Search results for: cluster model approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27510

Search results for: cluster model approach

22980 A Finite Element Study of Laminitis in Horses

Authors: Naeim Akbari Shahkhosravi, Reza Kakavand, Helen M. S. Davies, Amin Komeili

Abstract:

Equine locomotion and performance are significantly affected by hoof health. One of the most critical diseases of the hoof is laminitis, which can lead to horse lameness in a severe condition. This disease exhibits the mechanical properties degradation of the laminar junction tissue within the hoof. Therefore, it is essential to investigate the biomechanics of the hoof, focusing specifically on excessive and cumulatively accumulated stresses within the laminar junction tissue. For this aim, the current study generated a novel equine hoof Finite Element (FE) model under dynamic physiological loading conditions and employing a hyperelastic material model. Associated tissues of the equine hoof were segmented from computed tomography scans of an equine forelimb, including the navicular bone, third phalanx, sole, frog, laminar junction, digital cushion, and medial- dorsal- lateral wall areas. The inner tissues were connected based on the hoof anatomy, and the hoof was under a dynamic loading over cyclic strides at the trot. The strain distribution on the hoof wall of the model was compared with the published in vivo strain measurements to validate the model. Then the validated model was used to study the development of laminitis. The ultimate stress tolerated by the laminar junction before rupture was considered as a stress threshold. The tissue damage was simulated through iterative reduction of the tissue’s mechanical properties in the presence of excessive maximum principal stresses. The findings of this investigation revealed how damage initiates from the medial and lateral sides of the tissue and propagates through the hoof dorsal area.

Keywords: horse hoof, laminitis, finite element model, continuous damage

Procedia PDF Downloads 182
22979 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 141
22978 Rental Housing May Address Affordable Housing Deficiency in India

Authors: Meha Singla, Shankhadeep Chaudhuri, Yadunandan Batchu

Abstract:

Rental Housing is a more cost effective and flexible housing solution for the low income families than home-ownership. While India is undergoing a new industrial metamorphosis with multiple government initiatives that emphasise on the growth of manufacturing sector through policy frameworks and corridor development proposals, there is going to be a huge influx of low-income working population to the upcoming urban centres. As per stats, about 70 per cent of the housing demand at these centres fall into the affordable segment. And in the midst of this rapid urbanisation and huge immigration of young population, there is a lack of proper rental housing framework in the country. A large number of immigrants will be unable to support home-ownership thereby leading to proliferation of slums in urban centres. As a result, there is a dire need for immediate articulation of a comprehensive rental housing policy and affordable housing initiatives. In this paper, CommonFloor attempts to analyse successful rental housing case studies of the world followed by establishing a correlation between the gap in urban rental housing stock and the per capita income statistics to devise rental housing affordability specific to major Indian cities (Delhi, Mumbai, Bangalore, Chennai). Further, with the corroboration of market price trends, it will try to locate feasible micro-markets for immediate rental housing action. Final research findings will provide key data points thereby helping to design the approach for efficient utilisation of unsold residential inventory in the country in order to compensate the rental housing deficiency. This data set is believed to express viable model(s) of the rental housing approach for the government and private participants.

Keywords: housing prices, migration of population, real estate, rental housing, rental markets, residential property market, urbanisation

Procedia PDF Downloads 307
22977 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads

Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani

Abstract:

The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 36
22976 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV

Authors: Mohammed Qasim, Kyoung-Dae Kim

Abstract:

In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.

Keywords: artificial potential function, autonomous collision avoidance, teleoperation, quadrotor

Procedia PDF Downloads 399
22975 [Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Crank-Nicolson scheme, Lax-Richtmyer theorem, stability, consistency, Peclet number, Greschgorin circle

Procedia PDF Downloads 223
22974 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel

Procedia PDF Downloads 134
22973 Modeling and Simulation of the Tripod Gait of a Hexapod Robot

Authors: El Hansali Hasnaa, Bennani Mohammed

Abstract:

Hexapod legged robot’s missions, particularly in irregular and dangerous areas, require high stability and high precision. In this paper, we consider the rectangular architecture body of legged robots with six legs distributed symmetrically along two sides, each leg contains three degrees of freedom for greater mobility. The aim of this work is planning tripod gait trajectory, based on the computing of the kinematic model to determine the joint variables in the lifting and the propelling phases. For this, appropriate coordinate frames are attached to the body and legs in order to obtain clear representation and efficient generation of the system equations. A simulation in MATLAB software platform is developed to confirm the kinematic model and various trajectories to the tripod gait adopted by the hexapod robot in its locomotion.

Keywords: hexapod legged robot, inverse kinematic model, simulation in MATLAB, tripod gait

Procedia PDF Downloads 278
22972 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems

Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo

Abstract:

Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.

Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation

Procedia PDF Downloads 93
22971 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 301
22970 Investigating the Flow Physics within Vortex-Shockwave Interactions

Authors: Frederick Ferguson, Dehua Feng, Yang Gao

Abstract:

No doubt, current CFD tools have a great many technical limitations, and active research is being done to overcome these limitations. Current areas of limitations include vortex-dominated flows, separated flows, and turbulent flows. In general, turbulent flows are unsteady solutions to the fluid dynamic equations, and instances of these solutions can be computed directly from the equations. One of the approaches commonly implemented is known as the ‘direct numerical simulation’, DNS. This approach requires a spatial grid that is fine enough to capture the smallest length scale of the turbulent fluid motion. This approach is called the ‘Kolmogorov scale’ model. It is of interest to note that the Kolmogorov scale model must be captured throughout the domain of interest and at a correspondingly small-time step. In typical problems of industrial interest, the ratio of the length scale of the domain to the Kolmogorov length scale is so great that the required grid set becomes prohibitively large. As a result, the available computational resources are usually inadequate for DNS related tasks. At this time in its development, DNS is not applicable to industrial problems. In this research, an attempt is made to develop a numerical technique that is capable of delivering DNS quality solutions at the scale required by the industry. To date, this technique has delivered preliminary results for both steady and unsteady, viscous and inviscid, compressible and incompressible, and for both high and low Reynolds number flow fields that are very accurate. Herein, it is proposed that the Integro-Differential Scheme (IDS) be applied to a set of vortex-shockwave interaction problems with the goal of investigating the nonstationary physics within the resulting interaction regions. In the proposed paper, the IDS formulation and its numerical error capability will be described. Further, the IDS will be used to solve the inviscid and viscous Burgers equation, with the goal of analyzing their solutions over a considerable length of time, thus demonstrating the unsteady capabilities of the IDS. Finally, the IDS will be used to solve a set of fluid dynamic problems related to flow that involves highly vortex interactions. Plans are to solve the following problems: the travelling wave and vortex problems over considerable lengths of time, the normal shockwave–vortex interaction problem for low supersonic conditions and the reflected oblique shock–vortex interaction problem. The IDS solutions obtained in each of these solutions will be explored further in efforts to determine the distributed density gradients and vorticity, as well as the Q-criterion. Parametric studies will be conducted to determine the effects of the Mach number on the intensity of vortex-shockwave interactions.

Keywords: vortex dominated flows, shockwave interactions, high Reynolds number, integro-differential scheme

Procedia PDF Downloads 137
22969 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

Authors: Yolina A. Petrova, Georgi I. Petkov

Abstract:

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories

Procedia PDF Downloads 143
22968 Analytical Model for Columns in Existing Reinforced Concrete Buildings

Authors: Chang Seok Lee, Sang Whan Han, Girbo Ko, Debbie Kim

Abstract:

Existing reinforced concrete structures are designed and built without considering seismic loads. The columns in such buildings generally exhibit widely spaced transverse reinforcements without using seismic hooks. Due to the insufficient reinforcement details in columns, brittle shear failure is expected in columns that may cause pre-mature building collapse mechanism during earthquakes. In order to retrofit those columns, the accurate seismic behavior of the columns needs to be predicted with proper analytical models. In this study, an analytical model is proposed for accurately simulating the cyclic behavior of shear critical columns. The parameters for pinching and cyclic deterioration in strength and stiffness are calibrated using test data of column specimens failed by shear.

Keywords: analytical model, cyclic deterioration, existing reinforced concrete columns, shear failure

Procedia PDF Downloads 265
22967 Model of Cosserat Continuum Dispersion in a Half-Space with a Scatterer

Authors: Francisco Velez, Juan David Gomez

Abstract:

Dispersion effects on the Scattering for a semicircular canyon in a micropolar continuum are analyzed, by using a computational finite element scheme. The presence of microrotational waves and the dispersive SV waves affects the propagation of elastic waves. Here, a contrast with the classic model is presented, and the dependence with the micropolar parameters is studied.

Keywords: scattering, semicircular canyon, wave dispersion, micropolar medium, FEM modeling

Procedia PDF Downloads 544
22966 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials

Authors: Behzad Behnia, Noah LaRussa-Trott

Abstract:

In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.

Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model

Procedia PDF Downloads 141
22965 Recruitment Model (FSRM) for Faculty Selection Based on Fuzzy Soft

Authors: G. S. Thakur

Abstract:

This paper presents a Fuzzy Soft Recruitment Model (FSRM) for faculty selection of MHRD technical institutions. The selection criteria are based on 4-tier flexible structure in the institutions. The Advisory Committee on Faculty Recruitment (ACoFAR) suggested nine criteria for faculty in the proposed FSRM. The model Fuzzy Soft is proposed with consultation of ACoFAR based on selection criteria. The Fuzzy Soft distance similarity measures are applied for finding best faculty from the applicant pool.

Keywords: fuzzy soft set, fuzzy sets, fuzzy soft distance, fuzzy soft similarity measures, ACoFAR

Procedia PDF Downloads 348
22964 Predictability of Thermal Response in Housing: A Case Study in Australia, Adelaide

Authors: Mina Rouhollahi, J. Boland

Abstract:

Changes in cities’ heat balance due to rapid urbanization and the urban heat island (UHI) have increased energy demands for space cooling and have resulted in uncomfortable living conditions for urban residents. Climate resilience and comfortable living spaces can be addressed through well-designed urban development. The sustainable housing can be more effective in controlling high levels of urban heat. In Australia, to mitigate the effects of UHIs and summer heat waves, one solution to sustainable housing has been the trend to compact housing design and the construction of energy efficient dwellings. This paper analyses whether current housing configurations and orientations are effective in avoiding increased demands for air conditioning and having an energy efficient residential neighborhood. A significant amount of energy is consumed to ensure thermal comfort in houses. This paper reports on the modelling of heat transfer within the homes using the measurements of radiation, convection and conduction between exterior/interior wall surfaces and outdoor/indoor environment respectively. The simulation was tested on selected 7.5-star energy efficient houses constructed of typical material elements and insulation in Adelaide, Australia. The chosen design dwellings were analyzed in extremely hot weather through one year. The data were obtained via a thermal circuit to accurately model the fundamental heat transfer mechanisms on both boundaries of the house and through the multi-layered wall configurations. The formulation of the Lumped capacitance model was considered in discrete time steps by adopting a non-linear model method. The simulation results focused on the effects of orientation of the solar radiation on the dynamic thermal characteristics of the houses orientations. A high star rating did not necessarily coincide with a decrease in peak demands for cooling. A more effective approach to avoid increasing the demands for air conditioning and energy may be to integrate solar–climatic data to evaluate the performance of energy efficient houses.

Keywords: energy-efficient residential building, heat transfer, neighborhood orientation, solar–climatic data

Procedia PDF Downloads 133
22963 Challenges of Implementing Participatory Irrigation Management for Food Security in Semi Arid Areas of Tanzania

Authors: Pilly Joseph Kagosi

Abstract:

The study aims at assessing challenges observed during the implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation, and literature review. Data collected from the questionnaire was analysed using SPSS while PRA data was analysed with the help of local communities during PRA exercise. Data from other methods were analysed using content analysis. The study revealed that PIM approach has a contribution in improved food security at household level due to the involvement of communities in water management activities and decision making which enhanced the availability of water for irrigation and increased crop production. However, there were challenges observed during the implementation of the approach including; minimum participation of beneficiaries in decision-making during planning and designing stages, meaning inadequate devolution of power among scheme owners. Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However, it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.

Keywords: challenges, participatory approach, irrigation management, food security, semi arid areas

Procedia PDF Downloads 324
22962 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India

Authors: Jenifer Alam, Rima Chatterjee

Abstract:

Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.

Keywords: Eaton, strain, stress, poroelastic model

Procedia PDF Downloads 216
22961 Biophysical Modeling of Anisotropic Brain Tumor Growth

Authors: Mutaz Dwairy

Abstract:

Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.

Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment

Procedia PDF Downloads 47
22960 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media

Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas

Abstract:

A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.

Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties

Procedia PDF Downloads 503
22959 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data

Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao

Abstract:

Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.

Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing

Procedia PDF Downloads 440
22958 Instructional Leadership and Competency in Capacity Development among Principals: A Mediation with Self Efficacy in Moderate Performing Schools

Authors: Mohd Ibrahim K. Azeez, Mohammed Sani Ibrahim, Rosemawati Mustapa, Maisarah A. Malik, Chandrakala Varatharajoo, Wee Akina Sia Seng Lee

Abstract:

The leadership of the principals is known to be a key indicator in development and school performance. Therefore, this study was undertaken to assess the extent of the influence of instructional leadership in the field of supervision and curriculum focus on capacity development competence in the field of communication and teamwork. In addition, this study also examines self-efficacy mediator school leadership in the field of self-improvement and self-management of school principals. The study involved 383 guest teachers from 55 secondary schools for leadership in schools. Data was analyzed using SEM aid program AMOS 21. The final result shows partial mediation model was the best model fit to obtain the best goodness of fit of (X2/df = 4.663, CFI = 0.922, GFI = 0.778, TLI = 0914, NFI = 0.903, and RMSEA = 0.098) compared to the direct effect model of the findings (X2/df = 5.319, CFI = 0.908, GFI = 0755, TLI = 0.899, NFI = 0.889, and RMSEA = 0.106). While the findings of the fully mediator model with a self-efficacy refers principals as a mediator as follows (X2/df = 4.838, CFI = 0918, GFI = 0772, TLI = 0.910, NFI = 0.899, and RMSEA = 0.100). Therefore, it can be concluded that the findings clearly demonstrate self-efficacy variables principals become a mediator in the relationship between instructional leadership capacity and competency development.

Keywords: instructional leadership, capacity development, self-efficacy, competency

Procedia PDF Downloads 725
22957 The Role of the Stud’s Configuration in the Structural Response of Composite Bridges

Authors: Mohammad Mahdi Mohammadi Dehnavi, Alessandra De Angelis, Maria Rosaria Pecce

Abstract:

This paper deals with the role of studs in the structural response of steel-concrete composite beams. A tri-linear slip-shear strength law is assumed according to literature and codes provisions for developing a finite element (FE) model of a case study of a composite deck. The variation of the strength and ductility of the connection is implemented in the numerical model carrying out nonlinear analyses. The results confirm the utility of the model to evaluate the importance of the studs capacity, ductility and strength on the global response (ductility and strength) of the structures but also to analyze the trend of slip and shear at interface along the beams.

Keywords: stud connectors, finite element method, slip, shear load, steel-concrete composite bridge

Procedia PDF Downloads 153
22956 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification

Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.

Abstract:

Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.

Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet

Procedia PDF Downloads 74
22955 Smart Model with the DEMATEL and ANFIS Multistage to Assess the Value of the Brand

Authors: Hamed Saremi

Abstract:

One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study identified indicators of brand equity based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.

Keywords: anfis, dematel, brand, cosmetic product, brand value

Procedia PDF Downloads 410
22954 The Potential of Braking Energy Recuperation in a City Bus Diesel Engine in the Japanese JE05 Emission Test Cycle

Authors: Grzegorz Baranski, Piotr Kacejko, Konrad Pietrykowski, Mariusz Duk

Abstract:

This paper discusses a model of a bus-driving scheme. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the mechanical energy recuperation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass. The research results show that fuel economy is impacted by kinetic energy recuperation.

Keywords: heavy duty vehicle, city bus, Japanese JE05 test cycle, kinetic energy, simulations

Procedia PDF Downloads 214
22953 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 95
22952 Analysis and Improvement of Efficiency for Food Processing Assembly Lines

Authors: Mehmet Savsar

Abstract:

Several factors affect productivity of Food Processing Assembly Lines (FPAL). Engineers and line managers usually do not recognize some of these factors and underutilize their production/assembly lines. In this paper, a special food processing assembly line is studied in detail, and procedures are presented to illustrate how productivity and efficiency of such lines can be increased. The assembly line considered produces ten different types of freshly prepared salads on the same line, which is called mixed model assembly line. Problems causing delays and inefficiencies on the line are identified. Line balancing and related tools are used to increase line efficiency and minimize balance delays. The procedure and the approach utilized in this paper can be useful for the operation managers and industrial engineers dealing with similar assembly lines in food processing industry.

Keywords: assembly lines, line balancing, production efficiency, bottleneck

Procedia PDF Downloads 388
22951 Inclusion and Changes of a Research Criterion in the Institute for Quality and Accreditation of Computing, Engineering and Technology Accreditation Model

Authors: J. Daniel Sanchez Ruiz

Abstract:

The paper explains why and how a research criterion was included within an accreditation system for undergraduate engineering programs, in spite of not being a common practice of accreditation agencies at a global level. This paper is divided into three parts. The first presents the context and the motivations that led the Institute for Quality and Accreditation of Computing, Engineering and Technology Programs (ICACIT) to add a research criterion. The second describes the criterion adopted and the feedback received during 2017 accreditation cycle. The third, the author proposes changes to the accreditation criteria that respond in a pertinent way to the results-based accreditation model and the national context. The author seeks to reconcile an outcome based accreditation model, aligned with the established by the International Engineering Alliance, with the particular context of higher education in Peru.

Keywords: accreditation, engineering education, quality assurance, research

Procedia PDF Downloads 281