Search results for: Long Short Term Memory
5571 The Influence of Gossip on the Absorption Probabilities in Moran Process
Authors: Jurica Hižak
Abstract:
Getting to know the agents, i.e., identifying the free riders in a population, can be considered one of the main challenges in establishing cooperation. An ordinary memory-one agent such as Tit-for-tat may learn “who is who” in the population through direct interactions. Past experiences serve them as a landmark to know with whom to cooperate and against whom to retaliate in the next encounter. However, this kind of learning is risky and expensive. A cheaper and less painful way to detect free riders may be achieved by gossiping. For this reason, as part of this research, a special type of Tit-for-tat agent was designed – a “Gossip-Tit-for-tat” agent that can share data with other agents of its kind. The performances of both strategies, ordinary Tit-for-tat and Gossip-Tit-for-tat, against Always-defect have been compared in the finite-game framework of the Iterated Prisoner’s Dilemma via the Moran process. Agents were able to move in a random-walk fashion, and they were programmed to play Prisoner’s Dilemma each time they met. Moreover, at each step, one randomly selected individual was eliminated, and one individual was reproduced in accordance with the Moran process of selection. In this way, the size of the population always remained the same. Agents were selected for reproduction via the roulette wheel rule, i.e., proportionally to the relative fitness of the strategy. The absorption probability was calculated after the population had been absorbed completely by cooperators, which means that all the states have been occupied and all of the transition probabilities have been determined. It was shown that gossip increases absorption probabilities and therefore enhances the evolution of cooperation in the population.Keywords: cooperation, gossip, indirect reciprocity, Moran process, prisoner’s dilemma, tit-for-tat
Procedia PDF Downloads 1005570 Understanding the Nature of Student Conceptions of Mathematics: A Study of Mathematics Students in Higher Education
Authors: Priscilla Eng Lian Murphy
Abstract:
This study examines the nature of student conceptions of mathematics in higher education using quantitative research methods. This study validates the Short Form of Conception of Mathematics survey as well as reveals the epistemological nature of student conceptions of mathematics. Using a random sample of mathematics students in Australia and New Zealand (N=274), this paper highlighted three key findings, of relevance to lecturers in higher education. Firstly, descriptive data shows that mathematics students in Australia and New Zealand reported that mathematics is about numbers and components, models and life. Secondly, models conceptions of mathematics predicted strong examination performances using regression analyses; and thirdly, there is a positive correlation between high mathematics examination scores and cohesive conceptions of mathematics.Keywords: higher education, learning mathematics, mathematics performances, student conceptions of mathematics
Procedia PDF Downloads 2685569 A Review on Predictive Sound Recognition System
Authors: Ajay Kadam, Ramesh Kagalkar
Abstract:
The proposed research objective is to add to a framework for programmed recognition of sound. In this framework the real errand is to distinguish any information sound stream investigate it & anticipate the likelihood of diverse sounds show up in it. To create and industrially conveyed an adaptable sound web crawler a flexible sound search engine. The calculation is clamor and contortion safe, computationally productive, and hugely adaptable, equipped for rapidly recognizing a short portion of sound stream caught through a phone microphone in the presence of frontal area voices and other predominant commotion, and through voice codec pressure, out of a database of over accessible tracks. The algorithm utilizes a combinatorial hashed time-recurrence group of stars examination of the sound, yielding ordinary properties, for example, transparency, in which numerous tracks combined may each be distinguished.Keywords: fingerprinting, pure tone, white noise, hash function
Procedia PDF Downloads 3275568 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing
Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar
Abstract:
The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.Keywords: hyperspectral, NDNI, nitrogen concentration, regression value
Procedia PDF Downloads 2995567 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial
Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra
Abstract:
Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke
Procedia PDF Downloads 2845566 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison
Authors: Laurent Thiry, Michel Hassenforder
Abstract:
This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.Keywords: data transformation, functional programming, information server, optimization
Procedia PDF Downloads 1625565 Comparison between the Performances of Different Boring Bars in the Internal Turning of Long Overhangs
Authors: Wallyson Thomas, Zsombor Fulop, Attila Szilagyi
Abstract:
Impact dampers are mainly used in the metal-mechanical industry in operations that generate too much vibration in the machining system. Internal turning processes become unstable during the machining of deep holes, in which the tool holder is used with long overhangs (high length-to-diameter ratios). The devices coupled with active dampers, are expensive and require the use of advanced electronics. On the other hand, passive impact dampers (PID – Particle Impact Dampers) are cheaper alternatives that are easier to adapt to the machine’s fixation system, once that, in this last case, a cavity filled with particles is simply added to the structure of the tool holder. The cavity dimensions and the diameter of the spheres are pre-determined. Thus, when passive dampers are employed during the machining process, the vibration is transferred from the tip of the tool to the structure of the boring bar, where it is absorbed by the fixation system. This work proposes to compare the behaviors of a conventional solid boring bar and a boring bar with a passive impact damper in turning while using the highest possible L/D (length-to-diameter ratio) of the tool and an Easy Fix fixation system (also called: Split Bushing Holding System). It is also intended to optimize the impact absorption parameters, as the filling percentage of the cavity and the diameter of the spheres. The test specimens were made of hardened material and machined in a Computer Numerical Control (CNC) lathe. The laboratory tests showed that when the cavity of the boring bar is totally filled with minimally spaced spheres of the largest diameter, the gain in absorption allowed of obtaining, with an L/D equal to 6, the same surface roughness obtained when using the solid boring bar with an L/D equal to 3.4. The use of the passive particle impact damper resulted in, therefore, increased static stiffness and reduced deflexion of the tool.Keywords: active damper, fixation system, hardened material, passive damper
Procedia PDF Downloads 2255564 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 775563 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix
Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin
Abstract:
Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization
Procedia PDF Downloads 2015562 Evaluating the Ability to Cycle in Cities Using Geographic Information Systems Tools: The Case Study of Greek Modern Cities
Authors: Christos Karolemeas, Avgi Vassi, Georgia Christodoulopoulou
Abstract:
Although the past decades, planning a cycle network became an inseparable part of all transportation plans, there is still a lot of room for improvement in the way planning is made, in order to create safe and direct cycling networks that gather the parameters that positively influence one's decision to cycle. The aim of this article is to study, evaluate and visualize the bikeability of cities. This term is often used as the 'the ability of a person to bike' but this study, however, adopts the term in the sense of bikeability as 'the ability of the urban landscape to be biked'. The methodology used included assessing cities' accessibility by cycling, based on international literature and corresponding walkability methods and the creation of a 'bikeability index'. Initially, a literature review was made to identify the factors that positively affect the use of bicycle infrastructure. Those factors were used in order to create the spatial index and quantitatively compare the city network. Finally, the bikeability index was applied in two case studies: two Greek municipalities that, although, they have similarities in terms of land uses, population density and traffic congestion, they are totally different in terms of geomorphology. The factors suggested by international literature were (a) safety, (b) directness, (c) comfort and (d) the quality of the urban environment. Those factors were quantified through the following parameters: slope, junction density, traffic density, traffic speed, natural environment, built environment, activities coverage, centrality and accessibility to public transport stations. Each road section was graded for the above-mentioned parameters, and the overall grade shows the level of bicycle accessibility (low, medium, high). Each parameter, as well as the overall accessibility levels, were analyzed and visualized through Geographic Information Systems. This paper presents the bikeability index, its' results, the problems that have arisen and the conclusions from its' implementation through Strengths-Weaknesses-Opportunities-Threats analysis. The purpose of this index is to make it easy for researchers, practitioners, politicians, and stakeholders to quantify, visualize and understand which parts of the urban fabric are suitable for cycling.Keywords: accessibility, cycling, green spaces, spatial data, urban environment
Procedia PDF Downloads 1145561 Diversity of Rhopalocera in Different Vegetation Types of PC Hills, Philippines
Authors: Sean E. Gregory P. Igano, Ranz Brendan D. Gabor, Baron Arthur M. Cabalona, Numeriano Amer E. Gutierrez
Abstract:
Distribution patterns and abundance of butterflies respond in the long term to variations in habitat quality. Studying butterfly populations would give evidence on how vegetation types influence their diversity. In this research, the Rhopalocera diversity of PC Hills was assessed to provide information on diversity trends in varying vegetation types. PC Hills, located in Palo, Leyte, Philippines, is a relatively undisturbed area having forests and rivers. Despite being situated nearby inhabited villages; the area is observed to have a possible rich butterfly population. To assess the Rhopalocera species richness and diversity, transect sampling technique was applied to monitor and document butterflies. Transects were placed in locations that can be mapped, described and relocated easily. Three transects measuring three hundred meters each with a 5-meter diameter were established based on the different vegetation types present. The three main vegetation types identified were the agroecosystem (transect 1), dipterocarp forest (transect 2), and riparian (transect 3). Sample collections were done only from 9:00 A.M to 3:00 P.M. under warm and bright weather, with no more than moderate winds and when it was not raining. When weather conditions did not permit collection, it was moved to another day. A GPS receiver was used to record the location of the selected sample sites and the coordinates of where each sample was collected. Morphological analysis was done for the first phase of the study to identify the voucher specimen to the lowest taxonomic level possible using books about butterfly identification guides and species lists as references. For the second phase, DNA barcoding will be used to further identify the voucher specimen into the species taxonomic level. After eight (8) sampling sessions, seven hundred forty-two (742) individuals were seen, and twenty-two (22) Rhopalocera genera were identified through morphological identification. Nymphalidae family of genus Ypthima and the Pieridae family of genera Eurema and Leptosia were the most dominant species observed. Twenty (20) of the thirty-one (31) voucher specimen were already identified to their species taxonomic level using DNA Barcoding. Shannon-Weiner index showed that the highest diversity level was observed in the third transect (H’ = 2.947), followed by the second transect (H’ = 2.6317) and the lowest being in the first transect (H’ = 1.767). This indicates that butterflies are likely to inhabit dipterocarp and riparian vegetation types than agroecosystem, which influences their species composition and diversity. Moreover, the appearance of a river in the riparian vegetation supported its diversity value since butterflies have the tendency to fly into areas near rivers. Species identification of other voucher specimen will be done in order to compute the overall species richness in PC Hills. Further butterfly sampling sessions of PC Hills is recommended for a more reliable diversity trend and to discover more butterfly species. Expanding the research by assessing the Rhopalocera diversity in other locations should be considered along with studying factors that affect butterfly species composition other than vegetation types.Keywords: distribution patterns, DNA barcoding, morphological analysis, Rhopalocera
Procedia PDF Downloads 1575560 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review
Authors: Hanan Algarni
Abstract:
Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.Keywords: virtual reality, treadmill, stroke, gait rehabilitation
Procedia PDF Downloads 2775559 Focus on the Bactericidal Efficacies of Alkaline Agents in Solid and the Required Time for Bacterial Inactivation
Authors: Hakimullah Hakim, Chiharu Toyofuku, Mari Ota, Mayuko Suzuki, Miyuki Komura, Masashi Yamada, Md. Shahin Alam, Natthanan Sangsriratanakul, Dany Shoham, Kazuaki Takehara
Abstract:
Disinfectants and their application are essential part of infection control strategies and enhancement of biosecurity at farms, worldwide. Alkaline agents are well known for their strong and long term antimicrobial capacities and most frequently are applied at farms for control and prevention of biological hazards. However, inadequate information regarding such materials’ capacities to inactivate pathogens and their improper applications fail farmers to achieve the mentioned goal. Thus, this requires attention to further evaluate their efficacies, under different conditions and in different ways. Here in this study we evaluated bactericidal efficacies of food additive grade of calcium hydroxide (FdCa(OH)2) powder derived from natural calcium carbonates obtained from limestone (Fine Co., Ltd., Tokyo, Japan), and bioceramic powder (BCX) derived from chicken feces at pH 13 (NMG environmental development Co., Ltd., Tokyo, Japan), for their efficacies to inactivate bacteria in feces. [Materials & Methods] Chicken feces were inoculated by 100 µl Escherichia coli and Salmonella Infantis in falcon tubes, individually, then FdCa(OH)2 or BCX powders were individually added to make final concentration of 0, 5, 10, 20 and 30% (w/w) in total weight of 0.5g, followed by properly mixing and incubating at room temperature for certain periods of time, in a dark place. Afterwards, 10 ml 1M Tris-HCl (pH 7.2) was added onto them to reduce their pH, in order to stop powders’ activities and to harvest the remained viable bacteria, whereas using normal medium or dW2 to recover bacteria increases the mixture pH, and as a result bacteria would be inactivated soon; therefore, the latter practice brings about incorrect and misleading results. Samples were then inoculated on DHL agar plates in order to calculate colony forming units (CFU)/ml of viable bacteria. [Results and Discussion] FdCa(OH)2 powder at 10% and 5% required 3 hr and 6 hr exposure times, respectively, while BCX powder at 20% concentrations required 6 hr exposure time to kill the mentioned bacteria in feces down to lower than detectable level (≤ 3.6 log10 CFU/ml). This study confirmed capacities of FdCa(OH)2 and BCX powders to inactivate bacteria in feces, and both materials are environment friendly materials, with no risk to human or animal’s health. This finding helps farmers to properly apply alkaline agents in appropriate concentrations and exposure times in their farms, in order to prevent and control infectious diseases outbreaks and to enhance biosecurity. Finally, this finding may help farmers to implement better strategies for infections control in their livestock farms.Keywords: bacterial inactivation, bioceramic, biosecurity at livestock farms, chicken feces
Procedia PDF Downloads 4425558 The Role of Structural Poverty in the Know-How and Moral Economy of Doctors in Africa: An Anthropological Perspective
Authors: Isabelle Gobatto
Abstract:
Based on an anthropological approach, this paper explores the medical profession and the construction of medical practices by considering the multiform articulations between structural poverty and the production of care from a low-resource francophone West African country, Burkina Faso. This country is considered in its exemplary dimension of culturally differentiated countries of the African continent that share the same situation of structural poverty. The objective is to expose the effects of structural poverty on the ways of constructing professional knowledge and thinking about the sense of the medical profession. If doctors are trained to have the same capacities in South and West countries, which are to treat and save lives whatever the cultural contexts of the practice of medicine, the ways of investing their role and of dealing with this context of action fracture the homogenization of the medical profession. In the line of anthropology of biomedicine, this paper outlines the complex effects of structural poverty on health care, care relations, and the moral economy of doctors. The materials analyzed are based on an ethnography including two temporalities located thirty years apart (1990-1994 and 2020-2021), based on long-term observations of care practices conducted in healthcare institutions, interviews coupled with the life histories of physicians. The findings reveal that disabilities faced by doctors to deliver care are interpreted as policy gaps, but they are also considered by physicians as constitutive of the social and cultural characteristics of patients, making their capacities and incapacities in terms of accompanying caregivers in the production of care. These perceptions have effects on know-how, structured around the need to act even when diagnoses are not made so as not to see patients desert health structures if the costs of care are too high for them. But these interpretations of highly individualizing dimensions of these difficulties place part of the blame on patients for the difficulties in using learned knowledge and delivering effective care. These situations challenge the ethics of caregivers but also of ethnologists. Firstly because the interpretations of disabilities prevent caregivers from considering vulnerabilities of care as constituting a common condition shared with their patients in these health systems, affecting them in an identical way although in different places in the production of care. Correlatively, these results underline that these professional conceptions prevent the emergence of a figure of victim, which could be shared between patients and caregivers who, together, undergo working and care conditions at the limit of the acceptable. This dimension directly involves politics. Secondly, structural poverty and its effects on care challenge the ethics of the anthropologist who observes caregivers producing, without intent to arm, experiences of care marked by an ordinary violence, by not giving them the care they need. It is worth asking how anthropologists could get doctors to think in this light in west-African societies.Keywords: Africa, care, ethics, poverty
Procedia PDF Downloads 745557 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory
Authors: Xiaochen Mu
Abstract:
Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.Keywords: data protection, property rights, intellectual property, Big data
Procedia PDF Downloads 455556 Direct Drive Double Fed Wind Generator
Authors: Vlado Ostovic
Abstract:
An electric machine topology characterized by single tooth winding in both stator and rotor is presented. The proposed machine is capable of operating as a direct drive double fed wind generator (DDDF, D3F) because it requires no gearbox and only a reduced-size converter. A wind turbine drive built around a D3F generator is cheaper to manufacture, requires less maintenance, and has a higher energy yield than its conventional counterparts. The single tooth wound generator of a D3F turbine has superb volume utilization and lower stator I2R losses due to its extremely short-end windings. Both stator and rotor of a D3F generator can be manufactured in segments, which simplifies its assembly and transportation to the site, and makes production cheaper.Keywords: direct drive, double fed generator, gearbox, permanent magnet generators, single tooth winding, wind power
Procedia PDF Downloads 1955555 OpenMP Parallelization of Three-Dimensional Magnetohydrodynamic Code FOI-PERFECT
Authors: Jiao F. Huang, Shi Chen, Shu C. Duan, Gang H. Wang
Abstract:
Due to its complex spatial structure as well as dynamic temporal evolution, an analytic solution of an X-pinch process is out of question, and numerical simulation becomes an important tool in X-pinch studies. Intrinsically, simulations of X-pinch are three-dimensional (3D) because of the specific structure of its load. Furthermore, in order to resolve both its μm-scales and ns-durations, fine spatial mesh grid and short time steps are usually adopted. The resulting large computational scales make the parallelization of codes a vital problem to be solved if any practical simulations are to be carried out. In this work, we report OpenMP parallelization of our 3D magnetohydrodynamic (MHD) code FOI-PERFECT. Results of test runs confirm that computational efficiency has been improved after parallelization, and both the sequential and parallel versions give the same physical results under the same initial conditions.Keywords: MHD simulation, OpenMP, parallelization, X-pinch
Procedia PDF Downloads 3435554 Examining the Importance of the Structure Based on Grid Computing Service and Virtual Organizations
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Vast changes and developments achieved in information technology field in recent decades have made the review of different issues such as organizational structures unavoidable. Applying informative technologies such as internet and also vast use of computer and related networks have led to new organizational formations with a nature completely different from the traditional, great and bureaucratic ones; some common specifications of such organizations are transfer of the affairs out of the organization, benefiting from informative and communicative networks and centered-science workers. Such communicative necessities have led to network sciences development including grid computing. First, the grid computing was only to relate some sites for short – time and use their sources simultaneously, but now it has gone beyond such idea. In this article, the grid computing technology was examined, and at the same time, virtual organization concept was discussed.Keywords: grid computing, virtual organizations, software engineering, organization
Procedia PDF Downloads 3385553 Improving the Liquid Insulation Performance with Antioxidants
Authors: Helan Gethse J., Dhanya K., Muthuselvi G., Diana Hyden N., Samuel Pakianathan P.
Abstract:
Transformer oil is mostly used to keep the transformer cool. It functions as a cooling agent. Mineral oil has long been used in transformers. Mineral oil has a high dielectric strength, which allows it to withstand high temperatures. Mineral oil's main disadvantage is that it is not environmentally friendly and can be dangerous to the environment. The features of breakdown voltage (BDV), viscosity, flash point, and fire point are measured and reported in this study, and the characteristics of olive oil are compared to the characteristics of mineral oil.Keywords: antioxidants, transformer oil, mineral oil, olive oil
Procedia PDF Downloads 1565552 The Influence of Newest Generation Butyrate Combined with Acids, Medium Chain Fatty Acids and Plant Extract on the Performance and Physiological State of Laying Hens
Authors: Vilma Sasyte, Vilma Viliene, Asta Raceviciute-Stupeliene, Agila Dauksiene, Romas Gruzauskas, Virginijus Slausgalvis, Jamal Al-Saifi
Abstract:
The aim of the present study was to investigate the effect of butyrate, acids, medium-chain fatty acids and plant extract mixture on performance, blood and gastrointestinal tract characteristics of laying hens’. For the period of 8 weeks, 24 Hisex Brown laying hens were randomly assigned to 2 dietary treatments: 1) control wheat-corn-soybean meal based diet (Control group), 2) control diet supplemented with the mixture of butyrate, acids, medium chain fatty acids and plant extract (Lumance®) at the level of 1.5 g/kg of feed (Experimental group). Hens were fed with a crumbled diet at 125 g per day. Housing and feeding conditions were the same for all groups and met the requirements of growth for laying hens of Hisex Brown strain. In the blood serum total protein, bilirubin, cholesterol, DTL- and MTL- cholesterol, triglycerides, glucose, GGT, GOT, GPT, alkaline phosphatase, alpha amylase, contents of c-reactive protein, uric acid, and lipase were analyzed. Development of intestines and internal organs (intestinal length, intestinal weight, the weight of glandular and muscular stomach, pancreas, heart, and liver) were determined. The concentration of short chain fatty acids in caecal content was measured using the method of HPLC. The results of the present study showed that 1.5 g/kg supplementation of feed additive affected egg production and feed conversion ratio for the production of 1 kg of egg mass. Dietary supplementation of analyzed additive in the diets increased the concentration of triglycerides, GOT, alkaline phosphatase and decreased uric acid content compared with the control group (P<0.05). No significant difference for others blood indices in comparison to the control was observed. The addition of feed additives in laying hens’ diets increased intestinal weight by 11% and liver weight by 14% compared with the control group (P<0.05). The short chain fatty acids (propionic, acetic and butyric acids) in the caecum of laying hens in experimental groups decreased compared with the control group. The supplementation of the mixture of butyrate, acids, medium-chain fatty acids and plant extract at the level of 1.5 g/kg in the laying hens’ diets had the effect on the performance, some gastrointestinal tract function and blood parameters of laying hens.Keywords: acids, butyrate, laying hens, MCFA, performance, plant extract, psysiological state
Procedia PDF Downloads 2995551 Incorporation of Copper for Performance Enhancement in Metal-Oxides Resistive Switching Device and Its Potential Electronic Application
Authors: B. Pavan Kumar Reddy, P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu
Abstract:
In this work, the fabrication and characterization of copper-doped zinc oxide (Cu:ZnO) based memristor devices with aluminum (Al) and indium tin oxide (ITO) metal electrodes are reported. The thin films of Cu:ZnO was synthesized using low-cost and low-temperature chemical process. The Cu:ZnO was then deposited onto ITO bottom electrodes using spin-coater technique, whereas the top electrode Al was deposited utilizing physical vapor evaporation technique. Ellipsometer was employed in order to measure the Cu:ZnO thickness and it was found to be 50 nm. Several surface and materials characterization techniques were used to study the thin-film properties of Cu:ZnO. To ascertain the efficacy of Cu:ZnO for memristor applications, electrical characterizations such as current-voltage (I-V), data retention and endurance were obtained, all being the critical parameters for next-generation memory. The I-V characteristic exhibits switching behavior with asymmetrical hysteresis loops. This work imputes the resistance switching to the positional drift of oxygen vacancies associated with respect to the Al/Cu:ZnO junction. Further, a non-linear curve fitting regression techniques were utilized to determine the equivalent circuit for the fabricated Cu:ZnO memristors. Efforts were also devoted in order to establish its potentiality for different electronic applications.Keywords: copper doped, metal-oxides, oxygen vacancies, resistive switching
Procedia PDF Downloads 1635550 Designing and Simulation of the Rotor and Hub of the Unmanned Helicopter
Authors: Zbigniew Czyz, Ksenia Siadkowska, Krzysztof Skiba, Karol Scislowski
Abstract:
Today’s progress in the rotorcraft is mostly associated with an optimization of aircraft performance achieved by active and passive modifications of main rotor assemblies and a tail propeller. The key task is to improve their performance, improve the hover quality factor for rotors but not change in specific fuel consumption. One of the tasks to improve the helicopter is an active optimization of the main rotor providing for flight stages, i.e., an ascend, flight, a descend. An active interference with the airflow around the rotor blade section can significantly change characteristics of the aerodynamic airfoil. The efficiency of actuator systems modifying aerodynamic coefficients in the current solutions is relatively high and significantly affects the increase in strength. The solution to actively change aerodynamic characteristics assumes a periodic change of geometric features of blades depending on flight stages. Changing geometric parameters of blade warping enables an optimization of main rotor performance depending on helicopter flight stages. Structurally, an adaptation of shape memory alloys does not significantly affect rotor blade fatigue strength, which contributes to reduce costs associated with an adaptation of the system to the existing blades, and gains from a better performance can easily amortize such a modification and improve profitability of such a structure. In order to obtain quantitative and qualitative data to solve this research problem, a number of numerical analyses have been necessary. The main problem is a selection of design parameters of the main rotor and a preliminary optimization of its performance to improve the hover quality factor for rotors. This design concept assumes a three-bladed main rotor with a chord of 0.07 m and radius R = 1 m. The value of rotor speed is a calculated parameter of an optimization function. To specify the initial distribution of geometric warping, a special software has been created that uses a numerical method of a blade element which respects dynamic design features such as fluctuations of a blade in its joints. A number of performance analyses as a function of rotor speed, forward speed, and altitude have been performed. The calculations were carried out for the full model assembly. This approach makes it possible to observe the behavior of components and their mutual interaction resulting from the forces. The key element of each rotor is the shaft, hub and pins holding the joints and blade yokes. These components are exposed to the highest loads. As a result of the analysis, the safety factor was determined at the level of k > 1.5, which gives grounds to obtain certification for the strength of the structure. The construction of the joint rotor has numerous moving elements in its structure. Despite the high safety factor, the places with the highest stresses, where the signs of wear and tear may appear, have been indicated. The numerical analysis carried out showed that the most loaded element is the pin connecting the modular bearing of the blade yoke with the element of the horizontal oscillation joint. The stresses in this element result in a safety factor of k=1.7. The other analysed rotor components have a safety factor of more than 2 and in the case of the shaft, this factor is more than 3. However, it must be remembered that the structure is as strong as the weakest cell is. Designed rotor for unmanned aerial vehicles adapted to work with blades with intelligent materials in its structure meets the requirements for certification testing. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: main rotor, rotorcraft aerodynamics, shape memory alloy, materials, unmanned helicopter
Procedia PDF Downloads 1625549 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip
Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas
Abstract:
A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration
Procedia PDF Downloads 3915548 Biologically Synthesized Palladium Nanoparticles Impregnated Porous Aluminium Catalyst in CO2 Detection
Authors: I. B. Patel, K. A. Mistry, A. H. Prajapati
Abstract:
Biologically synthesized colloidal Pd nanoparticles were impregnated on porous aluminium. In this paper, the obtained Pd/Al2O3 catalysts were characterized by XRD, SEM, and TEM. The effects of deposited films on the performances of Pd/Al2O3 in adsorption, reduction, and catalytic reaction of CO2 were investigated. The results showed that the deposited films can remarkably improve the dispersion of active components and enhance the reactivity of Pd/Al2O3 catalyst. The catalytic performance of Pd/Al2O3 in term of surface reaction is also enhanced in terms of sensitivity (SF = 850) obtained through conventional CBD method.Keywords: palladium nanoparticles, Pd/Al2O3, carbon dioxide, aluminium catalyst
Procedia PDF Downloads 4485547 Resilience and Urban Transformation: A Review of Recent Interventions in Europe and Turkey
Authors: Bilge Ozel
Abstract:
Cities are high-complex living organisms and are subjects to continuous transformations produced by the stress that derives from changing conditions. Today the metropolises are seen like “development engines” of the countries and accordingly they become the centre of better living conditions that encourages demographic growth which constitutes the main reason of the changes. Indeed, the potential for economic advancement of the cities directly represents the economic status of their countries. The term of “resilience”, which sees the changes as natural processes and represents the flexibility and adaptability of the systems in the face of changing conditions, becomes a key concept for the development of urban transformation policies. The term of “resilience” derives from the Latin word ‘resilire’, which means ‘bounce’, ‘jump back’, refers to the ability of a system to withstand shocks and still maintain the basic characteristics. A resilient system does not only survive the potential risks and threats but also takes advantage of the positive outcomes of the perturbations and ensures adaptation to the new external conditions. When this understanding is taken into the urban context - or rather “urban resilience” - it delineates the capacity of cities to anticipate upcoming shocks and changes without undergoing major alterations in its functional, physical, socio-economic systems. Undoubtedly, the issue of coordinating the urban systems in a “resilient” form is a multidisciplinary and complex process as the cities are multi-layered and dynamic structures. The concept of “urban transformation” is first launched in Europe just after World War II. It has been applied through different methods such as renovation, revitalization, improvement and gentrification. These methods have been in continuous advancement by acquiring new meanings and trends over years. With the effects of neoliberal policies in the 1980s, the concept of urban transformation has been associated with economic objectives. Subsequently this understanding has been improved over time and had new orientations such as providing more social justice and environmental sustainability. The aim of this research is to identify the most applied urban transformation methods in Turkey and its main reasons of being selected. Moreover, investigating the lacking and limiting points of the urban transformation policies in the context of “urban resilience” in a comparative way with European interventions. The emblematic examples, which symbolize the breaking points of the recent evolution of urban transformation concepts in Europe and Turkey, are chosen and reviewed in a critical way.Keywords: resilience, urban dynamics, urban resilience, urban transformation
Procedia PDF Downloads 2675546 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization
Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey
Abstract:
Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).Keywords: drying time, pretreatment, response surface methodlogy, total phenolic
Procedia PDF Downloads 1425545 Masstige and the New Luxury: An Exploratory Study on Cosmetic Brands Among Black African Woman
Authors: Melanie Girdharilall, Anjli Himraj, Shivan Bhagwandin, Marike Venter De Villiers
Abstract:
The allure of luxury has long been attractive, fashionable, mystifying, and complex. As globalisation and the popularity of social media continue to evolve, consumers are seeking status products. However, in emerging economies like South Africa, where 60% of the country lives in poverty, this desire is often far-fetched and out of reach to most of the consumers. As a result, luxury brands are introducing masstige products: products that are associated with luxury and status but within financial reach to the middle-class consumer. The biggest challenge that this industry faces is the lack of knowledge and expertise on black female’s hair composition and offering products that meet their intricate requirements. African consumers have unique hair types, and global brands often do not accommodate for the complex nature of their hair and their product needs. By gaining insight into this phenomenon, global cosmetic brands can benefit from brand expansion, product extensions, increased brand awareness, brand knowledge, and brand equity. The purpose of this study is to determine how cosmetic brands can leverage the concept of masstige products to cater to the needs of middle-income black African woman. This study explores the 18- to 35-year-old black female cohort, which comprises approximately 17% of the South African population. The black hair care industry in Africa is expected a 6% growth rate over the next 5 years. The study is grounded in Paul’s (2019) 3-phase model for masstige marketing. This model demonstrates that product, promotion, and place strategies play a significant role in masstige value creation and the impact of these strategies on the branding dimensions (brand trust, brand association, brand positioning, brand preference, etc.).More specifically, this theoretical framework encompasses nine stages, or dimensions, that are of critical importance to companies who plan to infiltrate the masstige market. In short, the most critical components to consider are the positioning of the product and its competitive advantage in comparison to competitors. Secondly, advertising appeals and use of celebrities, and lastly, distribution channels such as online or in-store while maintain the exclusivity of the brand. By means of an exploratory study, a qualitative approach was undertaken, and focus groups were conducted among black African woman. The focus groups were voice recorded, transcribed, and analysed using Atlas software. The main themes were identified and used to provide brands with insight and direction for developing a comprehensive marketing mix for effectively entering the masstige market. The findings of this study will provide marketing practitioners with in-depth insight into how to effectively position masstige brands in line with consumer needs. It will give direction to both existing and new brands aiming to enter this market, by giving a comprehensive marketing mix for targeting the growing black hair care industry in Africa.Keywords: africa, masstige, cosmetics, hard care, black females
Procedia PDF Downloads 915544 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 3155543 Aircraft Pitch Attitude Control Using Backstepping
Authors: Labane Chrif
Abstract:
A nonlinear approach to the automatic pitch attitude control problem for aircraft transportation is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. The controller is evaluated using the aircraft transportation. The adaptation scheme proposed allowed us to design an explicit controller with a minimal knowledge of the aircraft aerodynamics. Finally, the simulation results will show that backstepping controller have better dynamic performance, simpler design, higher precision, easier implement, etc. At the same time, the control effect will be significantly improved. In addition, backstepping control is superior in short transition, good stability, anti-disturbance and good control.Keywords: nonlinear control, backstepping, aircraft control, Lyapunov function, longitudinal model
Procedia PDF Downloads 5845542 Effect of Plasma Discharge Power on Activation Energies of Plasma Poly(Ethylene Oxide) Thin Films
Authors: Sahin Yakut, H. Kemal Ulutas, Deniz Deger
Abstract:
Plasma Assisted Physical Vapor Deposition (PAPVD) method used to produce Poly(ethylene oxide) (pPEO) thin films. Depositions were progressed at various plasma discharge powers as 0, 2, 5 and 30 W for pPEO at 500nm film thicknesses. The capacitance and dielectric dissipation of the thin films were measured at 0,1-107 Hz frequency range and 173-353 K temperature range by an impedance analyzer. Then, alternative conductivity (σac) and activation energies were derived from capacitance and dielectric dissipation. σac of conventional PEO (PEO precursor) was measured to determine the effect of plasma discharge. Differences were observed between the alternative conductivity of PEO’s and pPEO’s depending on plasma discharge power. By this purpose, structural characterization techniques such as Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied on pPEO thin films. Structural analysis showed that density of crosslinking is plasma power dependent. The crosslinking density increases with increasing plasma discharge power and this increase is displayed as increasing dynamic glass transition temperatures at DSC results. Also, shifting of frequencies of some type of bond vibrations, belonging to bond vibrations produced after fragmentation because of plasma discharge, were observed at FTIR results. The dynamic glass transition temperatures obtained from alternative conductivity results for pPEO consistent with the results of DSC. Activation energies exhibit Arrhenius behavior. Activation energies decrease with increasing plasma discharge power. This behavior supports the suggestion expressing that long polymer chains and long oligomers are fragmented into smaller oligomers or radicals.Keywords: activation energy, dielectric spectroscopy, organic thin films, plasma polymer
Procedia PDF Downloads 303