Search results for: crow search algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5204

Search results for: crow search algorithm

584 Rescaled Range Analysis of Seismic Time-Series: Example of the Recent Seismic Crisis of Alhoceima

Authors: Marina Benito-Parejo, Raul Perez-Lopez, Miguel Herraiz, Carolina Guardiola-Albert, Cesar Martinez

Abstract:

Persistency, long-term memory and randomness are intrinsic properties of time-series of earthquakes. The Rescaled Range Analysis (RS-Analysis) was introduced by Hurst in 1956 and modified by Mandelbrot and Wallis in 1964. This method represents a simple and elegant analysis which determines the range of variation of one natural property (the seismic energy released in this case) in a time interval. Despite the simplicity, there is complexity inherent in the property measured. The cumulative curve of the energy released in time is the well-known fractal geometry of a devil’s staircase. This geometry is used for determining the maximum and minimum value of the range, which is normalized by the standard deviation. The rescaled range obtained obeys a power-law with the time, and the exponent is the Hurst value. Depending on this value, time-series can be classified in long-term or short-term memory. Hence, an algorithm has been developed for compiling the RS-Analysis for time series of earthquakes by days. Completeness time distribution and locally stationarity of the time series are required. The interest of this analysis is their application for a complex seismic crisis where different earthquakes take place in clusters in a short period. Therefore, the Hurst exponent has been obtained for the seismic crisis of Alhoceima (Mediterranean Sea) of January-March, 2016, where at least five medium-sized earthquakes were triggered. According to the values obtained from the Hurst exponent for each cluster, a different mechanical origin can be detected, corroborated by the focal mechanisms calculated by the official institutions. Therefore, this type of analysis not only allows an approach to a greater understanding of a seismic series but also makes possible to discern different types of seismic origins.

Keywords: Alhoceima crisis, earthquake time series, Hurst exponent, rescaled range analysis

Procedia PDF Downloads 321
583 Context-Aware Point-Of-Interests Recommender Systems Using Integrated Sentiment and Network Analysis

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

Recently, user’s interests for location-based social network service increases according to the advances of social web and location-based technologies. It may be easy to recommend preferred items if we can use user’s preference, context and social network information simultaneously. In this study, we propose context-aware POI (point-of-interests) recommender systems using location-based network analysis and sentiment analysis which consider context, social network information and implicit user’s preference score. We propose a context-aware POI recommendation system consisting of three sub-modules and an integrated recommendation system of them. First, we will develop a recommendation module based on network analysis. This module combines social network analysis and cluster-indexing collaboration filtering. Next, this study develops a recommendation module using social singular value decomposition (SVD) and implicit SVD. In this research, we will develop a recommendation module that can recommend preference scores based on the frequency of POI visits of user in POI recommendation process by using social and implicit SVD which can reflect implicit feedback in collaborative filtering. We also develop a recommendation module using them that can estimate preference scores based on the recommendation. Finally, this study will propose a recommendation module using opinion mining and emotional analysis using data such as reviews of POIs extracted from location-based social networks. Finally, we will develop an integration algorithm that combines the results of the three recommendation modules proposed in this research. Experimental results show the usefulness of the proposed model in relation to the recommended performance.

Keywords: sentiment analysis, network analysis, recommender systems, point-of-interests, business analytics

Procedia PDF Downloads 250
582 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models

Authors: Azadeh Jafari, Robert G. Owens

Abstract:

In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.

Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics

Procedia PDF Downloads 361
581 Assessment of Land Use Land Cover Change-Induced Climatic Effects

Authors: Mahesh K. Jat, Ankan Jana, Mahender Choudhary

Abstract:

Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) are used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.

Keywords: LULC, sensible heat flux, latent heat flux, SEBAL, landsat, precipitation, temperature

Procedia PDF Downloads 116
580 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 86
579 The Effect of Technology on Skin Development and Progress

Authors: Haidy Weliam Megaly Gouda

Abstract:

Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification

Procedia PDF Downloads 62
578 Moral Rights: Judicial Evidence Insufficiency in the Determination of the Truth and Reasoning in Brazilian Morally Charged Cases

Authors: Rainner Roweder

Abstract:

Theme: The present paper aims to analyze the specificity of the judicial evidence linked to the subjects of dignity and personality rights, otherwise known as moral rights, in the determination of the truth and formation of the judicial reasoning in cases concerning these areas. This research is about the way courts in Brazilian domestic law search for truth and handles evidence in cases involving moral rights that are abundant and important in Brazil. The main object of the paper is to analyze the effectiveness of the evidence in the formation of judicial conviction in matters related to morally controverted rights, based on the Brazilian, and as a comparison, the Latin American legal systems. In short, the rights of dignity and personality are moral. However, the evidential legal system expects a rational demonstration of moral rights that generate judicial conviction or persuasion. Moral, in turn, tends to be difficult or impossible to demonstrate in court, generating the problem considered in this paper, that is, the study of the moral demonstration problem as proof in court. In this sense, the more linked to moral, the more difficult to be demonstrated in court that right is, expanding the field of judicial discretion, generating legal uncertainty. More specifically, the new personality rights, such as gender, and their possibility of alteration, further amplify the problem being essentially an intimate manner, which does not exist in the objective, rational evidential system, as normally occurs in other categories, such as contracts. Therefore, evidencing this legal category in court, with the level of security required by the law, is a herculean task. It becomes virtually impossible to use the same evidentiary system when judging the rights researched here; therefore, it generates the need for a new design of the evidential task regarding the rights of the personality, a central effort of the present paper. Methodology: Concerning the methodology, the Method used in the Investigation phase was Inductive, with the use of the comparative law method; in the data treatment phase, the Inductive Method was also used. Doctrine, Legislative, and jurisprudential comparison was the technique research used. Results: In addition to the peculiar characteristics of personality rights that are not found in other rights, part of them are essentially linked to morale and are not objectively verifiable by design, and it is necessary to use specific argumentative theories for their secure confirmation, such as interdisciplinary support. The traditional pragmatic theory of proof, for having an obvious objective character, when applied in the rights linked to the morale, aggravates decisionism and generates legal insecurity, being necessary its reconstruction for morally charged cases, with the possible use of the “predictive theory” ( and predictive facts) through algorithms in data collection and treatment.

Keywords: moral rights, proof, pragmatic proof theory, insufficiency, Brazil

Procedia PDF Downloads 109
577 Lineament Analysis as a Method of Mineral Deposit Exploration

Authors: Dmitry Kukushkin

Abstract:

Lineaments form complex grids on Earth's surface. Currently, one particular object of study for many researchers is the analysis and geological interpretation of maps of lineament density in an attempt to locate various geological structures. But lineament grids are made up of global, regional and local components, and this superimposition of lineament grids of various scales (global, regional, and local) renders this method less effective. Besides, the erosion processes and the erosional resistance of rocks lying on the surface play a significant role in the formation of lineament grids. Therefore, specific lineament density map is characterized by poor contrast (most anomalies do not exceed the average values by more than 30%) and unstable relation with local geological structures. Our method allows to confidently determine the location and boundaries of local geological structures that are likely to contain mineral deposits. Maps of the fields of lineament distortion (residual specific density) created by our method are characterized by high contrast with anomalies exceeding the average by upward of 200%, and stable correlation to local geological structures containing mineral deposits. Our method considers a lineament grid as a general lineaments field – surface manifestation of stress and strain fields of Earth associated with geological structures of global, regional and local scales. Each of these structures has its own field of brittle dislocations that appears on the surface of its lineament field. Our method allows singling out local components by suppressing global and regional components of the general lineaments field. The remaining local lineament field is an indicator of local geological structures.The following are some of the examples of the method application: 1. Srednevilyuiskoye gas condensate field (Yakutia) - a direct proof of the effectiveness of methodology; 2. Structure of Astronomy (Taimyr) - confirmed by the seismic survey; 3. Active gold mine of Kadara (Chita Region) – confirmed by geochemistry; 4. Active gold mine of Davenda (Yakutia) - determined the boundaries of the granite massif that controls mineralization; 5. Object, promising to search for hydrocarbons in the north of Algeria - correlated with the results of geological, geochemical and geophysical surveys. For both Kadara and Davenda, the method demonstrated that the intensive anomalies of the local lineament fields are consistent with the geochemical anomalies and indicate the presence of the gold content at commercial levels. Our method of suppression of global and regional components results in isolating a local lineament field. In early stages of a geological exploration for oil and gas, this allows determining boundaries of various geological structures with very high reliability. Therefore, our method allows optimization of placement of seismic profile and exploratory drilling equipment, and this leads to a reduction of costs of prospecting and exploration of deposits, as well as acceleration of its commissioning.

Keywords: lineaments, mineral exploration, oil and gas, remote sensing

Procedia PDF Downloads 304
576 Relative Entropy Used to Determine the Divergence of Cells in Single Cell RNA Sequence Data Analysis

Authors: An Chengrui, Yin Zi, Wu Bingbing, Ma Yuanzhu, Jin Kaixiu, Chen Xiao, Ouyang Hongwei

Abstract:

Single cell RNA sequence (scRNA-seq) is one of the effective tools to study transcriptomics of biological processes. Recently, similarity measurement of cells is Euclidian distance or its derivatives. However, the process of scRNA-seq is a multi-variate Bernoulli event model, thus we hypothesize that it would be more efficient when the divergence between cells is valued with relative entropy than Euclidian distance. In this study, we compared the performances of Euclidian distance, Spearman correlation distance and Relative Entropy using scRNA-seq data of the early, medial and late stage of limb development generated in our lab. Relative Entropy is better than other methods according to cluster potential test. Furthermore, we developed KL-SNE, an algorithm modifying t-SNE whose definition of divergence between cells Euclidian distance to Kullback–Leibler divergence. Results showed that KL-SNE was more effective to dissect cell heterogeneity than t-SNE, indicating the better performance of relative entropy than Euclidian distance. Specifically, the chondrocyte expressing Comp was clustered together with KL-SNE but not with t-SNE. Surprisingly, cells in early stage were surrounded by cells in medial stage in the processing of KL-SNE while medial cells neighbored to late stage with the process of t-SNE. This results parallel to Heatmap which showed cells in medial stage were more heterogenic than cells in other stages. In addition, we also found that results of KL-SNE tend to follow Gaussian distribution compared with those of the t-SNE, which could also be verified with the analysis of scRNA-seq data from another study on human embryo development. Therefore, it is also an effective way to convert non-Gaussian distribution to Gaussian distribution and facilitate the subsequent statistic possesses. Thus, relative entropy is potentially a better way to determine the divergence of cells in scRNA-seq data analysis.

Keywords: Single cell RNA sequence, Similarity measurement, Relative Entropy, KL-SNE, t-SNE

Procedia PDF Downloads 340
575 Underage Internal Migration from Rural to Urban Areas of Ethiopia: The Perspective of Social Marketing in Controlling Child Labor

Authors: Belaynesh Tefera, Ahmed Mohammed, Zelalem Bayisa

Abstract:

This study focuses on the issue of underage internal migration from rural to urban areas in Ethiopia, specifically in the context of child labor. It addresses the significant disparities in living standards between rural and urban areas, which motivate individuals from rural areas to migrate to urban areas in search of better economic opportunities. The study was conducted in Addis Ababa, where there is a high prevalence of underage internal migrants engaged in child labor due to extreme poverty in rural parts of the country. The aim of this study is to explore the life experiences of shoe-makers who have migrated from rural areas of Ethiopia to Addis Ababa. The focus is on understanding the factors that push these underage individuals to migrate, the challenges they face, and the implications for child labor. This study adopts a qualitative approach, using semistructured face-to-face interviews with underage migrants. A total of 27 interviews were conducted in Addis Ababa, Ethiopia, until the point of data saturation. The criteria for selecting interviewees include working as shoemakers and migrating to Addis Ababa underage, below 16 years old. The interviews were audio-taped, transcribed into Amharic, and then translated into English for analysis. The study reveals that the major push factors for underage internal migration are socioeconomic and environmental factors. Despite improvements in living standards for underage migrants and their families, there is a high prevalence of child labor and lack of access to education among them. Most interviewees migrated without the accompaniment of their family members and faced various challenges, including sleeping on the streets. This study highlights the role of social marketing in addressing the issues of underage internal migration and child labor. It suggests that social marketing can be an effective strategy to protect children from abuse, loneliness, and harassment during their migration process. The data collection involved conducting in-depth interviews with the underage migrants. The interviews were transcribed and translated for analysis. The analysis focused on identifying common themes and patterns within the interview data. The study addresses the factors contributing to underage internal migration, the challenges faced by underage migrants, the prevalence of child labor, and the potential role of social marketing in addressing these issues. The study concludes that although Ethiopia has policies against child internal migration, it is difficult to protect underage laborers who migrate from rural to urban areas due to the voluntary nature of their migration. The study suggests that social marketing can serve as a solution to protect children from abuse and other challenges faced during migration.

Keywords: underage, internal migration, social marketing, child labor, Ethiopia

Procedia PDF Downloads 78
574 Optimizing Parallel Computing Systems: A Java-Based Approach to Modeling and Performance Analysis

Authors: Maher Ali Rusho, Sudipta Halder

Abstract:

The purpose of the study is to develop optimal solutions for models of parallel computing systems using the Java language. During the study, programmes were written for the examined models of parallel computing systems. The result of the parallel sorting code is the output of a sorted array of random numbers. When processing data in parallel, the time spent on processing and the first elements of the list of squared numbers are displayed. When processing requests asynchronously, processing completion messages are displayed for each task with a slight delay. The main results include the development of optimisation methods for algorithms and processes, such as the division of tasks into subtasks, the use of non-blocking algorithms, effective memory management, and load balancing, as well as the construction of diagrams and comparison of these methods by characteristics, including descriptions, implementation examples, and advantages. In addition, various specialised libraries were analysed to improve the performance and scalability of the models. The results of the work performed showed a substantial improvement in response time, bandwidth, and resource efficiency in parallel computing systems. Scalability and load analysis assessments were conducted, demonstrating how the system responds to an increase in data volume or the number of threads. Profiling tools were used to analyse performance in detail and identify bottlenecks in models, which improved the architecture and implementation of parallel computing systems. The obtained results emphasise the importance of choosing the right methods and tools for optimising parallel computing systems, which can substantially improve their performance and efficiency.

Keywords: algorithm optimisation, memory management, load balancing, performance profiling, asynchronous programming.

Procedia PDF Downloads 12
573 Design and Optimization of a Small Hydraulic Propeller Turbine

Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink

Abstract:

A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.

Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design

Procedia PDF Downloads 150
572 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities

Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani

Abstract:

All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.

Keywords: facility location, multi-objective model, disaster response, commodity

Procedia PDF Downloads 257
571 High Fidelity Interactive Video Segmentation Using Tensor Decomposition, Boundary Loss, Convolutional Tessellations, and Context-Aware Skip Connections

Authors: Anthony D. Rhodes, Manan Goel

Abstract:

We provide a high fidelity deep learning algorithm (HyperSeg) for interactive video segmentation tasks using a dense convolutional network with context-aware skip connections and compressed, 'hypercolumn' image features combined with a convolutional tessellation procedure. In order to maintain high output fidelity, our model crucially processes and renders all image features in high resolution, without utilizing downsampling or pooling procedures. We maintain this consistent, high grade fidelity efficiently in our model chiefly through two means: (1) we use a statistically-principled, tensor decomposition procedure to modulate the number of hypercolumn features and (2) we render these features in their native resolution using a convolutional tessellation technique. For improved pixel-level segmentation results, we introduce a boundary loss function; for improved temporal coherence in video data, we include temporal image information in our model. Through experiments, we demonstrate the improved accuracy of our model against baseline models for interactive segmentation tasks using high resolution video data. We also introduce a benchmark video segmentation dataset, the VFX Segmentation Dataset, which contains over 27,046 high resolution video frames, including green screen and various composited scenes with corresponding, hand-crafted, pixel-level segmentations. Our work presents a improves state of the art segmentation fidelity with high resolution data and can be used across a broad range of application domains, including VFX pipelines and medical imaging disciplines.

Keywords: computer vision, object segmentation, interactive segmentation, model compression

Procedia PDF Downloads 120
570 The Physiological Effects of Thyriod Disorders During the Gestatory Period on Fetal Neurological Development: A Descriptive Review

Authors: Vanessa Bennemann, Gabriela Laste, Márcia Inês Goettert

Abstract:

The gestational period is a phase in which the pregnant woman undergoes constant physiological and hormonal changes, which are part of the woman’s biological cycle, the development of the fetus, childbirth, and lactation. These are factors of response to the immunological adaptation of the human reproductive process that is directly related to the pregnancy’s well-being and development. Although most pregnancies occur without complications, about 15% of pregnant women will develop potentially fatal complications, implying maternal and fetal risk. Therefore, requiring specialized care for high-risk pregnant women (HRPW) with obstetric interventions for the survival of the mother and/or fetus. Among the risk factors that characterize HRPW are the women's age, gestational diabetes mellitus (GDM), autoimmune diseases, infectious diseases such as syphilis and HIV, hypertension (SAH), preeclampsia, eclampsia, HELLP syndrome, uterine contraction abnormalities, and premature placental detachment (PPD), thyroid disorders, among others. Thus, pregnancy has an impact on the thyroid gland causing changes in the functioning of the mother's thyroid gland, altering the thyroid hormone (TH) profiles and production as pregnancy progresses. Considering, throughout the gestational period, the interpretation of the results of the tests to evaluate the thyroid functioning depends on the stage in which the pregnancy is. Thyroid disorders are directly related to adverse obstetric outcomes and in child development. Therefore, the adequate release of TH is important for a pregnancy without complications and optimal fetal growth and development. Objective: Investigate the physiological effects caused by thyroid disorders in the gestational period. Methods: A search for articles indexed in PubMed, Scielo, and MDPI databases, was performed using the term “AND”, with the descriptors: Pregnancy, Thyroid. With several combinations that included: Melatonin, Thyroidopathy, Inflammatory processes, Cytokines, Anti-inflammatory, Antioxidant, High-risk pregnancy. Subsequently, the screening was performed through the analysis of titles and/or abstracts. The criteria were: including clinical studies in general, randomized or not, in the period of 10 years prior to the research, in the English literature; excluded: experimental studies, case reports, research in the development phase. Results: In the preliminary results, a total of studies (n=183) were found, (n=57) excluded, such as studies of cancer, diabetes, obesity, and skin diseases. Conclusion: To date, it has been identified that thyroid diseases can impair the fetus’s brain development. Further research is suggested on this matter to identify new substances that may have a potential therapeutic effect to aid the gestational period with thyroid diseases.

Keywords: pregnancy, thyroid, melatonin, high-risk pregnancy

Procedia PDF Downloads 144
569 A Step Magnitude Haptic Feedback Device and Platform for Better Way to Review Kinesthetic Vibrotactile 3D Design in Professional Training

Authors: Biki Sarmah, Priyanko Raj Mudiar

Abstract:

In the modern world of remotely interactive virtual reality-based learning and teaching, including professional skill-building training and acquisition practices, as well as data acquisition and robotic systems, the revolutionary application or implementation of field-programmable neurostimulator aids and first-hand interactive sensitisation techniques into 3D holographic audio-visual platforms have been a coveted dream of many scholars, professionals, scientists, and students. Integration of 'kinaesthetic vibrotactile haptic perception' along with an actuated step magnitude contact profiloscopy in augmented reality-based learning platforms and professional training can be implemented by using an extremely calculated and well-coordinated image telemetry including remote data mining and control technique. A real-time, computer-aided (PLC-SCADA) field calibration based algorithm must be designed for the purpose. But most importantly, in order to actually realise, as well as to 'interact' with some 3D holographic models displayed over a remote screen using remote laser image telemetry and control, all spatio-physical parameters like cardinal alignment, gyroscopic compensation, as well as surface profile and thermal compositions, must be implemented using zero-order type 1 actuators (or transducers) because they provide zero hystereses, zero backlashes, low deadtime as well as providing a linear, absolutely controllable, intrinsically observable and smooth performance with the least amount of error compensation while ensuring the best ergonomic comfort ever possible for the users.

Keywords: haptic feedback, kinaesthetic vibrotactile 3D design, medical simulation training, piezo diaphragm based actuator

Procedia PDF Downloads 166
568 Solutions to Reduce CO2 Emissions in Autonomous Robotics

Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu

Abstract:

Mobile robots can be used in many different applications, including mapping, search, rescue, reconnaissance, hazard detection, and carpet cleaning, exploration, etc. However, they are limited due to their reliance on traditional energy sources such as electricity and oil which cannot always provide a convenient energy source in all situations. In an ever more eco-conscious world, solar energy offers the most environmentally clean option of all energy sources. Electricity presents threats of pollution resulting from its production process, and oil poses a huge threat to the environment. Not only does it pose harm by the toxic emissions (for instance CO2 emissions), it produces the combustion process necessary to produce energy, but there is the ever present risk of oil spillages and damages to ecosystems. Solar energy can help to mitigate carbon emissions by replacing more carbon intensive sources of heat and power. The challenge of this work is to propose the design and the implementation of electric battery recharge stations. Those recharge docks are based on the use of renewable energy such as solar energy (with photovoltaic panels) with the object to reduce the CO2 emissions. In this paper, a comparative study of the CO2 emission productions (from the use of different energy sources: natural gas, gas oil, fuel and solar panels) in the charging process of the Segway PT batteries is carried out. To make the study with solar energy, a photovoltaic panel, and a Buck-Boost DC/DC block has been used. Specifically, the STP005S-12/Db solar panel has been used to carry out our experiments. This module is a 5Wp-photovoltaic (PV) module, configured with 36 monocrystalline cells serially connected. With those elements, a battery recharge station is made to recharge the robot batteries. For the energy storage DC/DC block, a series of ultracapacitors have been used. Due to the variation of the PV panel with the temperature and irradiation, and the non-integer behavior of the ultracapacitors as well as the non-linearities of the whole system, authors have been used a fractional control method to achieve that solar panels supply the maximum allowed power to recharge the robots in the lesser time. Greenhouse gas emissions for production of electricity vary due to regional differences in source fuel. The impact of an energy technology on the climate can be characterised by its carbon emission intensity, a measure of the amount of CO2, or CO2 equivalent emitted by unit of energy generated. In our work, the coal is the fossil energy more hazardous, providing a 53% more of gas emissions than natural gas and a 30% more than fuel. Moreover, it is remarkable that existing fossil fuel technologies produce high carbon emission intensity through the combustion of carbon-rich fuels, whilst renewable technologies such as solar produce little or no emissions during operation, but may incur emissions during manufacture. The solar energy thus can help to mitigate carbon emissions.

Keywords: autonomous robots, CO2 emissions, DC/DC buck-boost, solar energy

Procedia PDF Downloads 422
567 Experimental Investigation of Beams Having Spring Mass Resonators

Authors: Somya R. Patro, Arnab Banerjee, G. V. Ramana

Abstract:

A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response.

Keywords: euler bernoulli beam theory, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 104
566 Hypoglossal Nerve Stimulation (Baseline vs. 12 months) for Obstructive Sleep Apnea: A Meta-Analysis

Authors: Yasmeen Jamal Alabdallat, Almutazballlah Bassam Qablan, Hamza Al-Salhi, Salameh Alarood, Ibraheem Alkhawaldeh, Obada Abunar, Adam Abdallah

Abstract:

Obstructive sleep apnea (OSA) is a disorder caused by the repeated collapse of the upper airway during sleep. It is the most common cause of sleep-related breathing disorder, as OSA can cause loud snoring, daytime fatigue, or more severe problems such as high blood pressure, cardiovascular disease, coronary artery disease, insulin-resistant diabetes, and depression. The hypoglossal nerve stimulator (HNS) is an implantable medical device that reduces the occurrence of obstructive sleep apnea by electrically stimulating the hypoglossal nerve in rhythm with the patient's breathing, causing the tongue to move. This stimulation helps keep the patient's airways clear while they sleep. This systematic review and meta-analysis aimed to assess the clinical outcome of hypoglossal nerve stimulation as a treatment of obstructive sleep apnea. A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials was conducted from inception until August 2022. Studies assessing the following clinical outcomes (Apnea-Hypopnea Index (AHI), Epworth Sleepiness Scale (ESS), Functional Outcomes of Sleep Questionnaire (FOSQ), Oxygen Desaturation Indices (ODI), (Oxygen Saturation (SaO2)) were pooled in the meta-analysis using Review Manager Software. We assessed the quality of studies according to the Cochrane risk-of-bias tool for randomized trials (RoB2), Risk of Bias In Non-randomized Studies - of Interventions (ROBINS-I), and a modified version of NOS for the non-comparative cohort studies.13 Studies (Six Clinical Trials and Seven prospective cohort studies) with a total of 817 patients were included in the meta-analysis. The results of AHI were reported in 11 studies examining OSA 696 patients. We found that there was a significant improvement in the AHI after 12 months of HNS (MD = 18.2 with 95% CI, (16.7 to 19.7; I2 = 0%); P < 0.00001). Further, 12 studies reported the results of ESS after 12 months of intervention with a significant improvement in the range of sleepiness among the examined 757 OSA patients (MD = 5.3 with 95% CI, (4.75 to 5.86; I2 = 65%); P < 0.0001). Moreover, nine studies involving 699 participants reported the results of FOSQ after 12 months of HNS with a significant reported improvement (MD = -3.09 with 95% CI, (-3.41 to 2.77; I2 = 0%); P < 0.00001). In addition, ten studies reported the results of ODI with a significant improvement after 12 months of HNS among the 817 examined patients (MD = 14.8 with 95% CI, (13.25 to 16.32; I2 = 0%); P < 000001). The Hypoglossal Nerve Stimulation showed a significant positive impact on obstructive sleep apnea patients after 12 months of therapy in terms of apnea-hypopnea index, oxygen desaturation indices, manifestations of the behavioral morbidity associated with obstructive sleep apnea, and functional status resulting from sleepiness.

Keywords: apnea, meta-analysis, hypoglossal, stimulation

Procedia PDF Downloads 114
565 Genetic Diversity of Cord Blood of the National Center of Blood Transfusion, Mexico (NCBT)

Authors: J. Manuel Bello-López, Julieta Rojo-Medina

Abstract:

Introduction: The transplant of Umbilical Cord Blood Units (UCBU) are a therapeutic possibility for patients with oncohaematological disorders, especially in children. In Mexico, 48.5% of oncological diseases in children 1-4 years old are leukemias; whereas in patients 5-14 and 15-24 years old, lymphomas and leukemias represent the second and third cause of death in these groups respectively. Therefore it is necessary to have more registries of UCBU in order to ensure genetic diversity in the country; the above because the search for appropriate a UCBU is increasingly difficult for patients of mixed ethnicity. Objective: To estimate the genetic diversity (polymorphisms) of Human Leucocyte Antigen (HLA) Class I (A, B) and Class II (DRB1) in UCBU cryopreserved for transplant at Cord Blood Bank of the NCBT. Material and Methods: HLA typing of 533 UCBU for transplant was performed from 2003-2012 at the Histocompatibility Laboratory from the Research Department (evaluated by Los Angeles Ca. Immunogenetics Center) of the NCBT. Class I HLA-A, HLA-B and Class II HLA-DRB1 typing was performed using medium resolution Sequence-Specific Primer (SSP). In cases of an ambiguity detected by SSP; Sequence-Specific Oligonucleotide (SSO) method was carried out. A strict analysis of populations genetic parameters were done in 5 representative UCBU populations. Results: 46.5% of UCBU were collected from Mexico City, State of Mexico (30.95%), Puebla (8.06%), Morelos (6.37%) and Veracruz (3.37%). The remaining UCBU (4.75%) are represented by other states. The identified genotypes correspond to Amerindian origins (HLA-A*02, 31; HLA-B*39, 15, 48), Caucasian (HLA-A*02, 68, 01, 30, 31; HLA-B*35, 15, 40, 44, 07 y HLA-DRB1*04, 08, 07, 15, 03, 14), Oriental (HLA-A*02, 30, 01, 31; HLA-B* 35, 39, 15, 40, 44, 07,48 y HLA-DRB1*04, 07,15, 03) and African (HLA-A*30 y HLA-DRB1*03). The genetic distances obtained by Cavalli-Sforza analysis of the five states showed significant genetic differences by comparing genetic frequencies. The shortest genetic distance exists between Mexico City and the state of Puebla (0.0039) and the largest between Veracruz and Morelos (0.0084). In order to identify significant differences between this states, the ANOVA test was performed. This demonstrates that UCBU is significantly different according to their origin (P <0.05). This is shown by the divergence between arms at the Dendogram of Neighbor-Joining. Conclusions: The NCBT provides UCBU in patients with oncohaematological disorders in all the country. There is a group of patients for which not compatible UCBU can be find due to the mixed ethnic origin. For example, the population of northern Mexico is mostly Caucasian. Most of the NCBT donors are of various ethnic origins, predominantly Amerindians and Caucasians; although some ethnic minorities like Oriental, African and pure Indian ethnics are not represented. The NCBT is, therefore, establishing agreements with different states of Mexico to promote the altruistic donation of Umbilical Cord Blood in order to enrich the genetic diversity in its files.

Keywords: cord blood, genetic diversity, human leucocyte antigen, transplant

Procedia PDF Downloads 382
564 Correlation between Body Mass Dynamics and Weaning in Eurasian Lynx (Lynx lynx L, 1758)

Authors: A. S. Fetisova, M. N. Erofeeva, G. S. Alekseeva, K. A. Volobueva, M. D. Kim, S. V. Naidenko

Abstract:

Weaning is characterized by the transition from milk to solid food. In some species, such changes in diet are fast and gradual in others. The reasons for the weaning start are understandable. Changes in milk composition and decrease in maternity behavior push cubs to search for additional sources of nutrients. In nature, females have many opportunities to wean offspring in case of a lack of resources. In contrast, in controlled conditions the possibility of delayed weaning exists. The delay of weaning can lead to overspending of maternal resources. In addition, the main causes of weaning end are not so obvious. Near the weaning end behavior of offspring depends on many factors: intensity of maternal behavior, reduction of milk abundance, brood size, physiological status, and body mass. During the pre-weaning period dynamic of body mass is strongly connected with milk intake. Based on that fact could body mass be one of the signals for end of milk feeding? It is known that some animals usually wean their offspring when juveniles achieved body mass in some proportion to the adult weight. In turn, we put forward the hypothesis that decrease in growth rates causes the delay of weaning in Eurasian lynxes (Lynx lynx). To explore the hypothesis, we compared the dynamic of body mass with duration of milk suckling. Firstly, to get information about duration of suckling we visually observed 8 lynx broods from 30 to 120 days postpartum. During each 4-hour observation we registered the start and the end of suckling acts and then calculate the total duration of this behavior. To get the dynamic of body mass kittens were weighed once a week. Duration of suckling varied from 3076,19 ± 1408,60 to 422,54 ± 285,38 seconds when body mass gain changed from 247,35 ± 26,49 to 289,41 ± 122,35 grams. Results of Kendall Tau correlation test (N= 96; p< 0,05) showed a negative correlation (τ= -0,36) between duration of suckling and body mass of lynx kittens. In general duration of suckling increases in response to decrease in body mass gain with slight delay. In early weaning from 30 to 58 days duration of suckling decreases gradually as does the body mass gain. During the weaning period the negative correlation between suckling time and body mass becomes tighter. Although throughout the weaning consumption of solid food begins to prevail over the milk intake, the correlation persists until the end of weaning (90-105 days) and after it. In that way weaning in Eurasian lynxes is not a part of ontogenesis controlled only by maternal behavior. It seems to be a flexible process influenced by various factors including changes in growth rates. It is necessary to continue investigations to determine the critical value of body mass which marks the safe moment to stop milk feeding. Understanding such details of ontogenesis is very important to organize procedures aimed at the reproduction of mammals ex situ and the conservation of endangered species.

Keywords: body mass, lynx, milk feeding, weaning

Procedia PDF Downloads 18
563 Monitoring of Cannabis Cultivation with High-Resolution Images

Authors: Levent Basayigit, Sinan Demir, Burhan Kara, Yusuf Ucar

Abstract:

Cannabis is mostly used for drug production. In some countries, an excessive amount of illegal cannabis is cultivated and sold. Most of the illegal cannabis cultivation occurs on the lands far from settlements. In farmlands, it is cultivated with other crops. In this method, cannabis is surrounded by tall plants like corn and sunflower. It is also cultivated with tall crops as the mixed culture. The common method of the determination of the illegal cultivation areas is to investigate the information obtained from people. This method is not sufficient for the determination of illegal cultivation in remote areas. For this reason, more effective methods are needed for the determination of illegal cultivation. Remote Sensing is one of the most important technologies to monitor the plant growth on the land. The aim of this study is to monitor cannabis cultivation area using satellite imagery. The main purpose of this study was to develop an applicable method for monitoring the cannabis cultivation. For this purpose, cannabis was grown as single or surrounded by the corn and sunflower in plots. The morphological characteristics of cannabis were recorded two times per month during the vegetation period. The spectral signature library was created with the spectroradiometer. The parcels were monitored with high-resolution satellite imagery. With the processing of satellite imagery, the cultivation areas of cannabis were classified. To separate the Cannabis plots from the other plants, the multiresolution segmentation algorithm was found to be the most successful for classification. WorldView Improved Vegetative Index (WV-VI) classification was the most accurate method for monitoring the plant density. As a result, an object-based classification method and vegetation indices were sufficient for monitoring the cannabis cultivation in multi-temporal Earthwiev images.

Keywords: Cannabis, drug, remote sensing, object-based classification

Procedia PDF Downloads 272
562 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser

Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua

Abstract:

In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.

Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis

Procedia PDF Downloads 384
561 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: cascade control, multi-Loop control systems, multiobjective optimization, optimal control

Procedia PDF Downloads 153
560 The Potential of On-Demand Shuttle Services to Reduce Private Car Use

Authors: B. Mack, K. Tampe-Mai, E. Diesch

Abstract:

Findings of an ongoing discrete choice study of future transport mode choice will be presented. Many urban centers face the triple challenge of having to cope with ever increasing traffic congestion, environmental pollution, and greenhouse gas emission brought about by private car use. In principle, private car use may be diminished by extending public transport systems like bus lines, trams, tubes, and trains. However, there are limits to increasing the (perceived) spatial and temporal flexibility and reducing peak-time crowding of classical public transport systems. An emerging new type of system, publicly or privately operated on-demand shuttle bus services, seem suitable to ameliorate the situation. A fleet of on-demand shuttle busses operates without fixed stops and schedules. It may be deployed efficiently in that each bus picks up passengers whose itineraries may be combined into an optimized route. Crowding may be minimized by limiting the number of seats and the inter-seat distance for each bus. The study is conducted as a discrete choice experiment. The choice between private car, public transport, and shuttle service is registered as a function of several push and pull factors (financial costs, travel time, walking distances, mobility tax/congestion charge, and waiting time/parking space search time). After the completion of the discrete choice items, the study participant is asked to rate the three modes of transport with regard to the pull factors of comfort, safety, privacy, and opportunity to engage in activities like reading or surfing the internet. These ratings are entered as additional predictors into the discrete choice experiment regression model. The study is conducted in the region of Stuttgart in southern Germany. N=1000 participants are being recruited. Participants are between 18 and 69 years of age, hold a driver’s license, and live in the city or the surrounding region of Stuttgart. In the discrete choice experiment, participants are asked to assume they lived within the Stuttgart region, but outside of the city, and were planning the journey from their apartment to their place of work, training, or education during the peak traffic time in the morning. Then, for each item of the discrete choice experiment, they are asked to choose between the transport modes of private car, public transport, and on-demand shuttle in the light of particular values of the push and pull factors studied. The study will provide valuable information on the potential of switching from private car use to the use of on-demand shuttles, but also on the less desirable potential of switching from public transport to on-demand shuttle services. Furthermore, information will be provided on the modulation of these switching potentials by pull and push factors.

Keywords: determinants of travel mode choice, on-demand shuttle services, private car use, public transport

Procedia PDF Downloads 183
559 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 85
558 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 103
557 Rating Agreement: Machine Learning for Environmental, Social, and Governance Disclosure

Authors: Nico Rosamilia

Abstract:

The study evaluates the importance of non-financial disclosure practices for regulators, investors, businesses, and markets. It aims to create a sector-specific set of indicators for environmental, social, and governance (ESG) performances alternative to the ratings of the agencies. The existing literature extensively studies the implementation of ESG rating systems. Conversely, this study has a twofold outcome. Firstly, it should generalize incentive systems and governance policies for ESG and sustainable principles. Therefore, it should contribute to the EU Sustainable Finance Disclosure Regulation. Secondly, it concerns the market and the investors by highlighting successful sustainable investing. Indeed, the study contemplates the effect of ESG adoption practices on corporate value. The research explores the asset pricing angle in order to shed light on the fragmented argument on the finance of ESG. Investors may be misguided about the positive or negative effects of ESG on performances. The paper proposes a different method to evaluate ESG performances. By comparing the results of a traditional econometric approach (Lasso) with a machine learning algorithm (Random Forest), the study establishes a set of indicators for ESG performance. Therefore, the research also empirically contributes to the theoretical strands of literature regarding model selection and variable importance in a finance framework. The algorithms will spit out sector-specific indicators. This set of indicators defines an alternative to the compounded scores of ESG rating agencies and avoids the possible offsetting effect of scores. With this approach, the paper defines a sector-specific set of indicators to standardize ESG disclosure. Additionally, it tries to shed light on the absence of a clear understanding of the direction of the ESG effect on corporate value (the problem of endogeneity).

Keywords: ESG ratings, non-financial information, value of firms, sustainable finance

Procedia PDF Downloads 83
556 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 402
555 Expert System: Debugging Using MD5 Process Firewall

Authors: C. U. Om Kumar, S. Kishore, A. Geetha

Abstract:

An Operating system (OS) is software that manages computer hardware and software resources by providing services to computer programs. One of the important user expectations of the operating system is to provide the practice of defending information from unauthorized access, disclosure, modification, inspection, recording or destruction. Operating system is always vulnerable to the attacks of malwares such as computer virus, worm, Trojan horse, backdoors, ransomware, spyware, adware, scareware and more. And so the anti-virus software were created for ensuring security against the prominent computer viruses by applying a dictionary based approach. The anti-virus programs are not always guaranteed to provide security against the new viruses proliferating every day. To clarify this issue and to secure the computer system, our proposed expert system concentrates on authorizing the processes as wanted and unwanted by the administrator for execution. The Expert system maintains a database which consists of hash code of the processes which are to be allowed. These hash codes are generated using MD5 message-digest algorithm which is a widely used cryptographic hash function. The administrator approves the wanted processes that are to be executed in the client in a Local Area Network by implementing Client-Server architecture and only the processes that match with the processes in the database table will be executed by which many malicious processes are restricted from infecting the operating system. The add-on advantage of this proposed Expert system is that it limits CPU usage and minimizes resource utilization. Thus data and information security is ensured by our system along with increased performance of the operating system.

Keywords: virus, worm, Trojan horse, back doors, Ransomware, Spyware, Adware, Scareware, sticky software, process table, MD5, CPU usage and resource utilization

Procedia PDF Downloads 427