Search results for: substrate concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5889

Search results for: substrate concentration

1329 Spatio-temporal Variations in Heavy Metal Concentrations in Sediment of Qua Iboe River Estuary, Nigeria

Authors: Justina I. R. Udotong, Ime R. Udotong, Offiong U. Eka

Abstract:

The concentrations of heavy metals in sediments of Qua Iboe River Estuary (QIRE) were monitored at four different sampling locations in wet and dry seasons. A preliminary survey to determine the four sampling stations along the river continuum showed that the area spanned between < 0.1% salinity at the control station and 21.5‰ at the fourth station along the river continuum. A preliminary survey to determine the four sampling locations along the river estuary showed variations in salinity and other physicochemical parameters. The estuary was found to be polluted with heavy metals from point and nonpoint sources at varying degrees. Mean values of 7.80 mg/kg, 4.97 mg/kg and 2.80 mg/kg of nickel were obtained for sediment samples from Douglas creek, Qua Iboe and Atlantic sampling locations, respectively in the dry season. The wet season nickel concentrations were however lower. The entire study area was grossly contaminated by iron. At Douglas creek, the concentration of iron in sediment was 9274 ± 9.54 mg/kg while copper, nickel, lead and vanadium were <0.5 mg/kg each as compared to iron. Bioaccumulation was therefore suspected within the study area as values of 31.00 ± 0.79, 36.00 ± 0.10 and 55.00 ± 0.05 mg/kg of zinc were recorded in sediment at Douglas creek, Atlantic and the control sampling locations. The results from this study showed that the source of these heavy metals were from point sources like the corrosion of metal steel pipes from old bridges as well as oily sludge wastes from the Qua Iboe Terminal / tank farm located within the vicinity of the study area.

Keywords: heavy metal, Qua Iboe River estuary, seasonal variations, Sediment

Procedia PDF Downloads 371
1328 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique

Authors: Dibakar Chakrabarty, Mebada Suiting

Abstract:

Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.

Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM

Procedia PDF Downloads 250
1327 Impact of Curvatures in the Dike Line on Wave Run-up and Wave Overtopping, ConDike-Project

Authors: Malte Schilling, Mahmoud M. Rabah, Sven Liebisch

Abstract:

Wave run-up and overtopping are the relevant parameters for the dimensioning of the crest height of dikes. Various experimental as well as numerical studies have investigated these parameters under different boundary conditions (e.g. wave conditions, structure type). Particularly for the dike design in Europe, a common approach is formulated where wave and structure properties are parameterized. However, this approach assumes equal run-up heights and overtopping discharges along the longitudinal axis. However, convex dikes have a heterogeneous crest by definition. Hence, local differences in a convex dike line are expected to cause wave-structure interactions different to a straight dike. This study aims to assess both run-up and overtopping at convexly curved dikes. To cast light on the relevance of curved dikes for the design approach mentioned above, physical model tests were conducted in a 3D wave basin of the Ludwig-Franzius-Institute Hannover. A dike of a slope of 1:6 (height over length) was tested under both regular waves and TMA wave spectra. Significant wave heights ranged from 7 to 10 cm and peak periods from 1.06 to 1.79 s. Both run-up and overtopping was assessed behind the curved and straight sections of the dike. Both measurements were compared to a dike with a straight line. It was observed that convex curvatures in the longitudinal dike line cause a redirection of incident waves leading to a concentration around the center point. Measurements prove that both run-up heights and overtopping rates are higher than on the straight dike. It can be concluded that deviations from a straight longitudinal dike line have an impact on design parameters and imply uncertainties within the design approach in force. Therefore, it is recommended to consider these influencing factors for such cases.

Keywords: convex dike, longitudinal curvature, overtopping, run-up

Procedia PDF Downloads 293
1326 Topology Optimization of Heat Exchanger Manifolds for Aircraft

Authors: Hanjong Kim, Changwan Han, Seonghun Park

Abstract:

Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.

Keywords: topology optimization, manifold, heat exchanger, 3D printing

Procedia PDF Downloads 250
1325 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear

Procedia PDF Downloads 351
1324 Quantification of Hydrogen Sulfide and Methyl Mercaptan in Air Samples from a Waste Management Facilities

Authors: R. F. Vieira, S. A. Figueiredo, O. M. Freitas, V. F. Domingues, C. Delerue-Matos

Abstract:

The presence of sulphur compounds like hydrogen sulphide and mercaptans is one of the reasons for waste-water treatment and waste management being associated with odour emissions. In this context having a quantifying method for these compounds helps in the optimization of treatment with the goal of their elimination, namely biofiltration processes. The aim of this study was the development of a method for quantification of odorous gases in waste treatment plants air samples. A method based on head space solid phase microextraction (HS-SPME) coupled with gas chromatography - flame photometric detector (GC-FPD) was used to analyse H2S and Metil Mercaptan (MM). The extraction was carried out with a 75-μm Carboxen-polydimethylsiloxane fiber coating at 22 ºC for 20 min, and analysed by a GC 2010 Plus A from Shimadzu with a sulphur filter detector: splitless mode (0.3 min), the column temperature program was from 60 ºC, increased by 15 ºC/min to 100 ºC (2 min). The injector temperature was held at 250 ºC, and the detector at 260 ºC. For calibration curve a gas diluter equipment (digital Hovagas G2 - Multi Component Gas Mixer) was used to do the standards. This unit had two input connections, one for a stream of the dilute gas and another for a stream of nitrogen and an output connected to a glass bulb. A 40 ppm H2S and a 50 ppm MM cylinders were used. The equipment was programmed to the selected concentration, and it automatically carried out the dilution to the glass bulb. The mixture was left flowing through the glass bulb for 5 min and then the extremities were closed. This method allowed the calibration between 1-20 ppm for H2S and 0.02-0.1 ppm and 1-3.5 ppm for MM. Several quantifications of air samples from inlet and outlet of a biofilter operating in a waste management facility in the north of Portugal allowed the evaluation the biofilters performance.

Keywords: biofiltration, hydrogen sulphide, mercaptans, quantification

Procedia PDF Downloads 477
1323 Potential of Pyrolytic Tire Char Use in Agriculture

Authors: M. L. Moyo

Abstract:

Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.

Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.

Procedia PDF Downloads 122
1322 Insecticidal Activity of Piper aduncum Fruit and Tephrosia vogelii Leaf Mixed Formulations against Cabbage Pest Plutella xylostella (L.) (Lepidoptera: Plutellidae)

Authors: Eka Candra Lina, Indah Widhianingrum, Mita Eka Putri, Nur Afni Evalia, Muhammad Makky

Abstract:

The emulsifiable concentrate (EC) and wettable powder (WP) of Piper aduncum and Tephrosia vogelii mixed formulations were tested for their activities in the laboratory and their effectiveness in the field against cabbage pest Plutella xyostella. Cabbage leaves soaked in six different mixed formulation concentrations were tested to 2ⁿᵈ instar larvae of P. xylostella with six replications. The observation was conducted everyday until larvae reached 4ᵗʰ instar stage. Correlation between concentration and larvae mortality was analyzed using probit (POLO-PC). The survived larvae was observed by looking at the growth and development, as well as the antifeedant effects. Field efficacy test was based on LC₉₅ value from laboratory test result. The experiment used a randomized block design with 5 treatments and 3 replications to test the populations of P. xylostella larvae and insecticide effectivity. The results showed that the EC and WP mixed formulations showed insecticidal activity against P. xylostella larvae, with LC₉₅ value of 0.35% and 0.37%, respectively. The highest antifeedant effect on EC mixed formulation was 85.01% and WP mixed formulation was 86.23%. Both mixed formulations also slowed the development of larvae when compared with control. Field effication result showed that applications of EC mixed formulation were able to restrain the population of P. xylostella, with effectivity value of 71.06%. Insecticide effectivity value of EC mixed formulation was higher than WP mixed formulation and Bacillus thuringiensis formulation.

Keywords: botanical insecticide, efficacy, emulsifiable concentrate (EC), Plutella xylostella, wettable powder (WP)

Procedia PDF Downloads 244
1321 Mercury (Hg) Concentration in Fish Marketed in the São Luís Fish Market (MA) and Potential Exposure of Consumers

Authors: Luiz Drude de Lacerda, Kevin Luiz Cordeiro Ferrer do Carmo, Victor Lacerda Moura, Rayone Wesley Santos de Oliveira, Moisés Fernandes Bezerra

Abstract:

Fish is a food source well recognized for its health benefits. However, the consumption of fish, especially carnivorous species, is the main path of human exposure to Hg, a widely distributed pollutant on the planet and that accumulates along food chains. Studies on the impacts on public health by fish intake show existing toxic risks even when at low concentrations. This study quantifies, for the first time, the concentrations of Hg in muscle tissue of the nine most commercialized fish species in the fish market of São Luís (MA) in north Brazil and estimates the consequent human exposure through consumption. Concentrations varied according to trophic level, with the highest found in the larger carnivorous species; the Yellow hake (Cynoscion acoupa) (296.4 ± 241.2 ng/g w.w) and the Atlantic croaker (Micropogonias undulatus) (262.8 ± 89.1 ng/g w.w.), whereas the lowest concentrations were recorded in iliophagous Mullets (Mugil curema) (20.5 ± 9.6 ng/g w.w.). Significant correlations were observed between Hg concentrations and individual length in only two species: the Flaming catfish (Bagre marinus) and the Atlantic bumper (Chloroscombrus crysurus). Given the relatively uniform size of individuals of the other species and/or the small number of samples, this relationship was not found for the other species. The estimated risk coefficients, despite the relatively low concentrations of Hg, suggest that yellow hake and Whitemouth croaker (Micropogonias furnieri), fish most consumed by the local population, present some risk to human health (> 1) HQ and THQ, depending on the frequency of their consumption.

Keywords: contamination, fish, human exposure, risk assessment

Procedia PDF Downloads 114
1320 Depletion Behavior of Potassium by Continuous Cropping Using Rice as a Test Crop

Authors: Rafeza Begum, Mohammad Mokhlesur Rahman, Safikul Moula, Rafiqul Islam

Abstract:

Potassium (K) is crucial for healthy soil and plant growth. However, K fertilization is either disregarded or poorly underutilized in Bangladesh agriculture, despite the great demand for crops. This could eventually result in a significant depletion of the soil's potassium reserves, irreversible alteration of the minerals that contain potassium, and detrimental effects on crop productivity. Soil K mining in Bangladesh is a worrying problem, and we need to evaluate it thoroughly and find remedies. A pot culture experiment was conducted in the greenhouse of Bangladesh Institute of Nuclear Agriculture (BINA) using eleven soil series of Bangladesh in order to see the depletion behaviour of potassium (K) by continuous cropping using rice (var. Iratom-24) as the test crop. The soil series were Ranishankhail, Kaonia. Sonatala, Silmondi, Gopalpur, Ishurdi, Sara, Kongsha, Nunni, Lauta and Amnura on which four successive rice plants (45 days duration) were raised with (100 ppm K) or without addition of potassium. Nitrogen, phosphorus, sulfur and zinc were applied as basal to all pots. Potassium application resulted in higher dry matter yield, increased K concentration and uptake in all the soils compared with no K treatment; which gradually decreased in the subsequent harvests. Furthermore, plant takes up K not only from exchangeable pool but also from non-exchangeable sites and a minimum replenishment of K from the soil reserve was observed. Continuous cropping has resulted in the depletion of available K of the soil. The result indicated that in order to sustain higher crop yield under intensive cultivation, the addition of potash fertilizer is necessary.

Keywords: potassium, exchangeable pool, depletion behavior., Soil series

Procedia PDF Downloads 127
1319 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex(X 0,02) Solid Solutions

Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze

Abstract:

Si-Ge solid solutions (bulk poly- and monocrystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. In this light complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, electrophysical characteristics, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at a room temperatures. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers concentration 5.1014-1.1015cm-3, dislocation density 5.103-1.104cm-2, microhardness according to Vickers method 900-1200 Kg/mm2. Investigate samples are characterized with 0,5x0,5x(10-15) mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Tendency to decrease of dynamic mechanical characteristics is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.

Keywords: Microhardness, internal friction, shear modulus, Monocrystalline

Procedia PDF Downloads 352
1318 Preparation of Frozen Bivalent Babesial (Babesia Bovis and Babesia Bigemina) Vaccine from Field Isolates and Evaluation of Its Efficacy in Calves

Authors: Muhammad Fiaz Qamar, Ahmad Faraz, Muhammad Arfan Zaman, Kazim Ali, Waleed Akram

Abstract:

Babesiosis is reflected as the most important disease of cattle that are transmitted by arthropods. In Pakistan, its prevalence is up to 29% in the cattle and buffalo population in different regions. Cattle show a long lasting and durable immunity by giving an infection of B.bovis, B. bigemina, or Babesiadivergens. this is used in cattle to immunize them in a few countries as anti-babesiosis vaccine. Development of frozen vaccine allows for complete testing after production of each batch, However, once thawed, its reduced its shelf life, frozen vaccines are more difficult to transport as well as expensive to produce as compared to chilled vaccine. The contamination of blood derived vaccine has the potential risk that makes pre-production and post-production quality control necessary. For the trail master seed production of whole blood frozen bivalent Babesia(Babesiabovis and Babesiabigemina), 100 blood samples of Babesial positive suspected cattle was taken and processed for separation microscopic detection and rectification by PCR. Vaccine passages were done to reduce the parasitaemiasis in live calves. After 8 passages, parasitemia of Babesia reduced from 80% to 15%. Infected donor calf’s blood was taken by jugular cannulation by using preservative free lithium heparin as an anticoagulant (5 International Units IU heparin/ml blood). In lab, parasite containing blood was mixed in equal volumes with 3 M glycerol in PBS supplemented with 5 mM glucose (final concentration of glycerol 1.5 M) at 37°C. The mixture was then equilibrized at 37°C for 30 minutes and were dispensed in required containers (e.g., 5 ml cryovials).

Keywords: distribution, babesia, primer sequences, PCV

Procedia PDF Downloads 105
1317 Unveiling the Self-Assembly Behavior and Salt-Induced Morphological Transition of Double PEG-Tailed Unconventional Amphiphiles

Authors: Rita Ghosh, Joykrishna Dey

Abstract:

PEG-based amphiphiles are of tremendous importance for its widespread applications in pharmaceutics, household purposes, and drug delivery. Previously, a number of single PEG-tailed amphiphiles having significant applications have been reported from our group. Therefore, it was of immense interest to explore the properties and application potential of PEG-based double tailed amphiphiles. Herein, for the first time, two novel double PEG-tailed amphiphiles having different PEG chain lengths have been developed. The self-assembly behavior of the newly developed amphiphiles in aqueous buffer (pH 7.0) was thoroughly investigated at 25 oC by a number of techniques including, 1H-NMR, and steady-state and time-dependent fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and isothermal titration calorimetry. Despite having two polar PEG chains both molecules were found to have strong tendency to self-assemble in aqueous buffered solution above a very low concentration. Surprisingly, the amphiphiles were shown to form stable vesicles spontaneously at room temperature without any external stimuli. The results of calorimetric measurements showed that the vesicle formation is driven by the hydrophobic effect (positive entropy change) of the system, which is associated with the helix-to-random coil transition of the PEG chain. The spectroscopic data confirmed that the bilayer membrane of the vesicles is constituted by the PEG chains of the amphiphilic molecule. Interestingly, the vesicles were also found to exhibit structural transitions upon addition of salts in solution. These properties of the vesicles enable them as potential candidate for drug delivery.

Keywords: double-tailed amphiphiles, fluorescence, microscopy, PEG, vesicles

Procedia PDF Downloads 118
1316 The Importance of Erythrocyte Parameters in Obese Children

Authors: Orkide Donma, M. Metin Donma, Burcin Nalbantoglu, Birol Topcu, Feti Tulubas, Murat Aydin, Tuba Gokkus, Ahmet Gurel

Abstract:

Increasing prevalence of childhood obesity has increased the interest in early and late indicators of gaining weight. Cell blood counts may be indicators of proinflammatory states. The aim was to evaluate associations of hematological parameters, including Hematocrit (HTC), hemoglobin, blood cell counts, and their indices with the degree of obesity in pediatric population. A total of 249; -139 morbidly obese (MO), 82 healthy Normal Weight (NW) and 28 Overweight (OW) children were included into the scope of the study. WHO BMI-for age percentiles were used to form age- and sex-matched groups. Informed consent forms and the Ethics Committee approval were obtained. Anthropometric measurements were performed. Hematological parameters were determined. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. Significant differences (p=0.000) between waist-to-hip ratios and head-to-neck ratios (hnrs) of MO and NW children were detected. A significant difference between hnrs of OW and MO children (p=0.000) was observed. Red cell Distribution Width (RDW) was higher in OW children than NW group (p=0.030). Such finding couldn’t be detected between MO and NW groups. Increased RDW was prominent in OW children. The decrease in Mean Corpuscular Hemoglobin Concentration (MCHC) values in MO children was sharper than the values in OW children (p=0.006 vs p=0.042) compared to those in NW group. Statistically higher HTC levels were observed between MO-NW (p=0.014), but none between OW-NW. Though the cause-effect relationship between obesity and erythrocyte indices still needs further investigation, alterations in RDW, HTC, MCHC during obesity may be of significance in the early life.

Keywords: anthropometry, children, erythrocytes, obesity

Procedia PDF Downloads 354
1315 Level of IGF-I and IGFBP-3 in Gingival Crevicular Fluid and Plasma in Patients with Aggressive Periodontitis

Authors: Youjeong Hwang

Abstract:

Purpose: Insulin-like growth factor-I (IGF-I) promotes B-cell development, immunoglobulin formation, and interleukin-6 (IL-6) production, then regulate the immune response and inflammation. As IGF-I and their receptor also exist in the periodontal tissue, they may affect the immune response caused by periodontal pathogens in aggressive periodontitis (AgP) patients. The function of IGF is regulated by IGF binding proteins (IGFBPs), and IGFBP-3 is known to most abundant in plasma. The aim of the present study was to assess the concentration of IGF-I and IGFBP-3 in plasma and gingival crevicular fluid (GCF) in AgP patients and to find out their association. Methods: Nine patients with AgP (test group) and nine healthy subjects (control group) were included in this study. None of the subjects had a history of systemic disease, smoking or steroids medication. GCF samples were collected by microcapillary pipettes and plasma samples were obtained by venipuncture. Probing pocket depth (PD), clinical attachment level (CAL) and bleeding on probing (BOP) were recorded. Samples were assayed for IGF-I and IGFBP-3 levels using ELISA. Results: Mean IGF-I level in GCF was higher in the test group than control. Mean IGF-I level in plasma and IGFBP-3 level in GCF and plasma in control group were higher than that of the test group. However, there was no statistical significance (p > 0.05). The mean level of IGF-I and IGFBP-3 in GCF was lower than those in plasma. Mean IGF-I level in plasma showed a negative correlation with PD and CAL (p < 0.05) in both groups. The levels of IGF-I and IGFBP-3 in GCF seemed to be negatively correlated with BOP in the test group (p < 0.05). Conclusions: The difference in the level of IGF-I and IGFBP-3 between AgP and healthy subjects was not significant. Further studies that explain the mechanism of the protective role of IGF-I with more samples are needed.

Keywords: aggressive periodontitis, pathogenesis, insulin-like growth factor, insulin-like growth factor binding protein

Procedia PDF Downloads 211
1314 Effect of Aerobic Training on Visfatin Levels and Lipid Profile in Obese Women

Authors: Banaeifar Abdolali, Rahmanimoghadam Neda, Sohyli Shahram

Abstract:

Obesity is an increase in body fat , in addition it has been introduced as a risk factor for the progress of lipid disorders, hypertension, cardiovascular disease and type 2 diabetes (1,2). In recent years, Adipose tissue is now recognized as an endocrine organ that secretes many cytokines such as: interleukin 6, leptin, and visfatin (3). Visfatin is an adipocytokine that release from adiposities. It is unidentified whether training also influences concentrations of visfatin. Purpose: The purpose of this study was to examine the effects of 12 weeks of aerobic training on visfatin levels and lipid profile in obese women. Method: Thirty two obese women (age = 37.8 ± 13.2 years, body mass index = of 39.4 ± 6.4 kg/m2 .) volunteered to participate in a 12-wk exercise program. They were randomly assigned to either a training (n = 16) or control (n = 14) group. The training group exercised for 70 minutes per session, 3 days per week during the 12 week training program. The control group was asked to maintain their normal daily activities. Samples were obtained before and at the end of training program. We use t.paire and independent,test for data analyzes. Results: Exercise training resulted in a decrease in body weight (p < 0.05), percent body fat (% fat) and BMI (p < 0.05), fasting glucose level and visfatin concentration decreased but wasn’t significant (p > 0.05). Also the levels of triglyceride, total cholesterol and low-density lipoprotein cholesterol did not change significantly. Conclution: In conclusion, three month aerobic training program used in this study was very effective for producing significant benefits to body composition and HDL.c but didn’t significant chenging visfatin levels and lipid profile in these obese women.

Keywords: aerobic training, visfatin, lipid profile, women

Procedia PDF Downloads 465
1313 Surfactant-Modified Chitosan Beads: An Efficient and Cost Effective Material for Adsorptive Removal of Lead from Aqueous Solutions

Authors: Preeti Pal, Anjali Pal

Abstract:

Chitosan is an effective sorbent for removal of contaminants from wastewater. However, the ability of pure chitosan is specific because of its cationic charge. It causes repulsion in the removal process of various cationic charged molecules. The present study has been carried out for the successful removal of Pb²⁺ ions from aqueous solution by modified chitosan beads. Surface modification of chitosan (CS) beads was performed by using the anionic surfactant (AS), sodium dodecyl sulfate (SDS). Micelle aggregation property of SDS has been utilized for the formation of bilayer over the CS beads to produce surfactant modified chitosan (SMCS) beads. Prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) in order to find out their composition and surface morphology. SMCS beads, when compared to the pure CS beads, showed three times higher adsorption. This higher adsorption is believed to be due to the adsolubilization of Pb²⁺ ions on SDS bilayer. This bilayer provides more adsorption sites for quick and effective removal of Pb²⁺ ions from the aqueous phase. Moreover, the kinetic and adsorption isotherm models were employed to the obtained data for the description of the lead adsorption processes. It was found that the removal kinetics follows pseudo-second order model. Adsorption isotherm data fits well to the Langmuir model. The maximum adsorption capacity obtained is 100 mg/g at the dosage of 0.675 g/L for 50 mg/L of Pb²⁺. The adsorption capacity is subject to increase with increasing the Pb²⁺ ions concentration in the solution. The results indicated that the prepared hydrogel beads are efficient adsorbent for removal of Pb²⁺ ions from the aqueous medium.

Keywords: adsolubilisation, anionic surfactant, bilayer, chitosan, Pb²⁺

Procedia PDF Downloads 240
1312 Changes in EEG and Emotion Regulation in the Course of Inward-Attention Meditation Training

Authors: Yuchien Lin

Abstract:

This study attempted to investigate the changes in electroencephalography (EEG) and emotion regulation following eight-week inward-attention meditation training program. The subjects were 24 adults without meditation experiences divided into meditation and control groups. The quantitatively analyzed changes in psychophysiological parameters during inward-attention meditation, and evaluated the emotion scores assessed by the State-Trait Anxiety Inventory (STAI), the Positive and Negative Affect Schedule (PANAS), and the Emotion Regulation Scale (ERS). The results were found: (1) During meditation, significant EEG increased for theta-band activity in the frontal and the bilateral temporal areas, for alpha-band activity in the left and central frontal areas, and for gamma-band activity in the left frontal and the left temporal areas. (2) The meditation group had significantly higher positive affect in posttest than in pretest. (3) There was no significant difference in the changes of EEG spectral characteristics and emotion scores in posttest and pretest for the control group. In the present study, a unique meditative concentration task with a constant level of moderate mental effort focusing on the center of brain was used, so as to enhance frontal midline theta, alpha, and gamma-band activity. These results suggest that this mental training allows individual reach a specific mental state of relaxed but focused awareness. The gamma-band activity, in particular, enhanced over left frontoparietal area may suggest that inward-attention meditation training involves temporal integrative mechanisms and may induce short-term and long-term emotion regulation abilities.

Keywords: meditation, EEG, emotion regulation, gamma activity

Procedia PDF Downloads 215
1311 MRI R2* of Liver in an Animal Model

Authors: Chiung-Yun Chang, Po-Chou Chen, Jiun-Shiang Tzeng, Ka-Wai Mac, Chia-Chi Hsiao, Jo-Chi Jao

Abstract:

This study aimed to measure R2* relaxation rates in the liver of New Zealand White (NZW) rabbits. R2* relaxation rate has been widely used in various hepatic diseases for iron overload by quantifying iron contents in liver. R2* relaxation rate is defined as the reciprocal of T2* relaxation time and mainly depends on the composition of tissue. Different tissues would have different R2* relaxation rates. The signal intensity decay in Magnetic resonance imaging (MRI) may be characterized by R2* relaxation rates. In this study, a 1.5T GE Signa HDxt whole body MR scanner equipped with an 8-channel high resolution knee coil was used to observe R2* values in NZW rabbit’s liver and muscle. Eight healthy NZW rabbits weighted 2 ~ 2.5 kg were recruited. After anesthesia using Zoletil 50 and Rompun 2% mixture, the abdomen of rabbit was landmarked at the center of knee coil to perform 3-plane localizer scan using fast spoiled gradient echo (FSPGR) pulse sequence. Afterward, multi-planar fast gradient echo (MFGR) scans were performed with 8 various echo times (TEs) (2/4/6/8/10/12/14/16 ms) to acquire images for R2* calculations. Regions of interest (ROIs) at liver and muscle were measured using Advantage workstation. Finally, the R2* was obtained by a linear regression of ln(SI) on TE. The results showed that the longer the echo time, the smaller the signal intensity. The R2* values of liver and muscle were 44.8  10.9 s-1 and 37.4  9.5 s-1, respectively. It implies that the iron concentration of liver is higher than that of muscle. In conclusion, R2* is correlated with iron contents in tissue. The correlations between R2* and iron content in NZW rabbit might be valuable for further exploration.

Keywords: liver, magnetic resonance imaging, muscle, R2* relaxation rate

Procedia PDF Downloads 436
1310 Effects of Rumen Protozoa and Nitrate on Fermentation and Methane Production

Authors: S. H. Nguyen, L. Li, R. S. Hegarty

Abstract:

Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in-vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing coconut oil distillate 4.5% (COD) for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation. On d 48, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 48, 55, 62 and 69 were incubated for 23h in-vitro (experiment 1). On day 82, 2% of NO3 (as NaNO3) was included in in-vitro incubations (experiment 2) to test for additivity of NO3 and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production, with methane production rate significantly higher from refaunated heifers than from defaunated heifers 7, 14 and 21 d after refaunation. Concentration and proportions of major VFA, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in-vitro.

Keywords: defaunation, nitrate, fermentation, methane production

Procedia PDF Downloads 559
1309 Anticancer Effect of Isolated from the Methanolic Extract of Triticum Aestivum Straw in Mice

Authors: Savita Dixit

Abstract:

Rutin is the bioactive flavonoid isolated from the straw part of Triticum aestivum and possess various pharmacological applications. The aim of this study is to evaluate the chemopreventive potential of rutin in an experimental skin carcinogenesis mice model system. Skin tumor was induced by topical application of 7, 12-dimethyl benz(a) anthracene (DMBA) and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of rutin, it was orally administered at a concentration of (200 mg/kg and 400 mg/kg body weight) continued three times weekly for 16th weeks. The development of skin carcinogenesis was assessed by histopathological analysis. Reductions in tumor size and cumulative number of papillomas were seen due to rutin treatment. Average latent period was significantly increased as compared to carcinogen-treated control. Rutin produced a significant decrease in the activity of serum enzyme serum glutamate oxalate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin when compared with the control. They significantly increased the levels of enzyme involved in oxidative stress glutathione (GSH), superoxide dismutase (SOD) and catalase. The elevated level of lipid peroxidase in the control group was significantly inhibited by rutin administration. The results of the present study suggest the chemopreventive effect of rutin in DMBA and croton oil-induced skin carcinogenesis in swiss albino mice and one of the probable reasons would be its antioxidant potential.

Keywords: chemoprevention, papilloma, rutin, skin carcinogenesis

Procedia PDF Downloads 338
1308 Performance Evaluation of Filtration System for Groundwater Recharging Well in the Presence of Medium Sand-Mixed Storm Water

Authors: Krishna Kumar Singh, Praveen Jain

Abstract:

The collection of storm water runoff and forcing it into the groundwater is the need of the hour to sustain the ground water table. However, the runoff entraps various types of sediments and other floating objects whose removal are essential to avoid pollution of ground water and blocking of pores of aquifer. However, it requires regular cleaning and maintenance due to the problem of clogging. To evaluate the performance of filter system consisting of coarse sand (CS), gravel (G) and pebble (P) layers, a laboratory experiment was conducted in a rectangular column. The effect of variable thickness of CS, G and P layers of the filtration unit of the recharge shaft on the recharge rate and the sediment concentration of effluent water were evaluated. Medium sand (MS) of three particle sizes, viz. 0.150–0.300 mm (T1), 0.300–0.425 mm (T2) and 0.425–0.600 mm of thickness 25 cm, 30 cm, and 35 cm respectively in the top layer of the filter system and having seven influent sediment concentrations of 250–3,000 mg/l were used for the experimental study. The performance was evaluated in terms of recharge rates and clogging time. The results indicated that 100 % suspended solids were entrapped in the upper 10 cm layer of MS, the recharge rates declined sharply for influent concentrations of more than 1,000 mg/l. All treatments with a higher thickness of MS media indicated recharge rate slightly more than that of all treatment with a lower thickness of MS media respectively. The performance of storm water infiltration systems was highly dependent on the formation of a clogging layer at the filter. An empirical relationship has been derived between recharge rates, inflow sediment load, size of MS and thickness of MS with using MLR.

Keywords: groundwater, medium sand-mixed storm water filter, inflow sediment load

Procedia PDF Downloads 392
1307 Retrospective Study of Positive Blood Cultures Carried out in the Microbiology Department of General Hospital of Ioannina in 2017

Authors: M. Gerasimou, S. Mantzoukis, P. Christodoulou, N. Varsamis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Microbial infection of the blood is a serious condition where bacteria invade the bloodstream and cause systemic disease. In such cases, blood cultures are performed. Blood cultures are a key diagnostic test for intensive care unit (ICU) patients. Material and method: The BacT/Alert system, which measures the production of carbon dioxide with metabolic organisms, is used. The positive result in the BacT/Alert system is followed by culture in the following selective media: Blood, Mac Conkey No 2, Chocolate, Mueller Hinton, Chapman and Sabaureaud agar. Gram staining method was used to differentiate bacterial species. The microorganisms were identified by biochemical techniques in the automated Microscan (Siemens) system and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by a Kirby Bauer-based test. Results: In 2017 the Laboratory of Microbiology received 3347 blood cultures. Of these, 170 came from the ICU. 116 found positive. Of these S. epidermidis was identified in 42, A. baumannii in 27, K. pneumoniae in 12 (4 of these KPC ‘Klebsiella pneumoniae carbapenemase’), S. hominis in 8, E. faecium in 7, E. faecalis in 5, P. aeruginosa in 3, C. albicans in 3, S. capitis in 2, K. oxytoca in 2, P. mirabilis in 2, E. coli in 1, S. intermidius in 1 and S. lugdunensis in 1. Conclusions: The study of epidemiological data and microbial resistance phenotypes is essential for the choice of therapeutic regimen for the early treatment and limitation of multivalent strains, while it is a crucial factor to solve diagnostic problems.

Keywords: blood culture, bloodstream, infection, intensive care unit

Procedia PDF Downloads 152
1306 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)

Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta

Abstract:

Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.

Keywords: advanced oxidation process, ferrate (VI) ion, oils and greases removal, produced water treatment

Procedia PDF Downloads 321
1305 The Impact of Enzymatic Treatments on the Pasting Behavior and Its Reflection on Stalling and Quality of Bread

Authors: Sayed Mostafa, Mohamed Shebl

Abstract:

The problem of bread stalling is still one of the most troubling problems for those interested in manufacturing bakery products, as increasing the freshness period of bread is considered one of the most important factors that help encourage this industry due to its important role in reducing expected losses. Therefore, this study aims to improve the quality of pan bread and increase its freshness period by enzymatic treatments, including maltogenic α-amylase (MAA), amyloglucosidase (AGS), glucoseoxidase (GOX) and phospholipase (PhL). Rheological and pasting behavior of wheat flour were estimated in addition to the physical, texture, and sensory parameters of the final product. The addition of MAA resulted in a decrease in peak viscosity, breakdown, setback, and pasting temperature. The addition of MAA also led to a reduction in falling number values. Enzymatic treatments (MAA and PhL) exhibited higher alkaline water retention capacity of pan bread compared to untreated pan bread (control) throughout different storage periods. Furthermore, other enzymes displayed varying effects on bread quality; for instance, AGS enhanced the crust color, while a high concentration of GOX improved the specific volume of the bread. Conclusion: The research findings demonstrate that the enzymatic treatments can significantly improve its quality attributes, such as specific volume, increase the alkaline water retention capacity with lower hardness value, which reflects bread freshness during storage periods, and improve sensory characteristics.

Keywords: anti-stalling agents, enzymatic treatments, maltogenic α-amylase, amyloglucosidase, glucoseoxidase, phospholipase, pasting behavior, wheat flour

Procedia PDF Downloads 13
1304 Environmental Health Risk Assessment of Hospital Wastewater in Enugu Urban, Nigeria

Authors: C. T. Eze, I. N. E. Onwurah

Abstract:

An important hydrogeologic problem in areas of high faults formations is high environmental health hazard occasioned by microbial and heavy metals contamination of ground waters. Consequently, we examined the microbial load and heavy metals concentration of hospital wastewater discharged into the environment at Park Lane General Hospital Enugu Urban, Nigeria. The microbial counts, characteristics and frequency of occurrences of the isolated microorganisms were determined by cultural, morphological and biochemical characteristics using established procedure while the varying concentrations of the identified heavy metals were determined using the spectrophotometric method. The microbiological analyses showed a mean total aerobic bacteria counts from 13.7 ± 0.65 × 107 to 22.8 ± 1.14 ×1010 CFU/ml, mean total anaerobic bacteria counts from 6.0 ± 1.6 × 103 to 1.7 ± 0.41 ×104 CFU/ml and mean total fungal counts from 0 ± 0 to 2.3 ± 0.16 × 105 CFU/ml. The isolated micro-organisms which included both pathogenic and non-pathogenic organisms were Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Bacillus subtilis, Proteus vulgaris, Klesbsiella pneumonia and bacteriodes sp. The only fungal isolate was Candida albican. The heavy metals identified in the leachate were Arsenic, Cadmium, Lead, Mercury and Chromium and their concentrations ranged from 0.003 ± 0.00082 to 0.14 ± 0.0082 mg/l. These values were above WHO permissible limits while others fall within the limits. Therefore, hospital waste water can pose the environmental health risk when not properly treated before discharge, especially in geologic formations with high fault formations.

Keywords: bacterial isolates, fungal isolates, heavy metals, hospital wastewater, microbial counts

Procedia PDF Downloads 351
1303 Effects of the Tomato Pomace Oil Extract on Physical and Antioxidant Properties of Gelatin Films

Authors: N. Jirukkakul, J. Sodtipinta

Abstract:

Tomatoes are widely consumed as fresh and processed products through the manufacturing industry. Therefore, tomato pomace is generated as a by-product accounting for about 5-13% of the whole tomato. Antioxidants still remain in tomato pomace and extraction of tomato oil may useful in edible film production. The edible film solution was prepared by mixing gelatin (2, 4 and 6%) with the distilled water and heating at 40oC for 30 min. Effect of tomato pomace oil was evaluated at 0, 0.5 and 1%. Film solution was poured in plate and dried overnight at 40oC before determining the physical properties, which are tensile strength, moisture content, color, solubility, and swelling power. The results showed that an increase gelatin concentration caused increasing of tensile strength, moisture content, solubility and swelling power. The edible film with tomato pomace oil extract appeared as the rough film with oil droplet dispersion. The addition of tomato pomace oil extract caused an increase in lightness, redness and yellowness, while tensile strength, moisture content, and solubility were decreased. Film with tomato pomace oil extract at 0.5 and 1% exhibited antioxidant properties but those properties were not significantly different (p<0.05) between film incorporated with tomato pomace oil extract 0.5 and 1%. The suitable condition for film production in this study, 4% of gelatin and 0.5% of tomato pomace oil extract, was selected for protecting oxidation of palm oil. At 15 days of the storage period, the palm oil which covered by gelatin film with tomato pomace oil extract had 22.45 milliequivalents/kg of peroxide value (PV), while, the palm oil which covered by polypropylene film and control had 24.79 and 26.67 milliequivalents/kg, respectively. Therefore, incorporation of tomato pomace oil extract in gelatin film was able to protect the oxidation of food products with high fat content.

Keywords: antioxidant, gelatin films, physical properties, tomato oil extract

Procedia PDF Downloads 282
1302 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells

Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard

Abstract:

Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.

Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics

Procedia PDF Downloads 248
1301 Mudlogging, a Key Tool in Effective Well Delivery: A Case Study of Bisas Field Niger Delta, Nigeria

Authors: Segun Steven Bodunde

Abstract:

Mudlogging is the continuous analysis of rock cuttings and drilling fluids to ascertain the presence or absence of oil and gas from the formation penetrated by the drilling bit. This research highlighted a case study of Well BSS-99ST from ‘Bisas Field’, Niger Delta, with depth extending from 1950m to 3640m (Measured Depth). It was focused on identifying the lithologies encountered at specified depth intervals and to accurately delineate the targeted potential reservoir on the field and prepare the lithology and Master log. Equipment such as the Microscope, Fluoroscope, spin drier, oven, and chemicals, which includes: hydrochloric acid, chloroethene, and phenolphthalein, were used to check the cuttings for their calcareous nature, for oil show and for the presence of Cement respectively. Gas analysis was done using the gas chromatograph and the Flame Ionization Detector, which was connected to the Total Hydrocarbon Analyzer (THA). Drilling Parameters and Gas concentration logs were used alongside the lithology log to predict and accurately delineate the targeted reservoir on the field. The result showed continuous intercalation of sand and shale, with the presence of small quantities of siltstone at a depth of 2300m. The lithology log was generated using Log Plot software. The targeted reservoir was identified between 3478m to 3510m after inspection of the gas analysis, lithology log, electric logs, and the drilling parameters. Total gas of about 345 units and five Alkane Gas components were identified in the specific depth range. A comparative check with the Gamma ray log from the well further confirmed the lithologic sequence and the accurate delineation of the targeted potential reservoir using mudlogging.

Keywords: mudlogging, chromatograph, drilling fluids, calcareous

Procedia PDF Downloads 151
1300 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems

Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair

Abstract:

Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.

Keywords: breeding blanket, corrosion protection, coating, plasma spray

Procedia PDF Downloads 309