Search results for: thermal cracking probability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4951

Search results for: thermal cracking probability

361 Magneto-Luminescent Biocompatible Complexes Based on Alloyed Quantum Dots and Superparamagnetic Iron Oxide Nanoparticles

Authors: A. Matiushkina, A. Bazhenova, I. Litvinov, E. Kornilova, A. Dubavik, A. Orlova

Abstract:

Magnetic-luminescent complexes based on superparamagnetic iron oxide nanoparticles (SPIONs) and semiconductor quantum dots (QDs) have been recognized as a new class of materials that have high potential in modern medicine. These materials can serve for theranostics of oncological diseases, and also as a target agent for drug delivery. They combine the qualities characteristic of magnetic nanoparticles, that is, magneto-controllability and the ability to local heating under the influence of an external magnetic field, as well as phosphors, due to luminescence of which, for example, early tumor imaging is possible. The complexity of creating complexes is the energy transfer between particles, which quenches the luminescence of QDs in complexes with SPIONs. In this regard, a relatively new type of alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs is used in our work. The presence of a sufficiently thick gradient semiconductor shell in alloyed QDs makes it possible to reduce the probability of energy transfer from QDs to SPIONs in complexes. At the same time, Forster Resonance Energy Transfer (FRET) is a perfect instrument to confirm the formation of complexes based on QDs and different-type energy acceptors. The formation of complexes in the aprotic bipolar solvent dimethyl sulfoxide is ensured by the coordination of the carboxyl group of the stabilizing QD molecule (L-cysteine) on the surface iron atoms of the SPIONs. An analysis of the photoluminescence (PL) spectra has shown that a sequential increase in the SPIONs concentration in the samples is accompanied by effective quenching of the luminescence of QDs. However, it has not confirmed the formation of complexes yet, because of a decrease in the PL intensity of QDs due to reabsorption of light by SPIONs. Therefore, a study of the PL kinetics of QDs at different SPIONs concentrations was made, which demonstrates that an increase in the SPIONs concentration is accompanied by a symbatic reduction in all characteristic PL decay times. It confirms the FRET from QDs to SPIONs, which indicates the QDs/SPIONs complex formation, rather than a spontaneous aggregation of QDs, which is usually accompanied by a sharp increase in the percentage of the QD fraction with the shortest characteristic PL decay time. The complexes have been studied by the magnetic circular dichroism (MCD) spectroscopy that allows one to estimate the response of magnetic material to the applied magnetic field and also can be useful to check SPIONs aggregation. An analysis of the MCD spectra has shown that the complexes have zero residual magnetization, which is an important factor for using in biomedical applications, and don't contain SPIONs aggregates. Cell penetration, biocompatibility, and stability of QDs/SPIONs complexes in cancer cells have been studied using HeLa cell line. We have found that the complexes penetrate in HeLa cell and don't demonstrate cytotoxic effect up to 25 nM concentration. Our results clearly demonstrate that alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs can be successfully used in complexes with SPIONs reached new hybrid nanostructures, which combine bright luminescence for tumor imaging and magnetic properties for targeted drug delivery and magnetic hyperthermia of tumors. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and was financially supported by Government of Russian Federation, Grant 08-08.

Keywords: alloyed quantum dots, magnetic circular dichroism, magneto-luminescent complexes, superparamagnetic iron oxide nanoparticles

Procedia PDF Downloads 97
360 Development of a Nursing Care Program Based on Anthroposophic External Therapy for the Pediatric Hospital in Brazil and Germany

Authors: Karina Peron, Ricardo Ghelman, Monica Taminato, Katia R. Oliveira, Debora C. A. Rodrigues, Juliana R. C. Mumme, Olga K. M. Sunakozaua, Georg Seifert, Vicente O. Filho

Abstract:

The nurse is the most available health professional for the interventions of support in the integrative approach in hospital environment, therefore a professional group key to changes in the model of care. The central components in the performance of anthroposophic nursing procedures are direct physical contact, promotion of proper rhythm, thermal regulation and the construction of a calm and empathic atmosphere, safe for patients and their caregivers. The procedures of anthroposophic external therapies (AET), basically composed of the application of compresses and the use of natural products, provide an opportunity to intensify the therapeutic results through an innovative, complementary and integrative model in the university hospital. The objective of this work is to report the implementation of a program of nursing techniques (AET) through a partnership between the Pediatric Oncology Sector of the Department of Pediatrics of the Faculty of Medicine of the University of Sao Paulo and Charite University of Berlin, with lecturers from Berlin's Integrative Hospital Havelhöhe and Witten-Herdecke Integrative Hospital, both in Germany. Intensive training activities of the Hospital's nursing staff and a survey on AET needs were developed based on the most prevalent complaints in pediatric oncology patients in the three environments of the Hospital of Pediatric Oncology: Bone Marrow Transplantation Unit, Intensive Care Unit and Division of Internal Patients. We obtained the approval of the clinical protocol of external anthroposophic therapies for nursing care by the Ethics Committee and the Academic Council of the Hospital. With this project, we highlight the key AET needs that will be part of the standard program of pediatric oncology care with appropriate scientific support. The results of the prevalent symptoms were: vomiting, nausea, pain, difficulty in starting sleep, constipation, cold extremities, mood disorder and psychomotor agitation. This project was the pioneer within the Integrative Pediatrics Program, as an innovative concept of Medicine and Integrative Health presented at scientific meetings.

Keywords: integrative health care, integrative nursing, pediatric nursing, pediatric oncology

Procedia PDF Downloads 249
359 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 317
358 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 344
357 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 190
356 Agro-Forestry Expansion in Middle Gangetic Basin: Adopters' Motivations and Experiences in Bihar, India

Authors: Rakesh Tiwary, D. M. Diwakar, Sandhya Mahapatro

Abstract:

Agro-forestry offers huge opportunities for diversification of agriculture in middle Gangetic Basin of India, particularly in the state of Bihar as the region is identified with traditional & stagnant agriculture, low productivity, high population pressure, rural poverty and lack of agro- industrial development. The region is endowed with favourable agro-climatic, soil & drainage conditions; interestingly, there has been an age old tradition of agro-forestry in the state. However, due to demographic pressures, declining land holdings and other socio- economic factors, agro forestry practices have declined in recent decades. The government of Bihar has initiated a special program for expansion of agro-forestry based on modern practices with an aim to raise income level of farmers, make available raw material for wood based industries and increase green cover in the state. The Agro-forestry Schemes – Poplar & Other Species are the key components of the program being implemented by Department of Environment & Forest, Govt. of Bihar. The paper is based on fieldwork based evaluation study on experiences of implementation of the agro-forestry schemes. Understanding adoption patterns, identification of key motives for practising agro-forestry, experiences of farmers well analysing the barriers in expansion constituted the major themes of the research study. This paper is based on primary as well as secondary data. The primary data consists of beneficiary household survey, Focus Group Discussions among beneficiary communities, dialogue and multi stakeholder meetings and field visit to the sites. The secondary data information was collected and analysed from official records, policy documents and reports. Primary data was collected from about 500 beneficiary households of Muzaffarpur & Saharsa- two populous, large and agriculture dominated districts of middle Gangetic basin of North Bihar. Survey also covers 100 households of non-beneficiaries. Probability Proportionate to Size method was used to determine the number of samples to be covered in different blocks of two districts. Qualitative tools were also implemented to have better insights about key research questions. Present paper discusses socio-economic background of farmers practising agro-forestry; the adoption patterns of agro- forestry (choice of plants, methods of plantation and others); and motivation behind adoption of agro-forestry and the comparative benefits of agro-forestry (vis-a-vis traditional agriculture). Experience of beneficiary farmers with agro-forestry based on government programs & promotional campaigns (in terms of awareness, ease of access, knowhow and others) have been covered in the paper. Different aspects of survival of plants have been closely examined. Non beneficiaries but potential adopters were also interviewed to understand barriers of adoption of agro- forestry. Paper provides policy recommendations and interventions required for effective expansion of the agro- forestry and realisation of its future prospects for agricultural diversification in the region.

Keywords: agro-forestry adoption patterns, farmers’ motivations & experiences, Indian middle Gangetic plains, strategies for expansion

Procedia PDF Downloads 189
355 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 37
354 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery

Authors: Roghieh A. Biroon, Zoleikha Abdollahi

Abstract:

The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.

Keywords: ancillary services, battery, distribution system and optimization

Procedia PDF Downloads 116
353 Distribution of Dynamical and Energy Parameters in Axisymmetric Air Plasma Jet

Authors: Vitas Valinčius, Rolandas Uscila, Viktorija Grigaitienė, Žydrūnas Kavaliauskas, Romualdas Kėželis

Abstract:

Determination of integral dynamical and energy characteristics of high-temperature gas flows is a very important task of gas-dynamic for hazardous substances destruction systems. They are also always necessary for the investigation of high-temperature turbulent flow dynamics, heat and mass transfer. It is well known that distribution of dynamical and thermal characteristics of high-temperature flows and jets is strongly related to heat flux variation over an imposed area of heating. As is visible from numerous experiments and theoretical considerations, the fundamental properties of an isothermal jet are well investigated. However, the establishment of regularities in high-temperature conditions meets certain specific behavior comparing with moderate-temperature jets and flows. Their structures have not been thoroughly studied yet, especially in the cases of plasma ambient. It is well known that the distribution of local plasma jet parameters in high temperature and isothermal jets and flows may significantly differ. High temperature axisymmetric air jet generated by atmospheric pressure DC arc plasma torch was investigated employing enthalpy probe 3.8∙10-3 m of diameter. Distribution of velocities and temperatures were established in different cross-sections of the plasma jet outflowing from 42∙10-3 m diameter pipe at the average mean velocity of 700 m∙s-1, and averaged temperature of 4000 K. It has been found that gas heating fractionally influences shape and values of a dimensionless profile of velocity and temperature in the main zone of plasma jet and has a significant influence in the initial zone of the plasma jet. The width of the initial zone of the plasma jet has been found to be lesser than in the case of isothermal flow. The relation between dynamical thickness and turbulent number of Prandtl has been established along jet axis. Experimental results were generalized in dimensionless form. The presence of convective heating shows that heat transfer in a moving high-temperature jet also occurs due to heat transfer by moving particles of the jet. In this case, the intensity of convective heat transfer is proportional to the instantaneous value of the flow velocity at a given point in space. Consequently, the configuration of the temperature field in moving jets and flows essentially depends on the configuration of the velocity field.

Keywords: plasma jet, plasma torch, heat transfer, enthalpy probe, turbulent number of Prandtl

Procedia PDF Downloads 166
352 Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components

Authors: Jacques Cuenca, Claudio Colangeli, Agnieszka Mroz, Karl Janssens, Gunther Riexinger, Antonio D'Antuono, Giuseppe Pandarese, Milena Martarelli, Gian Marco Revel, Carlos Barcena Martin

Abstract:

This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown.

Keywords: acoustic inspection, prefabricated building components, augmented reality, sound source localization

Procedia PDF Downloads 362
351 Prospects of Low Immune Response Transplants Based on Acellular Organ Scaffolds

Authors: Inna Kornienko, Svetlana Guryeva, Anatoly Shekhter, Elena Petersen

Abstract:

Transplantation is an effective treatment option for patients suffering from different end-stage diseases. However, it is plagued by a constant shortage of donor organs and the subsequent need of a lifelong immunosuppressive therapy for the patient. Currently some researchers look towards using of pig organs to replace human organs for transplantation since the matrix derived from porcine organs is a convenient substitute for the human matrix. As an initial step to create a new ex vivo tissue engineered model, optimized protocols have been created to obtain organ-specific acellular matrices and evaluated their potential as tissue engineered scaffolds for culture of normal cells and tumor cell lines. These protocols include decellularization by perfusion in a bioreactor system and immersion-agitation on an orbital shaker with use of various detergents (SDS, Triton X-100) and freezing. Complete decellularization – in terms of residual DNA amount – is an important predictor of probability of immune rejection of materials of natural origin. However, the signs of cellular material may still remain within the matrix even after harsh decellularization protocols. In this regard, the matrices obtained from tissues of low-immunogenic pigs with α3Galactosyl-tranferase gene knock out (GalT-KO) may be a promising alternative to native animal sources. The research included a study of induced effect of frozen and fresh fragments of GalT-KO skin on healing of full-thickness plane wounds in 80 rats. Commercially available wound dressings (Ksenoderm, Hyamatrix and Alloderm) as well as allogenic skin were used as a positive control and untreated wounds were analyzed as a negative control. The results were evaluated on the 4th day after grafting, which corresponds to the time of start of normal wound epithelization. It has been shown that a non-specific immune response in models treated with GalT-Ko pig skin was milder than in all the control groups. Research has been performed to measure technical skin characteristics: stiffness and elasticity properties, corneometry, tevametry, and cutometry. These metrics enabled the evaluation of hydratation level, corneous layer husking level, as well as skin elasticity and micro- and macro-landscape. These preliminary data may contribute to development of personalized transplantable organs from GalT-Ko pigs with significantly limited potential of immune rejection. By applying growth factors to a decellularized skin sample it is possible to achieve various regenerative effects based on the particular situation. In this particular research BMP2 and Heparin-binding EGF-like growth factor have been used. Ideally, a bioengineered organ must be biocompatible, non-immunogenic and support cell growth. Porcine organs are attractive for xenotransplantation if severe immunologic concerns can be bypassed. The results indicate that genetically modified pig tissues with knock-outed α3Galactosyl-tranferase gene may be used for production of low-immunogenic matrix suitable for transplantation.

Keywords: decellularization, low-immunogenic, matrix, scaffolds, transplants

Procedia PDF Downloads 264
350 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler

Authors: Ruth Diego, Luis M. Romeo, Antonio Morán

Abstract:

In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.

Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas

Procedia PDF Downloads 86
349 Earth Flat Roofs

Authors: Raúl García de la Cruz

Abstract:

In the state of Hidalgo and to the vicinity to the state of Mexico, there is a network of people who also share a valley bordered by hills with agave landscape of cacti and shared a bond of building traditions inherited from pre-Hispanic times and according to their material resources, habits and needs have been adapted in time. Weather has played an important role in the way buildings and roofs are constructed. Throughout the centuries, the population has developed very sophisticated building techniques like the flat roof, made out of a layer of earth; that is usually identified as belonging to architecture of the desert, but it can also be found in other climates, such as semi-arid and even template climates. It is an example of a constructive logic applied efficiently to various cultures proving its thermal isolation. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture , finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment. The objective of the research is the documentation of existing earth flat roofs in the state of Hidalgo and Mexico, as evidence of the importance of constructive system and its historical value in the area, considering its environmental, social aspects, also understanding the process of transformation of public housing at the time replaced the traditional techniques for industrial materials on a path towards urbanization. So far it has done a review and analysis of the use of the roof in different areas, from pre-Hispanic architecture to traditional Moroccan architecture, finding great similarities in the elements of the system to be incorporated into the contemporary architecture. The rescue of a lore that dissolves with the changing environment, depends in principle on the links created towards the use of environmental resources as the anchor of the people to retain and preserve a building tradition which has viability deep league with the possibility of obtaining the raw material from the immediate environment.

Keywords: earth roof, low impact building system, sustainable architecture, vernacular architecture

Procedia PDF Downloads 439
348 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 134
347 Mechanism of Action of New Sustainable Flame Retardant Additives in Polyamide 6,6

Authors: I. Belyamani, M. K. Hassan, J. U. Otaigbe, W. R. Fielding, K. A. Mauritz, J. S. Wiggins, W. L. Jarrett

Abstract:

We have investigated the flame-retardant efficiency of special new phosphate glass (P-glass) compositions having different glass transition temperatures (Tg) on the processing conditions of polyamide 6,6 (PA6,6) and the final hybrid flame retardancy (FR). We have showed that the low Tg P glass composition (i.e., ILT 1) is a promising flame retardant for PA6,6 at a concentration of up to 15 wt. % compared to intermediate (IIT 3) and high (IHT 1) Tg P glasses. Cone calorimetry data showed that the ILT 1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT 1 hybrids, resulting in an efficient formation of a glassy char layer. These intriguing findings prompted to address several questions concerning the mechanism of action of the different P glasses studied. The general mechanism of action of phosphorous based FR additives occurs during the combustion stage by enhancing the morphology of the char and the thermal shielding effect. However, the present work shows that P glass based FR additives act during melt processing of PA6,6/P glass hybrids. Dynamic mechanical analysis (DMA) revealed that the Tg of PA6,6/ILT 1 was significantly shifted to a lower Tg (~65 oC) and another transition appeared at high temperature (~ 166 oC), thus indicating a strong interaction between PA6,6 and ILT 1. This was supported by a drop in the melting point and crystallinity of the PA6,6/ILT 1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation of the networks’ molecular level structural variations (i.e. hybrids chain motion, Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings; it was found that the three different P glass compositions did not show any effect on the PA6,6 sub-Tg relaxations (related to the NH2 and OH chain end groups motions). Nevertheless, contrary to IIT 3 and IHT 1 based hybrids, the PA6,6/ILT 1 hybrid material showed an evidence of splitting the PA6,6 Tg relaxations into two peaks. Finally, the CPMAS 31P-NMR data confirmed the miscibility between ILT 1 and PA6,6 at the molecular level, as a much larger enhancement in cross-polarization for the PA6,6/15%ILT 1 hybrids was observed. It can be concluded that compounding low Tg P-glass (i.e. ILT 1) with PA6,6 facilitates hydrolytic chain scission of the PA6,6 macromolecules through a potential chemical interaction between phosphate and the alpha-Carbon of the amide bonds of the PA6,6, leading to better flame retardant properties.

Keywords: broadband dielectric spectroscopy, composites, flame retardant, polyamide, phosphate glass, sustainable

Procedia PDF Downloads 214
346 Combined Power Supply at Well Drilling in Extreme Climate Conditions

Authors: V. Morenov, E. Leusheva

Abstract:

Power supplying of well drilling on oil and gas fields at ambient air low temperatures is characterized by increased requirements of electric and heat energy. Power costs for heating of production facilities, technological and living objects may several times exceed drilling equipment electric power consumption. Power supplying of prospecting and exploitation drilling objects is usually done by means of local electric power structures based on diesel power stations. In the meantime, exploitation of oil fields is accompanied by vast quantities of extracted associated petroleum gas, and while developing gas fields there are considerable amounts of natural gas and gas condensate. In this regard implementation of gas-powered self-sufficient power units functioning on produced crude products for power supplying is seen as most potential. For these purposes gas turbines (GT) or gas reciprocating engines (GRE) may be used. In addition gas-powered units are most efficiently used in cogeneration mode - combined heat and power production. Conducted research revealed that GT generate more heat than GRE while producing electricity. One of the latest GT design are microturbines (MT) - devices that may be efficiently exploited in combined heat and power mode. In conditions of ambient air low temperatures and high velocity wind sufficient heat supplying is required for both technological process, specifically for drilling mud heating, and for maintaining comfortable working conditions at the rig. One of the main heat regime parameters are the heat losses. Due to structural peculiarities of the rig most of the heat losses occur at cold air infiltration through the technological apertures and hatchways and heat transition of isolation constructions. Also significant amount of heat is required for working temperature sustaining of the drilling mud. Violation of circulation thermal regime may lead to ice build-up on well surfaces and ice blockages in armature elements. That is why it is important to ensure heating of the drilling mud chamber according to ambient air temperature. Needed heat power will be defined by heat losses of the chamber. Noting heat power required for drilling structure functioning, it is possible to create combined heat and power complex based on MT for satisfying consumer power needs and at the same time lowering power generation costs. As a result, combined power supplying scheme for multiple well drilling utilizing heat of MT flue gases was developed.

Keywords: combined heat, combined power, drilling, electric supply, gas-powered units, heat supply

Procedia PDF Downloads 566
345 Inclusion Complexes of Some Imidazoline Drugs with Cucurbit[N]Uril (N=7,8): Preparation, Characterization and Theoretical Calculations

Authors: Fakhreldin O. Suliman, Alia H. Al-Battashi

Abstract:

This work explored the interaction of three different imidazoline drugs, naphazoline nitrate (NPH), oxymetazoline hydrochloride (OXY) and xylometazoline hydrochloride (XYL) with two different synthesized cucurbit[n]urils CB[n], cucurbit[7]uril (CB[7]) and cucuribit[8]uril (CB[8]). Three binary inclusion complexes have been investigated in solution and in the solid state. The solid complexes were obtained by lyophilization, whereas the physical mixtures of guests and hosts at a stoichiometric ratio of 1:1 were obtained for each drug. 1HNMR, electrospray ionization mass spectrometry (ESI-MS), and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was used to study the complexes prepared in aqueous media. The lyophilized solid complexes were characterized by Fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffractometry (PXRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). MS, FT-IR and PXRD experimental results established in this work reveal that NPH, OXY and XYL molecules form stable inclusion complexes with the two hosts. The TGA and DSC confirmed the enhancement of the thermal stability of each drug and the production of a thermally stable solid complex. The 1HNMR has shown that the protons of the guests faced shifting in ppm and broadening of their peaks upon the formation of inclusion complexes with the selected CB[n]. The aromatic protons of the guest exhibited the highest changes in the chemical shifts and shape of the NMR peaks, suggesting their inclusion into the cavity of the CB[n]. The diffusion coefficients (D), developed from the diffusion-controlled NMR Spectroscopy (DOSY) measurements, for the complexation of the selected imidazoline drugs with CB[7] and CB[8], were decreased in the presence of hosts compared to the free guests indicating the formation of the guest-host adduct. Furthermore, we conducted molecular dynamic simulations and quantum mechanics calculations on these complexes. The results of the theoretical study corroborate the experimental findings and have also shed light on the mechanism of inclusion of the guests into the two hosts. This study generates initial data for potential drug delivery or drug formulation systems for these three selected imidazoline drug compounds based on their inclusion into the CB[n] cavities.

Keywords: cucurbit[n]urils, imidazoline, inclusion complexes, molecular dynamics, DFT calculations, mass spectrometry

Procedia PDF Downloads 50
344 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature

Procedia PDF Downloads 116
343 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection

Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten

Abstract:

Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.

Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection

Procedia PDF Downloads 318
342 Analysis of Reflection Coefficients of Reflected and Transmitted Waves at the Interface Between Viscous Fluid and Hygro-Thermo-Orthotropic Medium

Authors: Anand Kumar Yadav

Abstract:

Purpose – The purpose of this paper is to investigate the fluctuation of amplitude ratios of various transmitted and reflected waves. Design/methodology/approach – The reflection and transmission of plane waves on the interface between an orthotropic hygro-thermo-elastic half-space (OHTHS) and a viscous-fluid half-space (VFHS) were investigated in this study with reference to coupled hygro-thermo-elasticity. Findings – The interface, where y = 0, is struck by the principal (P) plane waves as they travel through the VFHS. Two waves are reflected in VFHS, and four waves are transmitted in OHTHS as a result namely longitudinal displacement, Pwave − , thermal diffusion TDwave − and moisture diffusion mDwave − and shear vertical SV wave. Expressions for the reflection and transmitted coefficient are developed for the incidence of a hygrothermal plane wave. It is noted that these ratios are graphically displayed and are observed under the influence of coupled hygro-thermo-elasticity. Research limitations/implications – There isn't much study on the model under consideration, which combines OHTHS and VFHS with coupled hygro-thermo-elasticity, according to the existing literature Practical implications – The current model can be applied in many different areas, such as soil dynamics, nuclear reactors, high particle accelerators, earthquake engineering, and other areas where linked hygrothermo-elasticity is important. In a range of technical and geophysical settings, wave propagation in a viscous fluid-thermoelastic medium with various characteristics, such as initial stress, magnetic field, porosity, temperature, etc., gives essential information regarding the presence of new and modified waves. This model may prove useful in modifying earthquake estimates for experimental seismologists, new material designers, and researchers. Social implications – Researchers may use coupled hygro-thermo-elasticity to categories the material, where the parameter is a new indication of its ability to conduct heat in interaction with diverse materials. Originality/value – The submitted text is the sole creation of the team of writers, and all authors equally contributed to its creation.

Keywords: hygro-thermo-elasticity, viscous fluid, reflection coefficient, transmission coefficient, moisture concentration

Procedia PDF Downloads 52
341 Preliminary Studies of Antibiofouling Properties in Wrinkled Hydrogel Surfaces

Authors: Mauricio A. Sarabia-Vallejos, Carmen M. Gonzalez-Henriquez, Adolfo Del Campo-Garcia, Aitzibier L. Cortajarena, Juan Rodriguez-Hernandez

Abstract:

In this study, it was explored the formation and the morphological differences between wrinkled hydrogel patterns obtained via generation of surface instabilities. The slight variations in the polymerization conditions produce important changes in the material composition and pattern structuration. The compounds were synthesized using three main components, i.e. an amphiphilic monomer, hydroxyethyl methacrylate (HEMA), a hydrophobic monomer, trifluoroethyl methacrylate (TFMA), and a hydrophilic crosslinking agent, poly(ethylene glycol) diacrylate (PEGDA). The first part of this study was related to the formation of wrinkled surfaces using only HEMA and PEGDA and varying the amount of water added in the reaction. The second part of this study involves the gradual insertion of TFMA into the hydrophilic reaction mixture. Interestingly, the manipulation of the chemical composition of this hydrogel affects both surface morphology and physicochemical characteristics of the patterns, inducing transitions from one particular type of structure (wrinkles or ripples) to different ones (creases, folds, and crumples). Contact angle measurements show that the insertion of TFMA produces a slight decrease in surface wettability of the samples, remaining however highly hydrophilic (contact angle below 45°). More interestingly, by using confocal Raman spectroscopy, important information about the wrinkle formation mechanism is obtained. The procedure involving two consecutive thermal and photopolymerization steps lead to a “pseudo” two-layer system. Thus, upon photopolymerization, the surface is crosslinked to a higher extent than the bulk and water evaporation drives the formation of wrinkled surfaces. Finally, cellular, and bacterial proliferation studies were performed to the samples, showing that the amount of TFMA included in each sample slightly affects the proliferation of both (bacteria and cells), but in the case of bacteria, the morphology of the sample also plays an important role, importantly reducing the bacterial proliferation.

Keywords: antibiofouling properties, hydrophobic/hydrophilic balance, morphologic characterization, wrinkled hydrogel patterns

Procedia PDF Downloads 144
340 Waste Management Option for Bioplastics Alongside Conventional Plastics

Authors: Dan Akesson, Gauthaman Kuzhanthaivelu, Martin Bohlen, Sunil K. Ramamoorthy

Abstract:

Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in the UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. Impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester, and it is, by its very nature, more sensitive to degradation than PE and PP. PET also has a much higher melting point than PE and PP, and as a consequence, the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. The thermal properties show the change in the crystallinity. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. The study shows that PE is relatively robust against contamination, while polypropylene (PP) is sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.

Keywords: bioplastics, contamination, recycling, waste management

Procedia PDF Downloads 205
339 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 97
338 Design and Development of Permanent Magnet Quadrupoles for Low Energy High Intensity Proton Accelerator

Authors: Vikas Teotia, Sanjay Malhotra, Elina Mishra, Prashant Kumar, R. R. Singh, Priti Ukarde, P. P. Marathe, Y. S. Mayya

Abstract:

Bhabha Atomic Research Centre, Trombay is developing low energy high intensity Proton Accelerator (LEHIPA) as pre-injector for 1 GeV proton accelerator for accelerator driven sub-critical reactor system (ADSS). LEHIPA consists of RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linac) as major accelerating structures. DTL is RF resonator operating in TM010 mode and provides longitudinal E-field for acceleration of charged particles. The RF design of drift tubes of DTL was carried out to maximize the shunt impedance; this demands the diameter of drift tubes (DTs) to be as low as possible. The width of the DT is however determined by the particle β and trade-off between a transit time factor and effective accelerating voltage in the DT gap. The array of Drift Tubes inside DTL shields the accelerating particle from decelerating RF phase and provides transverse focusing to the charged particles which otherwise tends to diverge due to Columbic repulsions and due to transverse e-field at entry of DTs. The magnetic lenses housed inside DTS controls the transverse emittance of the beam. Quadrupole magnets are preferred over solenoid magnets due to relative high focusing strength of former over later. The availability of small volume inside DTs for housing magnetic quadrupoles has motivated the usage of permanent magnet quadrupoles rather than Electromagnetic Quadrupoles (EMQ). This provides another advantage as joule heating is avoided which would have added thermal loaded in the continuous cycle accelerator. The beam dynamics requires uniformity of integral magnetic gradient to be better than ±0.5% with the nominal value of 2.05 tesla. The paper describes the magnetic design of the PMQ using Sm2Co17 rare earth permanent magnets. The paper discusses the results of five pre-series prototype fabrications and qualification of their prototype permanent magnet quadrupoles and a full scale DT developed with embedded PMQs. The paper discusses the magnetic pole design for optimizing integral Gdl uniformity and the value of higher order multipoles. A novel but simple method of tuning the integral Gdl is discussed.

Keywords: DTL, focusing, PMQ, proton, rate earth magnets

Procedia PDF Downloads 456
337 Results of Three-Year Operation of 220kV Pilot Superconducting Fault Current Limiter in Moscow Power Grid

Authors: M. Moyzykh, I. Klichuk, L. Sabirov, D. Kolomentseva, E. Magommedov

Abstract:

Modern city electrical grids are forced to increase their density due to the increasing number of customers and requirements for reliability and resiliency. However, progress in this direction is often limited by the capabilities of existing network equipment. New energy sources or grid connections increase the level of short-circuit currents in the adjacent network, which can exceed the maximum rating of equipment–breaking capacity of circuit breakers, thermal and dynamic current withstand qualities of disconnectors, cables, and transformers. Superconducting fault current limiter (SFCL) is a modern solution designed to deal with the increasing fault current levels in power grids. The key feature of this device is its instant (less than 2 ms) limitation of the current level due to the nature of the superconductor. In 2019 Moscow utilities installed SuperOx SFCL in the city power grid to test the capabilities of this novel technology. The SFCL became the first SFCL in the Russian energy system and is currently the most powerful SFCL in the world. Modern SFCL uses second-generation high-temperature superconductor (2G HTS). Despite its name, HTS still requires low temperatures of liquid nitrogen for operation. As a result, Moscow SFCL is built with a cryogenic system to provide cooling to the superconductor. The cryogenic system consists of three cryostats that contain a superconductor part and are filled with liquid nitrogen (three phases), three cryocoolers, one water chiller, three cryopumps, and pressure builders. All these components are controlled by an automatic control system. SFCL has been continuously operating on the city grid for over three years. During that period of operation, numerous faults occurred, including cryocooler failure, chiller failure, pump failure, and others (like a cryogenic system power outage). All these faults were eliminated without an SFCL shut down due to the specially designed cryogenic system backups and quick responses of grid operator utilities and the SuperOx crew. The paper will describe in detail the results of SFCL operation and cryogenic system maintenance and what measures were taken to solve and prevent similar faults in the future.

Keywords: superconductivity, current limiter, SFCL, HTS, utilities, cryogenics

Procedia PDF Downloads 64
336 Exploitation Pattern of Atlantic Bonito in West African Waters: Case Study of the Bonito Stock in Senegalese Waters

Authors: Ousmane Sarr

Abstract:

The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.

Keywords: multi-model approach, stock assessment, atlantic bonito, SEEZ

Procedia PDF Downloads 49
335 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 45
334 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 102
333 Desulphurization of Waste Tire Pyrolytic Oil (TPO) Using Photodegradation and Adsorption Techniques

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The nature of tires makes them extremely challenging to recycle due to the available chemically cross-linked polymer and, therefore, they are neither fusible nor soluble and, consequently, cannot be remolded into other shapes without serious degradation. Open dumping of tires pollutes the soil, contaminates underground water and provides ideal breeding grounds for disease carrying vermins. The thermal decomposition of tires by pyrolysis produce char, gases and oil. The composition of oils derived from waste tires has common properties to commercial diesel fuel. The problem associated with the light oil derived from pyrolysis of waste tires is that it has a high sulfur content (> 1.0 wt.%) and therefore emits harmful sulfur oxide (SOx) gases to the atmosphere when combusted in diesel engines. Desulphurization of TPO is necessary due to the increasing stringent environmental regulations worldwide. Hydrodesulphurization (HDS) is the commonly practiced technique for the removal of sulfur species in liquid hydrocarbons. However, the HDS technique fails in the presence of complex sulfur species such as Dibenzothiopene (DBT) present in TPO. This study aims to investigate the viability of photodegradation (Photocatalytic oxidative desulphurization) and adsorptive desulphurization technologies for efficient removal of complex and non-complex sulfur species in TPO. This study focuses on optimizing the cleaning (removal of impurities and asphaltenes) process by varying process parameters; temperature, stirring speed, acid/oil ratio and time. The treated TPO will then be sent for vacuum distillation to attain the desired diesel like fuel. The effect of temperature, pressure and time will be determined for vacuum distillation of both raw TPO and the acid treated oil for comparison purposes. Polycyclic sulfides present in the distilled (diesel like) light oil will be oxidized dominantly to the corresponding sulfoxides and sulfone via a photo-catalyzed system using TiO2 as a catalyst and hydrogen peroxide as an oxidizing agent and finally acetonitrile will be used as an extraction solvent. Adsorptive desulphurization will be used to adsorb traces of sulfurous compounds which remained during photocatalytic desulphurization step. This desulphurization convoy is expected to give high desulphurization efficiency with reasonable oil recovery.

Keywords: adsorption, asphaltenes, photocatalytic oxidation, pyrolysis

Procedia PDF Downloads 255
332 Diffusion MRI: Clinical Application in Radiotherapy Planning of Intracranial Pathology

Authors: Pomozova Kseniia, Gorlachev Gennadiy, Chernyaev Aleksandr, Golanov Andrey

Abstract:

In clinical practice, and especially in stereotactic radiosurgery planning, the significance of diffusion-weighted imaging (DWI) is growing. This makes the existence of software capable of quickly processing and reliably visualizing diffusion data, as well as equipped with tools for their analysis in terms of different tasks. We are developing the «MRDiffusionImaging» software on the standard C++ language. The subject part has been moved to separate class libraries and can be used on various platforms. The user interface is Windows WPF (Windows Presentation Foundation), which is a technology for managing Windows applications with access to all components of the .NET 5 or .NET Framework platform ecosystem. One of the important features is the use of a declarative markup language, XAML (eXtensible Application Markup Language), with which you can conveniently create, initialize and set properties of objects with hierarchical relationships. Graphics are generated using the DirectX environment. The MRDiffusionImaging software package has been implemented for processing diffusion magnetic resonance imaging (dMRI), which allows loading and viewing images sorted by series. An algorithm for "masking" dMRI series based on T2-weighted images was developed using a deformable surface model to exclude tissues that are not related to the area of interest from the analysis. An algorithm of distortion correction using deformable image registration based on autocorrelation of local structure has been developed. Maximum voxel dimension was 1,03 ± 0,12 mm. In an elementary brain's volume, the diffusion tensor is geometrically interpreted using an ellipsoid, which is an isosurface of the probability density of a molecule's diffusion. For the first time, non-parametric intensity distributions, neighborhood correlations, and inhomogeneities are combined in one segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) algorithm. A tool for calculating the coefficient of average diffusion and fractional anisotropy has been created, on the basis of which it is possible to build quantitative maps for solving various clinical problems. Functionality has been created that allows clustering and segmenting images to individualize the clinical volume of radiation treatment and further assess the response (Median Dice Score = 0.963 ± 0,137). White matter tracts of the brain were visualized using two algorithms: deterministic (fiber assignment by continuous tracking) and probabilistic using the Hough transform. The proposed algorithms test candidate curves in the voxel, assigning to each one a score computed from the diffusion data, and then selects the curves with the highest scores as the potential anatomical connections. White matter fibers were visualized using a Hough transform tractography algorithm. In the context of functional radiosurgery, it is possible to reduce the irradiation volume of the internal capsule receiving 12 Gy from 0,402 cc to 0,254 cc. The «MRDiffusionImaging» will improve the efficiency and accuracy of diagnostics and stereotactic radiotherapy of intracranial pathology. We develop software with integrated, intuitive support for processing, analysis, and inclusion in the process of radiotherapy planning and evaluating its results.

Keywords: diffusion-weighted imaging, medical imaging, stereotactic radiosurgery, tractography

Procedia PDF Downloads 68