Search results for: nuclear fuel cycle technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11247

Search results for: nuclear fuel cycle technology

6657 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: common rail, hydrogen engine, port injection, wave propagation

Procedia PDF Downloads 412
6656 Microbiological Analysis of Biofuels in Order to Follow Stability on Room Temperature

Authors: Radovan Cobanovic, Milica Rankov Sicar

Abstract:

Biodiesel refers to a vegetable oil - or animal fat-based diesel fuel consisting of long-chain alkyl (methyl, ethyl, or propyl) esters. It is derived by alcoholysis of triacylglycerols (triglycerides) from various lipid based materials that can be traditionally categorized into the following main groups: vegetable oils, animal fats, waste and algal oils. The goal of this study was to evaluate microbiological stability of biodiesel samples since it has been made from vegetable oil or animal fat which was stored on room temperature. For the purposes of this study, analyzes were conducted on six samples of biodiesel first at zero sample at the reception day than fifth, thirtieth, sixtieth, ninetieth and one hundred twentieth day from the day of reception. During this period, biodiesel samples were subjected to microbiological analyses (Salmonella spp., Listeria monocytogenes, Enterobacteriaceae and total plate count). All analyses were tested according to ISO methodology: Salmonella spp ISO 6579, Listeria monocytogenes ISO 11290-2, Enterobacteriaceae ISO 21528-1, total plate count ISO 4833-1. The results obtained after the analyses which were done according to the plan during the 120 days indicate that are no changes of products concerning microbiological analyses. Salmonella spp., Listeria monocytogenes, Enterobacteriaceae were not detected and results for total plate count showed values < 10 cfu/g for all six samples. On the basis of this monitoring under defined storage conditions at room temperatures, the results showed that biodiesel is very stable as far as microbiological analysis were concerned.

Keywords: biodiesel, microbiology, room temperature, stability

Procedia PDF Downloads 271
6655 Electrical Properties of Cement-Based Piezoelectric Nanoparticles

Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad

Abstract:

Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.

Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric

Procedia PDF Downloads 232
6654 Building Bricks Made of Fly-Ash Mixed with Sand or Ceramic Dust: Synthesis and a Comparative Study

Authors: Md. R. Shattique, Md. T. Zaki, Md. G. Kibria

Abstract:

Fly-ash bricks give a comprehensive solution towards recycling of fly-ash and since there is no requirement of firing to produce them, they are also eco-friendly bricks; little or no carbon-dioxide is emitted during their entire production cycle. As bricks are the most essential and widely utilized building materials in the construction industry, the significance of developing an alternate eco-friendly brick is substantial in modern times. In this paper, manufacturing and potential utilization of Fly-ash made building bricks have been studied and was found to be a prospective substitute for fired clay bricks that contribute greatly to polluting the environment. Also, a comparison between sand made and ceramic dust made Fly-ash bricks have been carried out experimentally. The ceramic dust made bricks seem to show higher compressive strength at lower unit volume weight compared to sand made Fly-ash bricks. Moreover, the water absorption capacity of ceramic dust Fly-ash bricks was lower than sand made bricks. Then finally a statistical comparison between fired clay bricks and fly-ash bricks were carried out. All the requirements for good quality building bricks are matched by the fly-ash bricks. All the facts from this study pointed out that these bricks give a new opportunity for being an alternate building material.

Keywords: coal fly-ash, ceramic dust, burnt clay bricks, sand, gypsum, absorption capacity, unit volume weight, compressive strength

Procedia PDF Downloads 405
6653 Contribution to the Development of a New Design of Dentist's Gowns: A Case Study of Using Infra-Red Technology and Pressure Sensors

Authors: Tran Thi Anh Dao, M. Arnold, L. Schacher, D. C. Adolphe, G. Reys

Abstract:

During tooth extraction or implant surgery, dentists are in contact with numerous infectious germs from patients' saliva and blood. For that reason, dentist's clothes have to play their role of protection from contamination. In addition, dentist's apparels should be not only protective but also comfortable and breathable because dentists have to perform many operations and treatments on patients throughout the day with high concentration and intensity. However, this type of protective garments has not been studied scientifically, whereas dentists are facing new risks and eager for looking for a comfortable personal protective equipment. For that reason, we have proposed some new designs of dentist's gown. They were expected to diminish heat accumulation that are considered as an important factor in reducing the level of comfort experienced by users. Experiments using infra-red technology were carried out in order to compare the breathable properties between a traditional gown and a new design with open zones. Another experiment using pressure sensors was also carried out to study ergonomic aspects trough the flexibility of movements of sleeves. The sleeves-design which is considered comfortable and flexible will be chosen for the further step. The results from the two experiments provide valuable information for the development of a new design of dentists' gowns in order to achieve maximum levels of cooling and comfort for the human body.

Keywords: garment, dentists, comfort, design, protection, thermal

Procedia PDF Downloads 210
6652 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology

Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa

Abstract:

Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.

Keywords: network, mixing, hydrates, continuous process, carbon dioxide

Procedia PDF Downloads 37
6651 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province

Authors: Leila Rashidian, Abbas Ebrahimi

Abstract:

The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.

Keywords: climate change, Lars WG, HADCM3, Gillan province, climatic parameters, A2 scenario

Procedia PDF Downloads 201
6650 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control


Authors: Abdul Malek Abdul Wahab, Emiliano Rustighi

Abstract:

The elastomeric dielectric material has become a new alternative for actuator technology recently. The characteristic of dielectric elastomer that induces significant strain by applying voltage attracts the attention of many researchers to study this material in actuator technology. Thus, for a couple of years, Danfoss Ventures A/S has established their dielectric electro-active polymer (DEAP), which called Polypower. The main objective of this work was to investigate the characterization of PolyPower folded actuator as a ‘pull’ actuator for vibration control. A range of experiment was carried out on folded actuator including passive (without electrical stimulate) and active (with electrical stimulate) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiment determines that DEAP folded actuator is the non-linear system. The voltage supplied has no effect on the natural frequency which shows by ongoing dynamic testing. Finally, varies AC voltage with different amplitude and frequency has been provided to DEAP folded actuator. This experiment shows the parameter that influences the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: elastomeric dielectric, dielectric electro-active polymer, folded actuator, voltage-strain

Procedia PDF Downloads 308
6649 Preparation and Antioxidant Activity of Heterocyclic Indole Derivatives

Authors: Tunca Gul Altuntas, Aziz Baydar, Cemre Acar, Sezen Yılmaz, Tulay Coban

Abstract:

Free radicals, which are generated in many bioorganic redox processes, play a role in the pathogenesis of several diseases including cancer, arthritis, hemorrhagic shock, inflammatory, cardiovascular, neurodegenerative diseases and age-related degenerative brain diseases. Exposures of normal cell to free radical damages several structures, oxidizes nucleic acids, proteins, lipids, or DNA. Compounds interfere with the action of reactive oxygen species might be useful in prevention and treatment of these pathologies. A series of indole compounds containing piperazine ring were synthesized. Coupling of indole-2-carboxylic acid with monosubstituted piperazines was accomplished with 1,1’-carbonyldiimidazole (CDI) in a good yield. The structures of prepared compounds were verified in good agreement with their 1H NMR (nuclear magnetic resonance), MS (mass spectrophotometry), and IR (infrared spectrophotometry) characteristics. In this work, all synthetized indole derivatives were screened in vitro for their antioxidative potential against vitamin E (α-tocopherol) using different antioxidant assays such as superoxide anion formation, lipid peroxidation levels in rat liver, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) stable radical scavenging activity. The synthesized compounds showed various levels of inhibition compared to vitamin E. This may give promising results for the development of new antioxidant agents.

Keywords: antioxidant, indoles, piperazines, reactive oxygen species

Procedia PDF Downloads 219
6648 Evaluation of Resting Systolic and Diastolic Blood Pressure of Staff of Multi-National Petroleum Company in Warri, Nigeria

Authors: Ekpon Oghenetega Philip, Tayire Okabare Favour, Boye Ejobowah Thomas

Abstract:

The study evaluated the resting systolic blood pressure (RSBP) and resting diastolic blood pressure (RDBP) of staff of a multi-national petroleum company in Nigeria with the aim of helping the staff maintain optimal health which is necessary to carry out their secular work. Eleven healthy male (age 36.9±10.48 years, mean±S.D) and 38 healthy female (39.99±12.23 years, mean±S.D) staff of the multi-national petroleum company performed an incremental exercise on a treadmill and cycle ergometers to determine RSBP and RDBP. An assessment of the health status of the staff of the company was carried out using a physical activity readiness questionnaire (PAR-Q) to determine their suitability for the program. Analysis of the t-test for male staff of RSBP shows that it was statistically significant with a calculated t value of 2.19, α = 0.05 and t-calculated for RSBP of female staff was 1.897, α = 0.05 showing a significance. While the t-calculated RSBP for male staff of the multi-national company is 0.44 with α =0.05 and the female RDBP is 4.129, α = 0.05 and they are all significant. It was recommended that staff of the company should regularly visit the company gym during their leisure hours to maintain optimum health.

Keywords: systolic blood pressure, diastolic blood pressure, exercise, pressure staff

Procedia PDF Downloads 265
6647 Statistical Pattern Recognition for Biotechnological Process Characterization Based on High Resolution Mass Spectrometry

Authors: S. Fröhlich, M. Herold, M. Allmer

Abstract:

Early stage quantitative analysis of host cell protein (HCP) variations is challenging yet necessary for comprehensive bioprocess development. High resolution mass spectrometry (HRMS) provides a high-end technology for accurate identification alongside with quantitative information. Hereby we describe a flexible HRMS assay platform to quantify HCPs relevant in microbial expression systems such as E. Coli in both up and downstream development by means of MVDA tools. Cell pellets were lysed and proteins extracted, purified samples not further treated before applying the SMART tryptic digest kit. Peptides separation was optimized using an RP-UHPLC separation platform. HRMS-MSMS analysis was conducted on an Orbitrap Velos Elite applying CID. Quantification was performed label-free taking into account ionization properties and physicochemical peptide similarities. Results were analyzed using SIEVE 2.0 (Thermo Fisher Scientific) and SIMCA (Umetrics AG). The developed HRMS platform was applied to an E. Coli expression set with varying productivity and the corresponding downstream process. Selected HCPs were successfully quantified within the fmol range. Analysing HCP networks based on pattern analysis facilitated low level quantification and enhanced validity. This approach is of high relevance for high-throughput screening experiments during upstream development, e.g. for titer determination, dynamic HCP network analysis or product characterization. Considering the downstream purification process, physicochemical clustering of identified HCPs is of relevance to adjust buffer conditions accordingly. However, the technology provides an innovative approach for label-free MS based quantification relying on statistical pattern analysis and comparison. Absolute quantification based on physicochemical properties and peptide similarity score provides a technological approach without the need of sophisticated sample preparation strategies and is therefore proven to be straightforward, sensitive and highly reproducible in terms of product characterization.

Keywords: process analytical technology, mass spectrometry, process characterization, MVDA, pattern recognition

Procedia PDF Downloads 238
6646 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Ross Lee, Pritpal Singh, Andrew Jester

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, new battery technology is necessary for grid applications to curtail these risks. Biological cells, such as human neurons and electrolytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell, akin to the charging/discharging of a battery cell. This work serves as the first step to developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na⁺-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior similar to human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: battery, biomimetic, electrolytes, human neurons, ion-selective membranes, membrane potential

Procedia PDF Downloads 101
6645 System-Wide Impact of Energy Efficiency in the Industry Sector: A Comparative Study between Canada and Denmark

Authors: M. Baldini, H. K. Jacobsen, M. Jaccard

Abstract:

In light of the international efforts to comply with the Paris agreement and emission targets for future energy systems, Denmark and Canada are among the front-runner countries dealing with climate change. The experiences in the energy sector have seen both countries coping with trade-offs between investments in renewable energy technologies and energy efficiency, thus tackling the climate issue from the supply and demand side respectively. On the demand side, the industrial sector is going through a remarkable transformation, with implementation of energy efficiency measures, change of input fuel for end-use processes and forecasted electrification as main features under the spotlight. By looking at Canada and Denmark's experiences as pathfinders on the demand and supply approach to climate change, it is possible to obtain valuable experience that may be applied to other countries aiming at the same goal. This paper presents a comparative study on industrial energy efficiency between Canada and Denmark. The study focuses on technologies and system options, policy design and implementation and modelling methodologies when implementing industrial energy savings in optimization models in comparison to simulation models. The study identifies gaps and junctures in the approach towards climate change actions and, learning from each other, lessen the differences to further foster the adoption of energy efficiency measurements in the industrial sector, aiming at reducing energy consumption and, consequently, CO₂ emissions.

Keywords: industrial energy efficiency, comparative study, CO₂ reduction, energy system modelling

Procedia PDF Downloads 155
6644 The Use of Emerging Technologies in Higher Education Institutions: A Case of Nelson Mandela University, South Africa

Authors: Ayanda P. Deliwe, Storm B. Watson

Abstract:

The COVID-19 pandemic has disrupted the established practices of higher education institutions (HEIs). Most higher education institutions worldwide had to shift from traditional face-to-face to online learning. The online environment and new online tools are disrupting the way in which higher education is presented. Furthermore, the structures of higher education institutions have been impacted by rapid advancements in information and communication technologies. Emerging technologies should not be viewed in a negative light because, as opposed to the traditional curriculum that worked to create productive and efficient researchers, emerging technologies encourage creativity and innovation. Therefore, using technology together with traditional means will enhance teaching and learning. Emerging technologies in higher education not only change the experience of students, lecturers, and the content, but it is also influencing the attraction and retention of students. Higher education institutions are under immense pressure because not only are they competing locally and nationally, but emerging technologies also expand the competition internationally. Emerging technologies have eliminated border barriers, allowing students to study in the country of their choice regardless of where they are in the world. Higher education institutions are becoming indifferent as technology is finding its way into the lecture room day by day. Academics need to utilise technology at their disposal if they want to get through to their students. Academics are now competing for students' attention with social media platforms such as WhatsApp, Snapchat, Instagram, Facebook, TikTok, and others. This is posing a significant challenge to higher education institutions. It is, therefore, critical to pay attention to emerging technologies in order to see how they can be incorporated into the classroom in order to improve educational quality while remaining relevant in the work industry. This study aims to understand how emerging technologies have been utilised at Nelson Mandela University in presenting teaching and learning activities since April 2020. The primary objective of this study is to analyse how academics are incorporating emerging technologies in their teaching and learning activities. This primary objective was achieved by conducting a literature review on clarifying and conceptualising the emerging technologies being utilised by higher education institutions, reviewing and analysing the use of emerging technologies, and will further be investigated through an empirical analysis of the use of emerging technologies at Nelson Mandela University. Findings from the literature review revealed that emerging technology is impacting several key areas in higher education institutions, such as the attraction and retention of students, enhancement of teaching and learning, increase in global competition, elimination of border barriers, and highlighting the digital divide. The literature review further identified that learning management systems, open educational resources, learning analytics, and artificial intelligence are the most prevalent emerging technologies being used in higher education institutions. The identified emerging technologies will be further analysed through an empirical analysis to identify how they are being utilised at Nelson Mandela University.

Keywords: artificial intelligence, emerging technologies, learning analytics, learner management systems, open educational resources

Procedia PDF Downloads 59
6643 Role of Tele-health in Expansion of Medical Care

Authors: Garima Singh, Kunal Malhotra

Abstract:

Objective: The expansion of telehealth has been instrumental in increasing access to medical services, especially for underserved and rural communities. In 2020, 14 million patients received virtual care through telemedicine and the global telemedicine market is expected to reach up to $185 million by 2023. It provides a platform and allows a patient to receive primary care as well as specialized care using technology and the comfort of their homes. Telemedicine was particularly useful during COVID-pandemic and the number of telehealth visits increased by 5000% during that time. It continues to serve as a significant resource for patients seeking care and to bridge the gap between the disease and the treatment. Method: As per APA (American Psychiatric Association), Telemedicine is the process of providing health care from a distance through technology. It is a subset of telemedicine, and can involve providing a range of services, including evaluations, therapy, patient education and medication management. It can involve direct interaction between a physician and the patient. It also encompasses supporting primary care providers with specialist consultation and expertise. It can also involve recording medical information (images, videos, etc.) and sending this to a distant site for later review. Results: In our organization, we are using telepsychiatry and serving 25 counties and approximately 1.4 million people. We provide multiple services, including inpatient, outpatient, crisis intervention, Rehab facility, autism services, case management, community treatment and multiple other modalities. With project ECHO (Extension for Community Healthcare Outcomes) it has been used to advise and assist primary care providers in treating mental health. It empowers primary care providers to treat patients in their own community by sharing knowledge. Conclusion: Telemedicine has shown to be a great medium in meeting patients’ needs and accessible mental health. It has been shown to improve access to care in both urban and rural settings by bringing care to a patient and reducing barriers like transportation, financial stress and resources. Telemedicine is also helping with reducing ER visits, integrating primary care and improving the continuity of care and follow-up. There has been substantial evidence and research about its effectiveness and its usage.

Keywords: telehealth, telemedicine, access to care, medical technology

Procedia PDF Downloads 92
6642 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 79
6641 The Discovery of Competitive Glca Inhibitors That Inhibits the Human Pathogenic Fungi Aspergillus Fumigatus and Candida Albicans

Authors: Reem Al-Shidhani, Isabelle S. R. Storer, Michael J. Bromley, Lydia Tabernero

Abstract:

Invasive fungal diseases are an increasing global health concern that contributes to the high mortality rates in immunocompromised patients. The rising of antifungal resistance severely lowers the efficacy of the limited antifungal agents available. New antifungal drugs that target new mechanisms are necessary to tackle the current shortfalls. Amongst post- modifications, phosphorylation is a predominant and an outstanding protein alteration in all eukaryotes. In fungi, protein phosphorylation plays a vital role in many signal transduction pathways, including cell cycle, cell growth, metabolism, transcription, differentiation, proliferation, and virulence. The investigation of Aspergillus fumigatus phosphatases revealed seven genes essential for viability. Inhibiting one of these phosphatases is a new interesting route to develop novel antifungal drugs. In this study, we carried out an early drug discovery process targeting oneessential phosphatase, GlcA. Here, we report the identification of new GlcA inhibitors that show antifungal activity. These important finding open a new avenue to the development of novel antifungals to expand the current narrow arsenal of clinical candidates.

Keywords: invasive fungal diseases, phosphatases, GlcA, competitive inhibitors

Procedia PDF Downloads 95
6640 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications

Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi

Abstract:

With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.

Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality

Procedia PDF Downloads 68
6639 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, the Scale Invariant Feature Transform (SIFT)

Procedia PDF Downloads 222
6638 Development and Verification of the Idom Shielding Optimization Tool

Authors: Omar Bouhassoun, Cristian Garrido, César Hueso

Abstract:

The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.

Keywords: optimization, shielding, nuclear, genetic algorithm

Procedia PDF Downloads 97
6637 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)

Authors: Meltem Bolluk, Ismail Duman

Abstract:

Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.

Keywords: amorphous boron, CVD, powder production, powder characterization

Procedia PDF Downloads 200
6636 An Ontology-Based Framework to Support Asset Integrity Modeling: Case Study of Offshore Riser Integrity

Authors: Mohammad Sheikhalishahi, Vahid Ebrahimipour, Amir Hossein Radman-Kian

Abstract:

This paper proposes an Ontology framework for knowledge modeling and representation of the equipment integrity process in a typical oil and gas production plant. Our aim is to construct a knowledge modeling that facilitates translation, interpretation, and conversion of human-readable integrity interpretation into computer-readable representation. The framework provides a function structure related to fault propagation using ISO 14224 and ISO 15926 OWL-Lite/ Resource Description Framework (RDF) to obtain a generic system-level model of asset integrity that can be utilized in the integrity engineering process during the equipment life cycle. It employs standard terminology developed by ISO 15926 and ISO 14224 to map textual descriptions of equipment failure and then convert it to a causality-driven logic by semantic interpretation and computer-based representation using Lite/RDF. The framework applied for an offshore gas riser. The result shows that the approach can cross-link the failure-related integrity words and domain-specific logic to obtain a representation structure of equipment integrity with causality inference based on semantic extraction of inspection report context.

Keywords: asset integrity modeling, interoperability, OWL, RDF/XML

Procedia PDF Downloads 172
6635 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 318
6634 Spatiotemporal Analysis of Land Surface Temperature and Urban Heat Island Evaluation of Four Metropolitan Areas of Texas, USA

Authors: Chunhong Zhao

Abstract:

Remotely sensed land surface temperature (LST) is vital to understand the land-atmosphere energy balance, hydrological cycle, and thus is widely used to describe the urban heat island (UHI) phenomenon. However, due to technical constraints, satellite thermal sensors are unable to provide LST measurement with both high spatial and high temporal resolution. Despite different downscaling techniques and algorithms to generate high spatiotemporal resolution LST. Four major metropolitan areas in Texas, USA: Dallas-Fort Worth, Houston, San Antonio, and Austin all demonstrate UHI effects. Different cities are expected to have varying SUHI effect during the urban development trajectory. With the help of the Landsat, ASTER, and MODIS archives, this study focuses on the spatial patterns of UHIs and the seasonal and annual variation of these metropolitan areas. With Gaussian model, and Local Indicators of Spatial Autocorrelations (LISA), as well as data fusion methods, this study identifies the hotspots and the trajectory of the UHI phenomenon of the four cities. By making comparison analysis, the result can help to alleviate the advent effect of UHI and formulate rational urban planning in the long run.

Keywords: spatiotemporal analysis, land surface temperature, urban heat island evaluation, metropolitan areas of Texas, USA

Procedia PDF Downloads 405
6633 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications

Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris

Abstract:

With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.

Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric

Procedia PDF Downloads 74
6632 Sustainable Solid Waste Management Solutions for Asian Countries Using the Potential in Municipal Solid Waste of Indian Cities

Authors: S. H. Babu Gurucharan, Priyanka Kaushal

Abstract:

Majority of the world's population is expected to live in the Asia and Pacific region by 2050 and thus their cities will generate the maximum waste. India, being the second populous country in the world, is an ideal case study to identify a solution for Asian countries. Waste minimisation and utilisation have always been part of the Indian culture. During rapid urbanisation, our society lost the art of waste minimisation and utilisation habits. Presently, Waste is not considered as a resource, thus wasting an opportunity to tap resources. The technologies in vogue are not suited for effective treatment of large quantities of generated solid waste, without impacting the environment and the population. If not treated efficiently, Waste can become a silent killer. The article is trying to highlight the Indian municipal solid waste scenario as a key indicator of Asian waste management and recommend sustainable waste management and suggest effective solutions to treat the Solid Waste. The methods followed during the research were to analyse the solid waste data on characteristics of solid waste generated in Indian cities, then evaluate the current technologies to identify the most suitable technology in Indian conditions with minimal environmental impact, interact with the technology technical teams, then generate a technical process specific to Indian conditions and further examining the environmental impact and advantages/ disadvantages of the suggested process. The most important finding from the study was the recognition that most of the current municipal waste treatment technologies being employed, operate sub-optimally in Indian conditions. Therefore, the study using the available data, generated heat and mass balance of processes to arrive at the final technical process, which was broadly divided into Waste processing, Waste Treatment, Power Generation, through various permutations and combinations at each stage to ensure that the process is techno-commercially viable in Indian conditions. Then environmental impact was arrived through secondary sources and a comparison of environmental impact of different technologies was tabulated. The major advantages of the suggested process are the effective use of waste for resource generation both in terms of maximised power output or conversion to eco-friendly products like biofuels or chemicals using advanced technologies, minimum environmental impact and the least landfill requirement. The major drawbacks are the capital, operations and maintenance costs. The existing technologies in use in Indian municipalities have their own limitations and the shortlisted technology is far superior to other technologies in vogue. Treatment of Municipal Solid Waste with an efficient green power generation is possible through a combination of suitable environment-friendly technologies. A combination of bio-reactors and plasma-based gasification technology is most suitable for Indian Waste and in turn for Asian waste conditions.

Keywords: calorific value, gas fermentation, landfill, municipal solid waste, plasma gasification, syngas

Procedia PDF Downloads 171
6631 In vitro Disaggregation and Dissolution of Four IR Lamotrigine Solid Dosage Forms

Authors: Ilaria Manca, Ilaria Manca, Francesca Pettinau, Ignazia Mocci, Elisabetta M. Usai, Barbara Pittau

Abstract:

Lamotrigine is a phenyltriazine used in the treatment of epilepsy and bipolar disorder type I. The purpose of this study was to test and compare various solid forms of immediate release (IR) lamotrigine products, at different strenghts, in order to study their disaggregation and dissolution behavior. IR products are designed to release their active substance promptly after administration. Concentration of hydrochloric acid in gastric juice is about 0.1-0.001 M, so FDA (Food and Drug Administration) recommends, for lamotrigine regular tablets, dissolution tests in HCl 0.1 M.Toinvestigate the pH dependency of drug release in the entire gastrointestinal tract, we worked at two additional media with different pH values (4.5 and 6.8), that reflect conditions in it. To afford acceptable dissolution rates, tablets must disintegrate. Disaggregation of constituent particles increases the surface area and substantially increases the dissolution rate. For this reason availability of an active substance from tablets depends on its ability to disintegrate fast in dissolution media. pH of gastrointestinal fluid affects drug absorption by conditioning its solubility and dissolution, but also tablet disintegration may be influenced by it. To obtain information about the quantitative relationship between different mixture components, Nuclear Magnetic Resonance (NMR) spectroscopy was used. We also investigate tablet hardness. The investigation carried out confirms pH 1.2 as the ideal environment for the immediate availability of the active substance.

Keywords: dissolution, disaggregation, Lamotrigine, bioequivalence

Procedia PDF Downloads 440
6630 Use of Technology Based Intervention for Continuous Professional Development of Teachers in Pakistan

Authors: Rabia Aslam

Abstract:

Overwhelming evidence from all around the world suggests that high-quality teacher professional development facilitates the improvement of teaching practices which in turn could improve student learning outcomes. The new Continuous Professional Development (CPD) model for primary school teachers in Punjab uses a blended approach in which pedagogical content knowledge is delivered through technology (high-quality instructional videos and lesson plans delivered to school tablets or mobile phones) with face-to-face support by Assistant Education Officers (AEOs). The model also develops Communities of Practice operationalized through formal meetings led by the AEOs and informal interactions through social media groups to provide opportunities for teachers to engage with each other and share their ideas, reflect on learning, and come up with solutions to issues they experience. Using Kirkpatrick’s 4 levels of the learning evaluation model, this paper investigates how school tablets and teacher mobile phones may act as transformational cultural tools to potentially expand perceptions and access to teaching and learning resources and explore some of the affordances of social media (Facebook, WhatsApp groups) in learning in an informal context. The results will be used to inform policy-level decisions on what shape could CPD of all teachers take in the context of a developing country like Pakistan.

Keywords: CPD, teaching & learning, blended learning, learning technologies

Procedia PDF Downloads 68
6629 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets

Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li

Abstract:

Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.

Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet

Procedia PDF Downloads 118
6628 Estrogen Controls Hepatitis C Virus Entry and Spread through the GPR30 Pathway

Authors: Laura Ulitzky, Dougbeh-Chris Nyan, Manuel M. Lafer, Erica Silberstein, Nicoleta Cehan, Deborah R. Taylor

Abstract:

Hepatitis C virus (HCV)-associated hepatocellular carcinoma, fibrosis and cirrhosis are more frequent in men and postmenopausal women than in premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol (estrogen) plays an innate role in preventing viral infection and liver disease. Estrogen classically acts through nuclear estrogen receptors or, alternatively, through the membrane-bound G-protein-coupled estrogen receptor (GPR30 or GPER). We observed a marked decrease in detectable virus when HCV-infected human hepatoma cells were treated with estrogen. The effect was mimicked by both Tamoxifen (Tam) and G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. Through GPR30, estrogen-mediated the down-regulation of occludin; a tight junction protein and HCV receptor, by promoting activation of matrix metalloproteinases (MMPs). Activated MMP-9 was secreted in response to estrogen, cleaving occludin in the extracellular Domain D, the motif required for HCV entry and spread. This pathway gives new insight into a novel innate immune pathway and the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women.

Keywords: HCV, estrogen, occludin, MMPs

Procedia PDF Downloads 421