamic response under impact load. References related to dynamic impact test for sample polypropylene fibre reinforced concrete (PPFRC) is very limited and there is no specific research and information related to this research. Therefore, the study on the dynamic impact of PPFRC using a Split Hopkinson Pressure Bar (SHPB) was done in this study. Provided samples for this study was composed of 1.0 kg/m³ PP fibres, 2.0 kg/m³ PP fibres and plain concrete as a control samples. This PP fibre contains twisted bundle non-fibrillating monofilament and fibrillating network fibres. Samples were prepared by cylindrical mould with three samples of each mix proportion, 28 days curing period and concrete grade 35 Mpa. These samples are then tested for dynamic impact by SHPB at 2 Mpa pressure under the strain rate of 10 s-1. Dynamic compressive strength results showed an increase of SC1 and SC2 samples than the control sample which is 13.22 % and 76.9 % respectively with the dynamic compressive strength of 74.5 MPa and 116.4 MPa compared to 65.8 MPa. Dynamic increased factor (DIF) shows that, sample SC2 gives higher value with 4.15 than others samples SC1 and SC3 that gives the value of 2.14 and 1.97 respectively.Keywords: polypropylene fiber, Split Hopkinson Pressure Bar, impact load, dynamic compressive strength
Procedia PDF Downloads 5491554 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms
Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga
Abstract:
Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.Keywords: anomaly detection, clustering, pattern recognition, web sessions
Procedia PDF Downloads 2871553 Social Interaction of Gifted Students in a Heterogeneous Educational Environment
Authors: Ekaterina Donii
Abstract:
Understanding interpersonal competence, social interaction and peer relationships of gifted children is a concern for specialists in the field of gifted education. To gain more in-depth knowledge concerning the social functioning of gifted children among peers, we decided to study the social abilities of gifted children in a heterogeneous academic environment. Eight gifted children (5 of age 7, 1 of age 8.5, 1 of age 9.5 and 1 of age 10), their classmates (10 of age 7-8, 12 of age 8.5-9, 16 of age 9.5-10) and teachers participated in the study. The sociometric questionnaire analysis was based on the method of Rodríguez and Morera to check the social status of the gifted children among classmates. The Instrument Observational Protocol for Interactions within the Classroom (OPINTEC-v.5) was used to assess the social interactions between the gifted students, their classmates, and the teacher within the educational context. While doing a task together, the gifted children interacted more with popular and neither popular nor gifted classmates than with rejected classmates. While spending time together, the gifted children interacted more with neither popular nor rejected classmates than with popular or rejected classmates. All gifted children chose other gifted and non-gifted classmates for interaction, established close relations and demonstrated good social abilities interacting with their classmates. The aim of this study was to examine the social interactions, social status, and social network of the gifted students in a regular classroom. The majority of the gifted children were popular among their classmates and had good social skills. We should be alert, though, for those gifted children who do have social problems, in order to help them functioning in a regular classroom.Keywords: gifted, heterogeneous environment, sociometric status, social interactions
Procedia PDF Downloads 3531552 An MrPPG Method for Face Anti-Spoofing
Authors: Lan Zhang, Cailing Zhang
Abstract:
In recent years, many face anti-spoofing algorithms have high detection accuracy when detecting 2D face anti-spoofing or 3D mask face anti-spoofing alone in the field of face anti-spoofing, but their detection performance is greatly reduced in multidimensional and cross-datasets tests. The rPPG method used for face anti-spoofing uses the unique vital information of real face to judge real faces and face anti-spoofing, so rPPG method has strong stability compared with other methods, but its detection rate of 2D face anti-spoofing needs to be improved. Therefore, in this paper, we improve an rPPG(Remote Photoplethysmography) method(MrPPG) for face anti-spoofing which through color space fusion, using the correlation of pulse signals between real face regions and background regions, and introducing the cyclic neural network (LSTM) method to improve accuracy in 2D face anti-spoofing. Meanwhile, the MrPPG also has high accuracy and good stability in face anti-spoofing of multi-dimensional and cross-data datasets. The improved method was validated on Replay-Attack, CASIA-FASD, Siw and HKBU_MARs_V2 datasets, the experimental results show that the performance and stability of the improved algorithm proposed in this paper is superior to many advanced algorithms.Keywords: face anti-spoofing, face presentation attack detection, remote photoplethysmography, MrPPG
Procedia PDF Downloads 1771551 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience
Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi
Abstract:
Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit
Procedia PDF Downloads 1271550 Understanding the Challenges of Lawbook Translation via the Framework of Functional Theory of Language
Authors: Tengku Sepora Tengku Mahadi
Abstract:
Where the speed of book writing lags behind the high need for such material for tertiary studies, translation offers a way to enhance the equilibrium in this demand-supply equation. Nevertheless, translation is confronted by obstacles that threaten its effectiveness. The primary challenge to the production of efficient translations may well be related to the text-type and in terms of its complexity. A text that is intricately written with unique rhetorical devices, subject-matter foundation and cultural references will undoubtedly challenge the translator. Longer time and greater effort would be the consequence. To understand these text-related challenges, the present paper set out to analyze a lawbook entitled Learning the Law by David Melinkoff. The book is chosen because it has often been used as a textbook or for reference in many law courses in the United Kingdom and has seen over thirteen editions; therefore, it can be said to be a worthy book for studies in law. Another reason is the existence of a ready translation in Malay. Reference to this translation enables confirmation to some extent of the potential problems that might occur in its translation. Understanding the organization and the language of the book will help translators to prepare themselves better for the task. They can anticipate the research and time that may be needed to produce an effective translation. Another premise here is that this text-type implies certain ways of writing and organization. Accordingly, it seems practicable to adopt the functional theory of language as suggested by Michael Halliday as its theoretical framework. Concepts of the context of culture, the context of situation and measures of the field, tenor and mode form the instruments for analysis. Additional examples from similar materials can also be used to validate the findings. Some interesting findings include the presence of several other text-types or sub-text-types in the book and the dependence on literary discourse and devices to capture the meanings better or add color to the dry field of law. In addition, many elements of culture can be seen, for example, the use of familiar alternatives, allusions, and even terminology and references that date back to various periods of time and languages. Also found are parts which discuss origins of words and terms that may be relevant to readers within the United Kingdom but make little sense to readers of the book in other languages. In conclusion, the textual analysis in terms of its functions and the linguistic and textual devices used to achieve them can then be applied as a guide to determine the effectiveness of the translation that is produced.Keywords: functional theory of language, lawbook text-type, rhetorical devices, culture
Procedia PDF Downloads 1491549 LncRNA NEAT1 Promotes NSCLC Progression through Acting as a ceRNA of miR-377-3p
Authors: Chengcao Sun, Shujun Li, Cuili Yang, Yongyong Xi, Liang Wang, Feng Zhang, Dejia Li
Abstract:
Recently, the long non-coding RNA (lncRNA) NEAT1 has been identified as an oncogenic gene in multiple cancer types and elevated expression of NEAT1 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in progression of non-small cell lung cancer (NSCLC). In our studies, we identified NEAT1 was highly expressed in NSCLC patients and was a novel regulator of NSCLC progression. Patients whose tumors had high NEAT1 expression had a shorter overall survival than patients whose tumors had low NEAT1 expression. Further, NEAT1 significantly accelerates NSCLC cell growth and metastasis in vitro and tumor growth in vivo. Additionally, by using bioinformatics study and RNA pull down combined with luciferase reporter assays, we demonstrated that NEAT1 functioned as a competing endogenous RNA (ceRNA) for has-miR-377-3p, antagonized its functions and led to the de-repression of its endogenous targets E2F3, which was a core oncogene in promoting NSCLC progression. Taken together, these observations imply that the NEAT1 modulated the expression of E2F3 gene by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and NSCLC progression.Keywords: long non-coding RNA NEAT1, hsa-miRNA-377-3p, E2F3, non-small cell lung cancer, tumorigenesis
Procedia PDF Downloads 3681548 The Effect of Artificial Intelligence on Banking Development and Progress
Authors: Mina Malak Hanna Saad
Abstract:
New strategies for supplying banking services to the customer have been brought, which include online banking. Banks have begun to recall electronic banking (e-banking) as a manner to replace some conventional department features by means of the usage of the internet as a brand-new distribution channel. A few clients have at least one account at multiple banks and get admission to those debts through online banking. To test their present-day internet worth, customers need to log into each of their debts, get particular statistics, and paint closer to consolidation. Not only is it time-ingesting; however, but it is also a repeatable activity with a certain frequency. To solve this problem, the idea of account aggregation was delivered as a solution. Account consolidation in e-banking as a form of digital banking appears to build stronger dating with clients. An account linking service is usually known as a service that permits customers to manipulate their bank accounts held at exceptional institutions through a common online banking platform that places a high priority on safety and statistics protection. The object affords an outline of the account aggregation approach in e-banking as a distinct carrier in the area of e-banking. The advanced facts generation is becoming a vital thing in the improvement of financial services enterprise, specifically the banking enterprise. It has brought different ways of delivering banking to the purchaser, which includes net Banking. Banks began to study electronic banking (e-banking) as a means to update some of their traditional branch functions and the use of the net as a distribution channel. Some clients have at least multiple accounts throughout banks and get the right of entry to that money owed through the usage of e-banking offerings. To examine the contemporary internet's well-worth position, customers have to log in to each of their money owed, get the information and work on consolidation. This no longer takes sufficient time; however, it is a repetitive interest at a specified frequency. To address this point, an account aggregation idea is brought as an answer. E-banking account aggregation, as one of the e-banking kinds, appeared to construct a more potent dating with clients. Account Aggregation carrier usually refers to a service that allows clients to control their bank bills maintained in one-of-a-kind institutions via a common Internet banking working platform, with an excessive subject to protection and privateness. This paper offers an overview of an e-banking account aggregation technique as a new provider in the e-banking field.Keywords: compatibility, complexity, mobile banking, observation, risk banking technology, Internet banks, modernization of banks, banks, account aggregation, security, enterprise developmente-banking, enterprise development
Procedia PDF Downloads 331547 Multi Agent Based Pre-Hospital Emergency Management Architecture
Authors: Jaleh Shoshtarian Malak, Niloofar Mohamadzadeh
Abstract:
Managing pre-hospital emergency patients requires real-time practices and efficient resource utilization. Since we are facing a distributed Network of healthcare providers, services and applications choosing the right resources and treatment protocol considering patient situation is a critical task. Delivering care to emergency patients at right time and with the suitable treatment settings can save ones live and prevent further complication. In recent years Multi Agent Systems (MAS) introduced great solutions to deal with real-time, distributed and complicated problems. In this paper we propose a multi agent based pre-hospital emergency management architecture in order to manage coordination, collaboration, treatment protocol and healthcare provider selection between different parties in pre-hospital emergency in a self-organizing manner. We used AnyLogic Agent Based Modeling (ABM) tool in order to simulate our proposed architecture. We have analyzed and described the functionality of EMS center, Ambulance, Consultation Center, EHR Repository and Quality of Care Monitoring as main collaborating agents. Future work includes implementation of the proposed architecture and evaluation of its impact on patient quality of care improvement.Keywords: multi agent systems, pre-hospital emergency, simulation, software architecture
Procedia PDF Downloads 4231546 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.Keywords: bi-lingual, children who stutter, children with language impairment, hidden markov models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies
Procedia PDF Downloads 2161545 Barrier Analysis of Sustainable Development of Small Towns: A Perspective of Southwest China
Authors: Yitian Ren, Liyin Shen, Tao Zhou, Xiao Li
Abstract:
The past urbanization process in China has brought out series of problems, the Chinese government has then positioned small towns in essential roles for implementing the strategy 'The National New-type Urbanization Plan (2014-2020)'. As the connector and transfer station of cities and countryside, small towns are important force to narrow the gap between urban and rural area, and to achieve the mission of new-type urbanization in China. The sustainable development of small towns plays crucial role because cities are not capable enough to absorb the surplus rural population. Nevertheless, there are various types of barriers hindering the sustainable development of small towns, which led to the limited development of small towns and has presented a bottleneck in Chinese urbanization process. Therefore, this paper makes deep understanding of these barriers, thus effective actions can be taken to address them. And this paper chooses the perspective of Southwest China (refers to Sichuan province, Yunnan province, Guizhou province, Chongqing Municipality City and Tibet Autonomous Region), cause the urbanization rate in Southwest China is far behind the average urbanization level of the nation and the number of small towns accounts for a great proportion in mainland China, also the characteristics of small towns in Southwest China are distinct. This paper investigates the barriers of sustainable development of small towns which located in Southwest China by using the content analysis method, combing with the field work and interviews in sample small towns, then identified and concludes 18 barriers into four dimensions, namely, institutional barriers, economic barriers, social barriers and ecological barriers. Based on the research above, questionnaire survey and data analysis are implemented, thus the key barriers hinder the sustainable development of small towns in Southwest China are identified by using fuzzy set theory, those barriers are, lack of independent financial power, lack of construction land index, financial channels limitation, single industrial structure, topography variety and complexity, which mainly belongs to institutional barriers and economic barriers. In conclusion part, policy suggestions are come up with to improve the politic and institutional environment of small town development, also the market mechanism are supposed to be introduced to the development process of small towns, which can effectively overcome the economic barriers, promote the sustainable development of small towns, accelerate the in-situ urbanization by absorbing peasants in nearby villages, and achieve the mission of new-type urbanization in China from the perspective of people-oriented.Keywords: barrier analysis, sustainable development, small town, Southwest China
Procedia PDF Downloads 3421544 Considering Effect of Wind Turbines in the Distribution System
Authors: Majed Ahmadi
Abstract:
In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty
Procedia PDF Downloads 2831543 Theology of Science and Technology as a Tool for Peace Education
Authors: Jonas Chikelue Ogbuefi
Abstract:
Science and Technology have a major impact on societal peace, it offers support to teaching and learning, cuts costs, and offers solutions to the current agitations and militancy in Nigeria today. Christianity, for instance, did not only change and form the western world in the past 2022 but still has a substantial role to play in society through liquid ecclesiology. This paper interrogated the impact of the theology of Science and Technology as a tool for peace sustainability through peace education in Nigeria. The method adopted is a historical and descriptive method of analysis. It was discovered that a larger number of Nigerian citizens lack almost all the basic things needed for the standard of living, such as Shelter, meaningful employment, and clothing, which is the root course of all agitations in Nigeria. Based on the above findings, the paper contends that the government alone cannot restore Peace in Nigeria. Hence the inability of the government to restore peace calls for all religious actors to be involved. The main thrust and recommendation of this paper are to challenge the religious actors to implement the Theology of Science and Technology as a tool for peace restoration and should network with both the government and the private sectors to make funds available to budding and existing entrepreneurs using Science and Technology as a tool for Peace and economic sustainability. This paper viewed the theology of Science and Technology as a tool for Peace and economic sustainability in Nigeria.Keywords: theology, science, technology, peace education
Procedia PDF Downloads 831542 A Pathway to Financial Inclusion: Mobile Money and Individual Savings in Uganda
Authors: Musa Mayanja Lwanga, Annet Adong
Abstract:
This study provides a micro perspective on the impact of mobile money services on individual’s saving behavior using the 2013 Uganda FinScope data. Results show that although saving through the mobile phone is not a common practice in Uganda, being a registered mobile money user increases the likelihood to save with mobile money. Saving using mobile is more prevalent in urban areas and in Kampala and Central region compared to other regions. This can be explained by: first, rural dwellers tend on average to have lower incomes and thus have lower to saving compared to the urban counterpart. Similarly, residents of Kampala tend to have higher incomes and thus high savings compared to residents of other regions. Secondly, poor infrastructure in rural areas in terms of lack of electricity and poor telecommunication network coverage may limit the use of mobile phones and consequently the use of mobile money as a saving mechanism. Overall, the use of mobile money as a saving mechanism is still very low and this could be partly explained by limitations in the legislation that does not incorporate mobile finance services into mobile money. The absence of interest payments on mobile money savings may act as a disincentive to save through this mechanism. Given the emerging mobile banking services, there is a need to create more awareness and the need for enhanced synergies between telecom companies and commercial banks.Keywords: financial inclusion, mobile money, savings, Uganda
Procedia PDF Downloads 2941541 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features
Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou
Abstract:
The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features
Procedia PDF Downloads 120