Search results for: lean tools and techniques
5889 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 1295888 Joint Discrete Hartley Transform-Clipping for Peak to Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System
Authors: Selcuk Comlekci, Mohammed Aboajmaa
Abstract:
Orthogonal frequency division multiplexing (OFDM) is promising technique for the modern wireless communications systems due to its robustness against multipath environment. The high peak to average power ratio (PAPR) of the transmitted signal is one of the major drawbacks of OFDM system, PAPR degrade the performance of bit error rate (BER) and effect on the linear characteristics of high power amplifier (HPA). In this paper, we proposed DHT-Clipping reduction technique to reduce the high PAPR by the combination between discrete Hartley transform (DHT) and Clipping techniques. From the simulation results, we notified that DHT-Clipping technique offers better PAPR reduction than DHT and Clipping, as well as DHT-Clipping introduce improved BER performance better than clipping.Keywords: ISI, cyclic prefix, BER, PAPR, HPA, DHT, subcarrier
Procedia PDF Downloads 4415887 Open and Distance Learning (ODL) Education in Nigeria: Challenge of Academic Quality
Authors: Edu Marcelina, Sule Sheidu A., Nsor Eunice
Abstract:
As open and distance education is gradually becoming an acceptable means of solving the problem of access in higher education, quality has now become one of the main concerns among institutions and stakeholders of open and distance learning (ODL) and the education sector in general. This study assessed the challenges of academic quality in the open and distance learning (ODL) education in Nigeria using Distance Learning Institute (DLI), University of Lagos and National Open University of Nigeria as a case. In carrying out the study, a descriptive survey research design was employed. A researcher-designed and validated questionnaire was used to elicit responses that translated to the quantitative data for this study. The sample comprised 665 students of the Distance Learning Institute (DLI), and National Open University of Nigeria (NOUN), carefully selected through the method of simple random sampling. Data collected from the study were analyzed using Chi-Square (X2) at 0.05 Level of significance. The results of the analysis revealed that; the use of ICT tools is a factor in ensuring quality in the Open and Distance Learning (ODL) operations; the quality of the materials made available to ODL students will determine the quality of education that will be received by the students; and the time scheduled for students for self-study, online lecturing/interaction and face to face study and the quality of education in Open and Distance Learning Institutions has a lot of impact on the quality of education the students receive. Based on the findings, a number of recommendations were made.Keywords: open and distance learning, quality, ICT, face-to-face interaction
Procedia PDF Downloads 3815886 Creative Peace Diplomacy Model by the Perspective of Dialogue Management for International Relations
Authors: Bilgehan Gültekin, Tuba Gültekin
Abstract:
Peace diplomacy is the most important international tool to keep peace all over the world. The study titled “peace diplomacy for international relations” is consist of three part. In the first part, peace diplomacy is going to be introduced as a tool of peace communication and peace management. And, in this part, peace communication will be explained by international communication perspective. In the second part of the study,public relations events and communication campaigns will be developed originally for peace diplomacy. In this part, it is aimed original public communication dialogue management tools for peace diplomacy. the aim of the final part of the study, is to produce original public communication model for international relations. The model includes peace modules, peace management projects, original dialogue procedures and protocols, dialogue education, dialogue management strategies, peace actors, communication models, peace team management and public diplomacy steps. The creative part of the study aims to develop a model used for international relations for all countries. Creative Peace Diplomacy Model will be developed in the case of Turkey-Turkey-France and Turkey-Greece relations. So, communication and public relations events and campaigns are going to be developed as original for only this study.Keywords: peace diplomacy, public communication model, dialogue management, international relations
Procedia PDF Downloads 5455885 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research
Procedia PDF Downloads 1525884 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 4935883 Disability in the Course of a Chronic Disease: The Example of People Living with Multiple Sclerosis in Poland
Authors: Milena Trojanowska
Abstract:
Disability is a phenomenon for which meanings and definitions have evolved over the decades. This became the trigger to start a project to answer the question of what disability constitutes in the course of an incurable chronic disease. The chosen research group are people living with multiple sclerosis.The contextual phase of the research was participant observation at the Polish Multiple Sclerosis Society, the largest NGO in Poland supporting people living with MS and their relatives. The research techniques used in the project are (in order of implementation): group interviews with people living with MS and their relatives, narrative interviews, asynchronous technique, participant observation during events organised for people living with MS and their relatives.The researcher is currently conducting follow-up interviews, as inaccuracies in the respondents' narratives were identified during the data analysis. Interviews and supplementary research techniques were used over the four years of the research, and the researcher also benefited from experience gained from 12 years of working with NGOs (diaries, notes). The research was carried out in Poland with the participation of people living in this country only.The research has been based on grounded theory methodology in a constructivist perspectivedeveloped by Kathy Charmaz. The goal was to follow the idea that research must be reliable, original, and useful. The aim was to construct an interpretive theory that assumes temporality and the processualityof social life. TheAtlas.ti software was used to collect research material and analyse it. It is a program from the CAQDAS(Computer-Assisted Qualitative Data Analysis Software) group.Several key factors influencing the construction of a disability identity by people living with multiple sclerosis was identified:-course of interaction with significant relatives,- the expectation of identification with disability (expressed by close relatives),- economic profitability (pension, allowances),- institutional advantages (e.g. parking card),- independence and autonomy (not equated with physical condition, but access to adapted infrastructure and resources to support daily functioning),- the way a person with MS construes the meaning of disability,- physical and mental state,- medical diagnosis of illness.In addition, it has been shown that making an assumption about the experience of disability in the course of MS is a form of cognitive reductionism leading to further phenomenon such as: the expectation of the person with MS to construct a social identity as a person with a disability (e.g. giving up work), the occurrence of institutional inequalities. It can also be a determinant of the choice of a life strategy that limits social and individual functioning, even if this necessity is not influenced by the person's physical or psychological condition.The results of the research are important for the development of knowledge about the phenomenon of disability. It indicates the contextuality and complexity of the disability phenomenon, which in the light of the research is a set of different phenomenon of heterogeneous nature and multifaceted causality. This knowledge can also be useful for institutions and organisations in the non-governmental sector supporting people with disabilities and people living with multiple sclerosis.Keywords: disability, multiple sclerosis, grounded theory, poland
Procedia PDF Downloads 1135882 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.Keywords: cognition, world music, artificial intelligence, Thayer’s matrix
Procedia PDF Downloads 865881 Recombination Center Levels in Gold and Platinum Doped N-type Silicon for High-Speed Thyristor
Authors: Nam Chol Yu, GyongIl Chu, HoJong Ri
Abstract:
Using DLTS (Deep-level transient spectroscopy) measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25 eV (A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54 eV (B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.Keywords: recombination center level, lifetime, carrier lifetime control, Gold, Platinum, Silicon
Procedia PDF Downloads 755880 Design, Development by Functional Analysis in UML and Static Test of a Multimedia Voice and Video Communication Platform on IP for a Use Adapted to the Context of Local Businesses in Lubumbashi
Authors: Blaise Fyama, Elie Museng, Grace Mukoma
Abstract:
In this article we present a java implementation of video telephony using the SIP protocol (Session Initiation Protocol). After a functional analysis of the SIP protocol, we relied on the work of Italian researchers of University of Parma-Italy to acquire adequate libraries for the development of our own communication tool. In order to optimize the code and improve the prototype, we used, in an incremental approach, test techniques based on a static analysis based on the evaluation of the complexity of the software with the application of metrics and the number cyclomatic of Mccabe. The objective is to promote the emergence of local start-ups producing IP video in a well understood local context. We have arrived at the creation of a video telephony tool whose code is optimized.Keywords: static analysis, coding complexity metric mccabe, Sip, uml
Procedia PDF Downloads 1225879 Gamification: A Guideline to Design an Effective E-Learning
Authors: Rattama Rattanawongsa
Abstract:
As technologies continue to develop and evolve, online learning has become one of the most popular ways of gaining access to learning. Worldwide, many students are engaging in both online and blended courses in growing numbers through e-learning. However, online learning is a form of teaching that has many benefits for learners but still has some limitations. The high attrition rates of students tend to be due to lack of motivation to succeed. Gamification is the use of game design techniques, game thinking and game mechanics in non-game context, such as learning. The gamifying method can motivate students to learn with fun and inspire them to continue learning. This paper aims to describe how the gamification work in the context of learning. The first part of this paper present the concept of gamification. The second part is described the psychological perspectives of gamification, especially motivation and flow theory for gamifying design. The result from this study will be described into the guidelines for effective learning design using a gamification concept.Keywords: gamification, e-learning, motivation, flow theory
Procedia PDF Downloads 5295878 A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier
Authors: Maninder Kaur Gill, Alpana Agarwal
Abstract:
It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values.Keywords: Device Under Test (DUT), open loop voltage gain, operational amplifier, test circuit
Procedia PDF Downloads 4555877 Formulation of a Stress Management Program for Human Error Prevention in Nuclear Power Plants
Authors: Hyeon-Kyo Lim, Tong-il Jang, Yong-Hee Lee
Abstract:
As for any nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. Thus, for accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Among lots factors, stress has been reported to have significant influence on human performance. Stress level of a person may fluctuate over time. To handle the possibility over time, robust stress management program is required, especially in nuclear power plants. Therefore, to overcome the possibility of human errors, this study aimed to develop a stress management program as a part of Fitness-for-Duty (FFD) Program for the workers in nuclear power plants. The meaning of FFD might be somewhat different by research objectives, appropriate definition of FFD was accomplished in this study with special reference to human error prevention, and diverse stress factors were elicited for management of human error susceptibility. In addition, with consideration of conventional FFD management programs, appropriate tests and interventions were introduced over the whole employment cycle including selection and screening of workers, job allocation, job rotation, and disemployment as well as Employee-Assistance-Program (EAP). The results showed that most tools mainly concentrated their weights on common organizational factors such as Demands, Supports, and Relationships in sequence, which were referred as major stress factors.Keywords: human error, accident prevention, work performance, stress, fatigue
Procedia PDF Downloads 3285876 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1835875 Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer
Authors: Xing Feng, Yuanbin Li
Abstract:
Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform.Keywords: curved plane oil skimmer, flow channel, CFD, VOF
Procedia PDF Downloads 2975874 Synthetic Method of Contextual Knowledge Extraction
Authors: Olga Kononova, Sergey Lyapin
Abstract:
Global information society requirements are transparency and reliability of data, as well as ability to manage information resources independently; particularly to search, to analyze, to evaluate information, thereby obtaining new expertise. Moreover, it is satisfying the society information needs that increases the efficiency of the enterprise management and public administration. The study of structurally organized thematic and semantic contexts of different types, automatically extracted from unstructured data, is one of the important tasks for the application of information technologies in education, science, culture, governance and business. The objectives of this study are the contextual knowledge typologization, selection or creation of effective tools for extracting and analyzing contextual knowledge. Explication of various kinds and forms of the contextual knowledge involves the development and use full-text search information systems. For the implementation purposes, the authors use an e-library 'Humanitariana' services such as the contextual search, different types of queries (paragraph-oriented query, frequency-ranked query), automatic extraction of knowledge from the scientific texts. The multifunctional e-library «Humanitariana» is realized in the Internet-architecture in WWS-configuration (Web-browser / Web-server / SQL-server). Advantage of use 'Humanitariana' is in the possibility of combining the resources of several organizations. Scholars and research groups may work in a local network mode and in distributed IT environments with ability to appeal to resources of any participating organizations servers. Paper discusses some specific cases of the contextual knowledge explication with the use of the e-library services and focuses on possibilities of new types of the contextual knowledge. Experimental research base are science texts about 'e-government' and 'computer games'. An analysis of the subject-themed texts trends allowed to propose the content analysis methodology, that combines a full-text search with automatic construction of 'terminogramma' and expert analysis of the selected contexts. 'Terminogramma' is made out as a table that contains a column with a frequency-ranked list of words (nouns), as well as columns with an indication of the absolute frequency (number) and the relative frequency of occurrence of the word (in %% ppm). The analysis of 'e-government' materials showed, that the state takes a dominant position in the processes of the electronic interaction between the authorities and society in modern Russia. The media credited the main role in these processes to the government, which provided public services through specialized portals. Factor analysis revealed two factors statistically describing the used terms: human interaction (the user) and the state (government, processes organizer); interaction management (public officer, processes performer) and technology (infrastructure). Isolation of these factors will lead to changes in the model of electronic interaction between government and society. In this study, the dominant social problems and the prevalence of different categories of subjects of computer gaming in science papers from 2005 to 2015 were identified. Therefore, there is an evident identification of several types of contextual knowledge: micro context; macro context; dynamic context; thematic collection of queries (interactive contextual knowledge expanding a composition of e-library information resources); multimodal context (functional integration of iconographic and full-text resources through hybrid quasi-semantic algorithm of search). Further studies can be pursued both in terms of expanding the resource base on which they are held, and in terms of the development of appropriate tools.Keywords: contextual knowledge, contextual search, e-library services, frequency-ranked query, paragraph-oriented query, technologies of the contextual knowledge extraction
Procedia PDF Downloads 3635873 Exploring How Online Applications Help Students to Learn Music Virtually: A Study in an Australian Music Academy
Authors: Ali Shah
Abstract:
This paper outlines the case study experience of using a variety of online strategies in an Australian music academy context during covid times. The study aimed at exploring how online applications help students to learn music, specifically playing musical instruments, composing songs, and performing virtually. To explore this, music teachers’ perceptions and experiences regarding online learning, the teaching strategies they implemented, and the challenges they faced were examined. For the purpose of this study, a qualitative research structure was adopted through the use of three data collection tools. These methods included pre- and post-research individual interviews of teachers and students, analysis of their lesson plans, virtual classroom observations of the teachers followed by the researcher’sown reflections, post-observation discussions, and teachers’ reflective journals. The findings revealed that teachers had a theoretical understanding of virtual learning and recent musical application such as Flowkey, Skoove, and Piano marvel, which are benefits of e-learning. While teachers faced challenges in implementing strategies to teach keyboard/piano online, overall, both students and teachers felt the positive impact of online applications and strategies on their learning and felt that modern technology made it possible for anyone to take music lessons at home.Keywords: music, keyboard, piano, online learning, virtual learning
Procedia PDF Downloads 795872 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images
Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets
Procedia PDF Downloads 4925871 Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain
Authors: Ahmed A. Elshami, Stephanie Bonnet, Abdelhafid Khelidj
Abstract:
Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain.Keywords: Zamzam water, corrosion inhibitor, rain water, simulated acid rain
Procedia PDF Downloads 4005870 Science and Monitoring Underpinning River Restoration: A Case Study
Authors: Geoffrey Gilfillan, Peter Barham, Lisa Smallwood, David Harper
Abstract:
The ‘Welland for People and Wildlife’ project aimed to improve the River Welland’s ecology and water quality, and to make it more accessible to the community of Market Harborough. A joint monitoring project by the Welland Rivers Trust & University of Leicester was incorporated into the design. The techniques that have been used to measure its success are hydrological, geomorphological, and water quality monitoring, species and habitat surveys, and community engagement. Early results show improvements to flow and habitat diversity, water quality and biodiversity of the river environment. Barrier removal has increased stickleback mating activity, and decreased parasitically infected fish in sample catches. The habitats provided by the berms now boast over 25 native plant species, and the river is clearer, cleaner and with better-oxygenated water.Keywords: community engagement, ecological monitoring, river restoration, water quality
Procedia PDF Downloads 2365869 Development of Equivalent Inelastic Springs to Model C-Devices
Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda
Abstract:
'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests
Procedia PDF Downloads 1535868 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques
Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi
Abstract:
An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel
Procedia PDF Downloads 4715867 Creative Applications for Socially Assistive Robots to Support Mental Health: A Patient-Centered Feasibility Study
Authors: Andreas Kornmaaler Hansen, Carlos Gomez Cubero, Elizabeth Jochum
Abstract:
The use of the arts in therapy and rehabilitation is well established, and there is growing recognition of the value of the arts for improving health and well-being across diverse populations. Combining arts with socially assistive robots is a relatively under-explored research area. This paper presents the results of a feasibility study conducted within an existing arts and health program to scope the possibility of combining visual arts with socially assistive robots to promote mental health and well-being. Using a participatory research design with participant-led perspectives, we present the results of our feasibility study with a collaborative drawing robot among an adult population with mild to severe mental illness. We identify key methodological challenges and advantages of working with participatory and human-centered approaches. Based on the results of three pilot workshops with participants and lay health workers, we outline suggestions for authentic engagement with real stakeholders toward the development of socially assistive robots in community health contexts. Working closely with a patient population at all levels of the research process is key for developing tools and interventions that center patient experience and priorities while minimizing the risks of alienating patients and communities.Keywords: arts and health, visual art, health promotion, mental health, collaborative robots, creativity, socially assistive robots
Procedia PDF Downloads 685866 DesignChain: Automated Design of Products Featuring a Large Number of Variants
Authors: Lars Rödel, Jonas Krebs, Gregor Müller
Abstract:
The growing price pressure due to the increasing number of global suppliers, the growing individualization of products and ever-shorter delivery times are upcoming challenges in the industry. In this context, Mass Personalization stands for the individualized production of customer products in batch size 1 at the price of standardized products. The possibilities of digitalization and automation of technical order processing open up the opportunity for companies to significantly reduce their cost of complexity and lead times and thus enhance their competitiveness. Many companies already use a range of CAx tools and configuration solutions today. Often, the expert knowledge of employees is hidden in "knowledge silos" and is rarely networked across processes. DesignChain describes the automated digital process from the recording of individual customer requirements, through design and technical preparation, to production. Configurators offer the possibility of mapping variant-rich products within the Design Chain. This transformation of customer requirements into product features makes it possible to generate even complex CAD models, such as those for large-scale plants, on a rule-based basis. With the aid of an automated CAx chain, production-relevant documents are thus transferred digitally to production. This process, which can be fully automated, allows variants to always be generated on the basis of current version statuses.Keywords: automation, design, CAD, CAx
Procedia PDF Downloads 835865 Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation
Authors: O. P. Yadav
Abstract:
Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics.Keywords: degradation, nanocomposite, photocatalyst, spectroscopy, XRD
Procedia PDF Downloads 5005864 A Fuzzy Inference Tool for Assessing Cancer Risk from Radiation Exposure
Authors: Bouharati Lokman, Bouharati Imen, Bouharati Khaoula, Bouharati Oussama, Bouharati Saddek
Abstract:
Ionizing radiation exposure is an established cancer risk factor. Compared to other common environmental carcinogens, it is relatively easy to determine organ-specific radiation dose and, as a result, radiation dose-response relationships tend to be highly quantified. Nevertheless, there can be considerable uncertainty about questions of radiation-related cancer risk as they apply to risk protection and public policy, and the interpretations of interested parties can differ from one person to another. Examples of tools used in the analysis of the risk of developing cancer due to radiation are characterized by uncertainty. These uncertainties are related to the history of exposure and different assumptions involved in the calculation. We believe that the results of statistical calculations are characterized by uncertainty and imprecision. Having regard to the physiological variation from one person to another. In this study, we develop a tool based on fuzzy logic inference. As fuzzy logic deals with imprecise and uncertain, its application in this area is adequate. We propose a fuzzy system with three input variables (age, sex and body attainable cancer). The output variable expresses the risk of infringement rate of each organ. A base rule is established from recorded actual data. After successful simulation, this will instantly predict the risk of infringement rate of each body following chronic exposure to 0.1 Gy.Keywords: radiation exposure, cancer, modeling, fuzzy logic
Procedia PDF Downloads 3165863 Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions
Authors: Sujith Rajashekar Swamy, Meghana Rajashekara Swamy
Abstract:
Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint.Keywords: susceptibility weighted, T1 weighted, brain lesions, gadolinium contrast
Procedia PDF Downloads 1375862 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate
Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas
Abstract:
Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks
Procedia PDF Downloads 1115861 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining
Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj
Abstract:
Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.Keywords: data mining, SME growth, success factors, web mining
Procedia PDF Downloads 2715860 Logistics Support as a Key Success Factor in Gastronomy
Authors: Hanna Zietara
Abstract:
Gastronomy is one of the oldest forms of commercial activity. It is currently one of the most popular and still dynamically developing branches of business. Socio-economic changes, its widespread occurrence, new techniques, or culinary styles affect the almost unlimited possibilities of its development. Importantly, regardless of the form of business adopted, food service is strongly related to logistics processes, and areas of food service that are closely linked to logistics are of strategic importance. Any inefficiency in logistics processes results in reduced chances for success and achieving competitive advantage by companies belonging to the catering industry. The aim of the paper is to identify the areas of logistic support occurring in the catering business, affecting the scope of the logistic processes implemented. The aim of the paper is realized through a plural homogeneous approach, based on: direct observation, text analysis of current documents, in-depth free targeted interviews.Keywords: gastronomy, competitive advantage, logistics, logistics support
Procedia PDF Downloads 168