Search results for: prewitt edge detection algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7257

Search results for: prewitt edge detection algorithm

2697 Tax Evasion with Mobility between the Regular and Irregular Sectors

Authors: Xavier Ruiz Del Portal

Abstract:

This paper incorporates mobility between the legal and black economies into a model of tax evasion with endogenous labor supply in which underreporting is possible in one sector but impossible in the other. We have found that the results of the effects along the extensive margin (number of evaders) become more robust and conclusive than those along the intensive margin (hours of illegal work) usually considered by the literature. In particular, it is shown that the following policies reduce the number of evaders: (a) larger and more progressive evasion penalties; (b) higher detection probabilities; (c) an increase in the legal sector wage rate; (d) a decrease in the moonlighting wage rate; (e) higher costs for creating opportunities to evade; (f) lower opportunities to evade, and (g) greater psychological costs of tax evasion. When tax concealment and illegal work also are taken into account, the effects do not vary significantly under the assumptions in Cowell (1985), except for the fact that policies (a) and (b) only hold as regards low- and middle-income groups and policies (e) and (f) as regards high-income groups.

Keywords: income taxation, tax evasion, extensive margin responses, the penalty system

Procedia PDF Downloads 159
2696 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.

Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method

Procedia PDF Downloads 375
2695 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 650
2694 A Simple Recursive Framework to Generate Gray Codes for Weak Orders in Constant Amortized Time

Authors: Marsden Jacques, Dennis Wong

Abstract:

A weak order is a way to rank n objects where ties are allowed. In this talk, we present a recursive framework to generate Gray codes for weak orders. We then describe a simple algorithm based on the framework that generates 2-Gray codes for weak orders in constant amortized time per string. This framework can easily be modified to generate other Gray codes for weak orders. We provide an example on using the framework to generate the first Shift Gray code for weak orders, also in constant amortized time, where consecutive strings differ by a shift or a symbol change.

Keywords: weak order, Cayley permutation, Gray code, shift Gray code

Procedia PDF Downloads 183
2693 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 154
2692 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.

Keywords: artificial bee colony, cooperative, multilevel cooperation, vector

Procedia PDF Downloads 450
2691 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques

Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo

Abstract:

Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.

Keywords: air pollution, air quality modelling, data mining, particulate matter

Procedia PDF Downloads 261
2690 Study on the Efficient Routing Algorithms in Delay-Tolerant Networks

Authors: Si-Gwan Kim

Abstract:

In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW.

Keywords: delay tolerant networks, store carry and forward, one simulator, binary spray and wait

Procedia PDF Downloads 128
2689 Nondestructive Testing for Reinforced Concrete Buildings with Active Infrared Thermography

Authors: Huy Q. Tran, Jungwon Huh, Kiseok Kwak, Choonghyun Kang

Abstract:

Infrared thermography (IRT) technique has been proven to be a good method for nondestructive evaluation of concrete material. In the building, a broad range of applications has been used such as subsurface defect inspection, energy loss, and moisture detection. The purpose of this research is to consider the qualitative and quantitative performance of reinforced concrete deteriorations using active infrared thermography technique. An experiment of three different heating regimes was conducted on a concrete slab in the laboratory. The thermal characteristics of the IRT method, i.e., absolute contrast and observation time, are investigated. A linear relationship between the observation time and the real depth was established with a well linear regression R-squared of 0.931. The results showed that the absolute contrast above defective area increases with the rise of the size of delamination and the heating time. In addition, the depth of delamination can be predicted by using the proposal relationship of this study.

Keywords: concrete building, infrared thermography, nondestructive evaluation, subsurface delamination

Procedia PDF Downloads 286
2688 The Influence of α-Defensin and Cytokine IL-1β, Molecular Factors of Innate Immune System, on Regulation of Inflammatory Periodontal Diseases in Orthodontic Patients

Authors: G. R. Khaliullina, S. L. Blashkova, I. G. Mustafin

Abstract:

The article presents the results of a study involving 97 patients with different types of orthodontic pathology. Immunological examination of patients included determination of the level of α-defensin and cytokine IL-1β in mixed saliva. The study showed that the level of α-defensin serves as a diagnostic marker for determining the therapeutic measures in the treatment of inflammatory processes in periodontal tissues. Α-defensins exhibit immunomodulating and antimicrobial activity during inflammatory processes and play an important role in the regulation of the pathology of periodontal disease. The obtained data allowed the development of an algorithm for diagnosis and the implementation of immunomodulating therapy in the treatment of periodontal diseases in orthodontic patients.

Keywords: α-difensin, cytokine, orthodontic treatment, periodontal disease, periodontal pathogens

Procedia PDF Downloads 184
2687 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing

Procedia PDF Downloads 143
2686 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling

Procedia PDF Downloads 520
2685 Improvement Perturb and Observe for a Fast Response MPPT Applied to Photovoltaic Panel

Authors: Labar Hocine, Kelaiaia Mounia Samira, Mesbah Tarek, Kelaiaia Samia

Abstract:

Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point(MPP) which depends on panels temperature and on irradiance conditions. The main drawback of P&O is that, the operating point oscillates around the MPP giving rise to the waste of some amount of available energy; moreover, it is well known that the P&O algorithm can be confused during those time intervals characterized by rapidly changing atmospheric conditions. In this paper, it is shown that in order to limit the negative effects associated to the above drawbacks, the P&O MPPT parameters must be customized to the dynamic behavior of the specific converter adopted. A theoretical analysis allowing the optimal choice of such initial set parameters is also carried out. The fast convergence of the proposal is proven.

Keywords: P&O, Taylor’s series, MPPT, photovoltaic panel

Procedia PDF Downloads 590
2684 Improved Imaging and Tracking Algorithm for Maneuvering Extended UAVs Using High-Resolution ISAR Radar System

Authors: Mohamed Barbary, Mohamed H. Abd El-Azeem

Abstract:

Maneuvering extended object tracking (M-EOT) using high-resolution inverse synthetic aperture radar (ISAR) observations has been gaining momentum recently. This work presents a new robust implementation of the multiple models (MM) multi-Bernoulli (MB) filter for M-EOT, where the M-EOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.

Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, MM-MB-TBD filter

Procedia PDF Downloads 81
2683 Towards a Resources Provisioning for Dynamic Workflows in the Cloud

Authors: Fairouz Fakhfakh, Hatem Hadj Kacem, Ahmed Hadj Kacem

Abstract:

Cloud computing offers a new model of service provisioning for workflow applications, thanks to its elasticity and its paying model. However, it presents various challenges that need to be addressed in order to be efficiently utilized. The resources provisioning problem for workflow applications has been widely studied. Nevertheless, the existing works did not consider the change in workflow instances while they are being executed. This functionality has become a major requirement to deal with unusual situations and evolution. This paper presents a first step towards the resources provisioning for a dynamic workflow. In fact, we propose a provisioning algorithm which minimizes the overall workflow execution cost, while meeting a deadline constraint. Then, we extend it to support the dynamic adding of tasks. Experimental results show that our proposed heuristic demonstrates a significant reduction in resources cost by using a consolidation process.

Keywords: cloud computing, resources provisioning, dynamic workflow, workflow applications

Procedia PDF Downloads 299
2682 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: calibration model, monitoring, quality improvement, feature selection

Procedia PDF Downloads 360
2681 Charging-Vacuum Helium Mass Spectrometer Leak Detection Technology in the Application of Space Products Leak Testing and Error Control

Authors: Jijun Shi, Lichen Sun, Jianchao Zhao, Lizhi Sun, Enjun Liu, Chongwu Guo

Abstract:

Because of the consistency of pressure direction, more short cycle, and high sensitivity, Charging-Vacuum helium mass spectrometer leak testing technology is the most popular leak testing technology for the seal testing of the spacecraft parts, especially the small and medium size ones. Usually, auxiliary pump was used, and the minimum detectable leak rate could reach 5E-9Pa•m3/s, even better on certain occasions. Relative error is more important when evaluating the results. How to choose the reference leak, the background level of helium, and record formats would affect the leak rate tested. In the linearity range of leak testing system, it would reduce 10% relative error if the reference leak with larger leak rate was used, and the relative error would reduce obviously if the background of helium was low efficiently, the record format of decimal was used, and the more stable data were recorded.

Keywords: leak testing, spacecraft parts, relative error, error control

Procedia PDF Downloads 462
2680 A New Floating Point Implementation of Base 2 Logarithm

Authors: Ahmed M. Mansour, Ali M. El-Sawy, Ahmed T. Sayed

Abstract:

Logarithms reduce products to sums and powers to products; they play an important role in signal processing, communication and information theory. They are primarily used for hardware calculations, handling multiplications, divisions, powers, and roots effectively. There are three commonly used bases for logarithms; the logarithm with base-10 is called the common logarithm, the natural logarithm with base-e and the binary logarithm with base-2. This paper demonstrates different methods of calculation for log2 showing the complexity of each and finds out the most accurate and efficient besides giving in- sights to their hardware design. We present a new method called Floor Shift for fast calculation of log2, and then we combine this algorithm with Taylor series to improve the accuracy of the output, we illustrate that by using two examples. We finally compare the algorithms and conclude with our remarks.

Keywords: logarithms, log2, floor, iterative, CORDIC, Taylor series

Procedia PDF Downloads 538
2679 Mobile Application Tool for Individual Maintenance Users on High-Rise Residential Buildings in South Korea

Authors: H. Cha, J. Kim, D. Kim, J. Shin, K. Lee

Abstract:

Since 1980's, the rapid economic growth resulted in so many aged apartment buildings in South Korea. Nevertheless, there is insufficient maintenance practice of buildings. In this study, to facilitate the building maintenance the authors classified the building defects into three levels according to their level of performance and developed a mobile application tool based on each level's appropriate feedback. The feedback structure consisted of 'Maintenance manual phase', 'Online feedback phase', 'Repair work phase of the specialty contractors'. In order to implement each phase the authors devised the necessary database for each phase and created a prototype system that can develop on its own. The authors expect that the building users can easily maintain their buildings by using this application.

Keywords: building defect, maintenance practice, mobile application, system algorithm

Procedia PDF Downloads 193
2678 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design

Procedia PDF Downloads 431
2677 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search

Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur

Abstract:

Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.

Keywords: process planning, scheduling, due-date assignment, genetic algorithm, random search

Procedia PDF Downloads 377
2676 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling

Procedia PDF Downloads 395
2675 Early Detection of Major Earthquakes Using Broadband Accelerometers

Authors: Umberto Cerasani, Luca Cerasani

Abstract:

Methods for earthquakes forecasting have been intensively investigated in the last decades, but there is still no universal solution agreed by seismologists. Rock failure is most often preceded by a tiny elastic movement in the failure area and by the appearance of micro-cracks. These micro-cracks could be detected at the soil surface and represent useful earth-quakes precursors. The aim of this study was to verify whether tiny raw acceleration signals (in the 10⁻¹ to 10⁻⁴ cm/s² range) prior to the arrival of main primary-waves could be exploitable and related to earthquakes magnitude. Mathematical tools such as Fast Fourier Transform (FFT), moving average and wavelets have been applied on raw acceleration data available on the ITACA web site, and the study focused on one of the most unpredictable earth-quakes, i.e., the August 24th, 2016 at 01H36 one that occurred in the central Italy area. It appeared that these tiny acceleration signals preceding main P-waves have different patterns both on frequency and time domains for high magnitude earthquakes compared to lower ones.

Keywords: earthquake, accelerometer, earthquake forecasting, seism

Procedia PDF Downloads 149
2674 High Capacity Reversible Watermarking through Interpolated Error Shifting

Authors: Hae-Yeoun Lee

Abstract:

Reversible watermarking that not only protects the copyright but also preserve the original quality of the digital content have been intensively studied. In particular, the demand for reversible watermarking has increased. In this paper, we propose a reversible watermarking scheme based on interpolation-error shifting and error precompensation. The intensity of a pixel is interpolated from the intensities of neighbouring pixels, and the difference histogram between the interpolated and the original intensities is obtained and modified to embed the watermark message. By restoring the difference histogram, the embedded watermark is extracted and the original image is recovered by compensating for the interpolation error. The overflow and underflow are prevented by error precompensation. To show the performance of the method, the proposed algorithm is compared with other methods using various test images.

Keywords: reversible watermarking, high capacity, high quality, interpolated error shifting, error precompensation

Procedia PDF Downloads 328
2673 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer

Authors: Surita Maini, Sanjay Dhanka

Abstract:

Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.

Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning

Procedia PDF Downloads 71
2672 Four-Electron Auger Process for Hollow Ions

Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola

Abstract:

A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.

Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method

Procedia PDF Downloads 156
2671 Extraction of Polystyrene from Styrofoam Waste: Synthesis of Novel Chelating Resin for the Enrichment and Speciation of Cr(III)/Cr(vi) Ions in Industrial Effluents

Authors: Ali N. Siyal, Saima Q. Memon, Latif Elçi, Aydan Elçi

Abstract:

Polystyrene (PS) was extracted from Styrofoam (expanded polystyrene foam) waste, so called white pollutant. The PS was functionalized with N, N- Bis(2-aminobenzylidene)benzene-1,2-diamine (ABA) ligand through an azo spacer. The resin was characterized by FT-IR spectroscopy and elemental analysis. The PS-N=N-ABA resin was used for the enrichment and speciation of Cr(III)/Cr(VI) ions and total Cr determination in aqueous samples by Flame Atomic Absorption Spectrometry (FAAS). The separation of Cr(III)/Cr(VI) ions was achieved at pH 2. The recovery of Cr(VI) ions was achieved ≥ 95.0% at optimum parameters: pH 2; resin amount 300 mg; flow rates 2.0 mL min-1 of solution and 2.0 mL min-1 of eluent (2.0 mol L-1 HNO3). Total Cr was determined by oxidation of Cr(III) to Cr(VI) ions using H2O2. The limit of detection (LOD) and quantification (LOQ) of Cr(VI) were found to be 0.40 and 1.20 μg L-1, respectively with preconcentration factor of 250. Total saturation and breakthrough capacitates of the resin for Cr(IV) ions were found to be 0.181 and 0.531 mmol g-1, respectively. The proposed method was successfully applied for the preconcentration/speciation of Cr(III)/Cr(VI) ions and determination of total Cr in industrial effluents.

Keywords: styrofoam waste, polymeric resin, preconcentration, speciation, Cr(III)/Cr(VI) ions, FAAS

Procedia PDF Downloads 300
2670 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults

Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter

Abstract:

Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.

Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization

Procedia PDF Downloads 147
2669 A Relational Approach to Adverb Use in Interactions

Authors: Guillaume P. Fernandez

Abstract:

Individual language use is a matter of choice in particular interactions. The paper proposes a conceptual and theoretical framework with methodological consideration to develop how language produced in dyadic relations is to be considered and situated in the larger social configuration the interaction is embedded within. An integrated and comprehensive view is taken: social interactions are expected to be ruled by a normative context, defined by the chain of interdependences that structures the personal network. In this approach, the determinants of discursive practices are not only constrained by the moment of production and isolated from broader influences. Instead, the position the individual and the dyad have in the personal network influences the discursive practices in a twofold manner: on the one hand, the network limits the access to linguistic resources available within it, and, on the other hand, the structure of the network influences the agency of the individual, by the social control inherent to particular network characteristics. Concretely, we investigate how and to what extent consistent ego is from one interaction to another in his or her use of adverbs. To do so, social network analysis (SNA) methods are mobilized. Participants (N=130) are college students recruited in the french speaking part of Switzerland. The personal network of significant ones of each individual is created using name generators and edge interpreters, with a focus on social support and conflict. For the linguistic parts, respondents were asked to record themselves with five of their close relations. From the recordings, we computed an average similarity score based on the adverb used across interactions. In terms of analyses, two are envisaged: First, OLS regressions including network-level measures, such as density and reciprocity, and individual-level measures, such as centralities, are performed to understand the tenets of linguistic similarity from one interaction to another. The second analysis considers each social tie as nested within ego networks. Multilevel models are performed to investigate how the different types of ties may influence the likelihood to use adverbs, by controlling structural properties of the personal network. Primary results suggest that the more cohesive the network, the less likely is the individual to change his or her manner of speaking, and social support increases the use of adverbs in interactions. While promising results emerge, further research should consider a longitudinal approach to able the claim of causality.

Keywords: personal network, adverbs, interactions, social influence

Procedia PDF Downloads 71
2668 Rapid Detection of MBL Genes by SYBR Green Based Real-Time PCR

Authors: Taru Singh, Shukla Das, V. G. Ramachandran

Abstract:

Objectives: To develop SYBR green based real-time PCR assay to detect carbapenemases (NDM, IMP) genes in E. coli. Methods: A total of 40 E. coli from stool samples were tested. Six were previously characterized as resistant to carbapenems and documented by PCR. The remaining 34 isolates previously tested susceptible to carbapenems and were negative for these genes. Bacterial RNA was extracted using manual method. The real-time PCR was performed using the Light Cycler III 480 instrument (Roche) and specific primers for each carbapenemase target were used. Results: Each one of the two carbapenemase gene tested presented a different melting curve after PCR amplification. The melting temperature (Tm) analysis of the amplicons identified was as follows: blaIMP type (Tm 82.18°C), blaNDM-1 (Tm 78.8°C). No amplification was detected among the negative samples. The results showed 100% concordance with the genotypes previously identified. Conclusions: The new assay was able to detect the presence of two different carbapenemase gene type by real-time PCR.

Keywords: resistance, b-lactamases, E. coli, real-time PCR

Procedia PDF Downloads 413