Search results for: spatial regression
1035 Radiation Safety Factor of Education and Research Institution in Republic of Korea
Authors: Yeo Ryeong Jeon, Pyong Kon Cho, Eun Ok Han, Hyon Chul Jang, Yong Min Kim
Abstract:
This study surveyed on recognition related to radiation safety for radiation safety managers and workers those who have been worked in Republic of Korea education and research institution. At present, South Korea has no guideline and manual of radiation safety for education and research institution. Therefore, we tried to find an educational basis for development of radiation safety guideline and manual. To check the level of knowledge, attitude, and behavior about radiation safety, we used the questionnaire that consisted of 29 questions against knowledge, attitude and behavior, 4 questions against self-efficacy and expectation based on four factors (radiation source, human, organizational and physical environment) of the Haddon's matrix. Responses were collected between May 4 and June 30, 2015. We analyzed questionnaire by means of IBM SPSS/WIN 15 which well known as statistical package for social science. The data were compared with mean, standard deviation, Pearson's correlation, ANOVA (analysis of variance) and regression analysis. 180 copies of the questionnaire were returned from 60 workplaces. The overall mean results for behavior level was relatively lower than knowledge and attitude level. In particular, organizational environment factor on the radiation safety management indicated the lowest behavior level. Most of the factors were correlated in Pearson’s correlation analysis, especially between knowledge of human factors and behavior of human factors (Pearson’s correlation coefficient 0.809, P<.01). When analysis performed in line with the main radiation source type, institutions where have been used only opened RI (radioisotope) behavior level was the lowest among all subjects. Finally, knowledge of radiation source factor (β=0.556, P<.001) and human factor(β=0.376, P<.001) had the greatest impact in terms of behavior practice. Radiation safety managers and workers think positively about radiation safety management, but are poorly informed organizational environment of their institution. Thus, each institution need to efforts to settlement of radiation safety culture. Also, pedagogical interventions for improving knowledge on radiation safety needs in terms of safety accident prevention.Keywords: radiation safety management, factor analysis, SPSS, republic of Korea
Procedia PDF Downloads 3631034 Sociolinguistic Aspects and Language Contact, Lexical Consequences in Francoprovençal Settings
Authors: Carmela Perta
Abstract:
In Italy the coexistence of standard language, its varieties and different minority languages - historical and migration languages - has been a way to study language contact in different directions; the focus of most of the studies is either the relations among the languages of the social repertoire, or the study of contact phenomena occurring in a particular structural level. However, studies on contact facts in relation to a given sociolinguistic situation of the speech community are still not present in literature. As regard the language level to investigate from the perspective of contact, it is commonly claimed that the lexicon is the most volatile part of language and most likely to undergo change due to superstrate influence, indeed first lexical features are borrowed, then, under long term cultural pressure, structural features may also be borrowed. The aim of this paper is to analyse language contact in two historical minority communities where Francoprovençal is spoken, in relation to their sociolinguistic situation. In this perspective, firstly lexical borrowings present in speakers’ speech production will be examined, trying to find a possible correlation between this part of the lexicon and informants’ sociolinguistic variables; secondly a possible correlation between a particular community sociolinguistic situation and lexical borrowing will be found. Methods used to collect data are based on the results obtained from 24 speakers in both the villages; the speaker group in the two communities consisted of 3 males and 3 females in each of four age groups, ranging in age from 9 to 85, and then divided into five groups according to their occupations. Speakers were asked to describe a sequence of pictures naming common objects and then describing scenes when they used these objects: they are common objects, frequently pronounced and belonging to semantic areas which are usually resistant and which are thought to survive. A subset of this task, involving 19 items with Italian source is examined here: in order to determine the significance of the independent variables (social factors) on the dependent variable (lexical variation) the statistical package SPSS, particularly the linear regression, was used.Keywords: borrowing, Francoprovençal, language change, lexicon
Procedia PDF Downloads 3701033 Investigation of Shear Strength, and Dilative Behavior of Coarse-grained Samples Using Laboratory Test and Machine Learning Technique
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Coarse-grained soils are known and commonly used in a wide range of geotechnical projects, including high earth dams or embankments for their high shear strength. The most important engineering property of these soils is friction angle which represents the interlocking between soil particles and can be applied widely in designing and constructing these earth structures. Friction angle and dilative behavior of coarse-grained soils can be estimated from empirical correlations with in-situ testing and physical properties of the soil or measured directly in the laboratory performing direct shear or triaxial tests. Unfortunately, large-scale testing is difficult, challenging, and expensive and is not possible in most soil mechanic laboratories. So, it is common to remove the large particles and do the tests, which cannot be counted as an exact estimation of the parameters and behavior of the original soil. This paper describes a new methodology to simulate particles grading distribution of a well-graded gravel sample to a smaller scale sample as it can be tested in an ordinary direct shear apparatus to estimate the stress-strain behavior, friction angle, and dilative behavior of the original coarse-grained soil considering its confining pressure, and relative density using a machine learning method. A total number of 72 direct shear tests are performed in 6 different sizes, 3 different confining pressures, and 4 different relative densities. Multivariate Adaptive Regression Spline (MARS) technique was used to develop an equation in order to predict shear strength and dilative behavior based on the size distribution of coarse-grained soil particles. Also, an uncertainty analysis was performed in order to examine the reliability of the proposed equation.Keywords: MARS, coarse-grained soil, shear strength, uncertainty analysis
Procedia PDF Downloads 1601032 Atmospheric Circulation Types Related to Dust Transport Episodes over Crete in the Eastern Mediterranean
Authors: K. Alafogiannis, E. E. Houssos, E. Anagnostou, G. Kouvarakis, N. Mihalopoulos, A. Fotiadi
Abstract:
The Mediterranean basin is an area where different aerosol types coexist, including urban/industrial, desert dust, biomass burning and marine particles. Particularly, mineral dust aerosols, mostly originated from North African deserts, significantly contribute to high aerosol loads above the Mediterranean. Dust transport, controlled by the variation of the atmospheric circulation throughout the year, results in a strong spatial and temporal variability of aerosol properties. In this study, the synoptic conditions which favor dust transport over the Eastern Mediterranean are thoroughly investigated. For this reason, three datasets are employed. Firstly, ground-based daily data of aerosol properties, namely Aerosol Optical Thickness (AOT), Ångström exponent (α440-870) and fine fraction from the FORTH-AERONET (Aerosol Robotic Network) station along with measurements of PM10 concentrations from Finokalia station, for the period 2003-2011, are used to identify days with high coarse aerosol load (episodes) over Crete. Then, geopotential height at 1000, 850 and 700 hPa levels obtained from the NCEP/NCAR Reanalysis Project, are utilized to depict the atmospheric circulation during the identified episodes. Additionally, air-mass back trajectories, calculated by HYSPLIT, are used to verify the origin of aerosols from neighbouring deserts. For the 227 identified dust episodes, the statistical methods of Factor and Cluster Analysis are applied on the corresponding atmospheric circulation data to reveal the main types of the synoptic conditions favouring dust transport towards Crete (Eastern Mediterranean). The 227 cases are classified into 11 distinct types (clusters). Dust episodes in Eastern Mediterranean, are found to be more frequent (52%) in spring with a secondary maximum in autumn. The main characteristic of the atmospheric circulation associated with dust episodes, is the presence of a low-pressure system at surface, either in southwestern Europe or western/central Mediterranean, which induces a southerly air flow favouring dust transport from African deserts. The exact position and the intensity of the low-pressure system vary notably among clusters. More rarely dust may originate from deserts of Arabian Peninsula.Keywords: aerosols, atmospheric circulation, dust particles, Eastern Mediterranean
Procedia PDF Downloads 2281031 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm
Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou
Abstract:
Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm
Procedia PDF Downloads 1111030 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 2191029 Knowledge of Quality Assurance and Quality Control in Mammography; A Study among Radiographers of Mammography Settings in Sri Lanka
Authors: H. S. Niroshani, W. M. Ediri Arachchi, R. Tudugala, U. J. M. A. L. Jayasinghe, U. M. U. J. Jayasekara, P. B. Hewavithana
Abstract:
Mammography is used as a screening tool for early diagnosis of breast cancer. It is also useful in refining the diagnosis of breast cancer either by assessment or work up after a suspicious area in the breast has been detected. In order to detect breast cancer accurately and at the earliest possible stage, the image must have an optimum contrast to reveal mass densities and spiculated fibrous structures radiating from them. In addition, the spatial resolution must be adequate to reveal the suffusion of micro calcifications and their shape. The above factors can be optimized by implementing an effective QA programme to enhance the accurate diagnosis of mammographic imaging. Therefore, the radiographer’s knowledge on QA is greatly instrumental in routine mammographic practice. The aim of this study was to assess the radiographer’s knowledge on Quality Assurance and Quality Control programmes in relation to mammographic procedures. A cross-sectional study was carried out among all radiographers working in each mammography setting in Sri Lanka. Pre-tested, anonymous self-administered questionnaires were circulated among the study population and duly filled questionnaires returned within a period of three months were taken into the account. The data on demographical information, knowledge on QA programme and associated QC tests, overall knowledge on QA and QC programmes were obtained. Data analysis was performed using IBM SPSS statistical software (version 20.0). The total response rate was 59.6% and the average knowledge score was 54.15±11.29 SD out of 100. Knowledge was compared on the basis of education level, special training of mammography, and the years of working experience in a mammographic setting of the individuals. Out of 31 subjects, 64.5% (n=20) were graduate radiographers and 35.5% (n=11) were diploma holders while 83.9% (n=26) of radiographers have been specially trained for mammography and 16.1% (n=5) have not been attended for any special training for mammography. It is also noted that 58.1% (n=18) of individuals possessed their experience of less than one year and rest 41.9% (n=13) of them were greater than that. Further, the results found that there is a significant difference (P < 0.05) in the knowledge of QA and overall knowledge on QA and QC programme in the categories of education level and working experience. Also, results imply that there was a significant difference (P < 0.05) in the knowledge of QC test among the groups of trained and non-trained radiographers. This study reveals that education level, working experience and the training obtained particularly in the field of mammography have a significant impact on their knowledge on QA and QC in mammography.Keywords: knowledge, mammography, quality assurance, quality control
Procedia PDF Downloads 3291028 River Habitat Modeling for the Entire Macroinvertebrate Community
Authors: Pinna Beatrice., Laini Alex, Negro Giovanni, Burgazzi Gemma, Viaroli Pierluigi, Vezza Paolo
Abstract:
Habitat models rarely consider macroinvertebrates as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the entire community. This research aimed to provide an approach to model the habitat of the macroinvertebrate community. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the meso-habitat scale. Using different datasets gathered from both field data collection and 2D hydrodynamic simulations, the model has been calibrated in the Trebbia river (2019 campaign), and then validated in the Trebbia, Taro, and Enza rivers (2020 campaign). The three rivers are characterized by a braiding morphology, gravel riverbeds, and summer low flows. The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R² coefficient (R²𝒸ᵥ) of the training dataset is 0.71 for the Trebbia River (2019), whereas the R² coefficient for the validation datasets (Trebbia, Taro, and Enza Rivers 2020) is 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and to possible river morphological modifications. Lastly, the proposed approach allows extending the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to flow design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.Keywords: ecological flows, macroinvertebrate community, mesohabitat, river habitat modeling
Procedia PDF Downloads 931027 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports
Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel
Abstract:
The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.Keywords: biomechanics, inertial sensors, motion capture, rehabilitation
Procedia PDF Downloads 1391026 Association of 1565C/T Polymorphism of Integrin Beta-3 (ITGB3) Gene and Increased Risk for Myocardial Infarction in Patients with Premature Coronary Artery Disease among Iranian Population
Authors: Mehrdad Sheikhvatan, Mohammad Ali Boroumand, Mehrdad Behmanesh, Shayan Ziaee
Abstract:
Contradictory results have been obtained regarding the role of integrin, beta 3 (ITGB3) gene polymorphisms in occurrence of acute myocardial infarction (MI) in patients with coronary artery disease (CAD). Hence, we aimed to assess the association between 1565C/T polymorphism of ITGB3 gene and increased risk for acute MI in patients who suffered premature CAD in Iranian population. Our prospective study included 1000 patients (492 men and 508 women aged 21 to 55 years) referred to Tehran Heart center during a period of four years from 2008 to 2011 with the final diagnosis of premature CAD and classified into two groups with history of MI (n = 461) and without of MI (n = 539). The polymorphism variants were determined by PCR-RFLP technique by entering 10% of randomized samples and then genotyping of the polymorphism was also conducted by High Resolution Melting (HRM) method. Among study samples, 640 were followed with a median follow-up time 45.74 months for determining association of long-term major adverse cardiac events (MACE) and genotypes of polymorphisms. There was no significant difference in the frequency of 1565C/T polymorphism between the MI and non-MI groups. The frequency of wild genotype was 69.2% and 72.2%, the frequency of homozygous genotype was 21.3% and 18.4%, and the frequency of mutant genotype was 9.5% and 9.5%, respectively (p=0.505). Results were also similar when adjusted for covariates in a multivariate logistic regression model. No significant difference was also found in total-MACE free survival rate between the patients with different genotypes of 1565C/T polymorphism in both MI and non-MI group. The carriage of the 1565C/T polymorphism of ITGB3 gene seems unlikely to be a significant risk factor for the development of MI in Iranian patients with premature CAD. The presence of this ITGB3 gene polymorphism may not also predict long-term cardiac events.Keywords: coronary artery disease, myocardial infarction, gene, integrin, beta 3, polymorphism
Procedia PDF Downloads 3961025 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence
Procedia PDF Downloads 3601024 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 531023 Biological Hotspots in the Galápagos Islands: Exploring Seasonal Trends of Ocean Climate Drivers to Monitor Algal Blooms
Authors: Emily Kislik, Gabriel Mantilla Saltos, Gladys Torres, Mercy Borbor-Córdova
Abstract:
The Galápagos Marine Reserve (GMR) is an internationally-recognized region of consistent upwelling events, high productivity, and rich biodiversity. Despite its high-nutrient, low-chlorophyll condition, the archipelago has experienced phytoplankton blooms, especially in the western section between Isabela and Fernandina Islands. However, little is known about how climate variability will affect future phytoplankton standing stock in the Galápagos, and no consistent protocols currently exist to quantify phytoplankton biomass, identify species, or monitor for potential harmful algal blooms (HABs) within the archipelago. This analysis investigates physical, chemical, and biological oceanic variables that contribute to algal blooms within the GMR, using 4 km Aqua MODIS satellite imagery and 0.125-degree wind stress data from January 2003 to December 2016. Furthermore, this study analyzes chlorophyll-a concentrations at varying spatial scales— within the greater archipelago, as well as within five smaller bioregions based on species biodiversity in the GMR. Seasonal and interannual trend analyses, correlations, and hotspot identification were performed. Results demonstrate that chlorophyll-a is expressed in two seasons throughout the year in the GMR, most frequently in September and March, with a notable hotspot in the Elizabeth Bay bioregion. Interannual chlorophyll-a trend analyses revealed highest peaks in 2003, 2007, 2013, and 2016, and variables that correlate highly with chlorophyll-a include surface temperature and particulate organic carbon. This study recommends future in situ sampling locations for phytoplankton monitoring, including the Elizabeth Bay bioregion. Conclusions from this study contribute to the knowledge of oceanic drivers that catalyze primary productivity and consequently affect species biodiversity within the GMR. Additionally, this research can inform policy and decision-making strategies for species conservation and management within bioregions of the Galápagos.Keywords: bioregions, ecological monitoring, phytoplankton, remote sensing
Procedia PDF Downloads 2631022 Sports Preference Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian
Authors: Felix Olajide Ibikunle
Abstract:
Introductory Statement: Sustainable participation of teenagers in sports requires deliberate and concerted plans and managerial policy rooted in the “philosophy of catch them young.” At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into security breaches and attractive nuisance free lifestyles. Basic Methodology: The population consists of children between 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. The majority of the teenagers were out of school, street hawkers, motor pack touts and unserious vocation apprentices. These groups have the potential for security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile and Moniya axis = 72; Agbowo, Ajibode and Apete axis = 74; Akobo, Basorun and Idi-ape axis 79; Wofun, Monatan and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentages. The respondents' average age was 15.6 years old, and 100% were male. The instrument (questionnaire) used yielded; sport preference (r = 0.72), intervention (r = 0.68), and sustainable participation (r = 0.70). The relative contributions of sport preference on the participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on the participation of at risk teenagers = produced (F-ratio of 12.095) was significant while, sustainable participation of at risk teenagers produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sports. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sports. At the same time, sustainable participation contributed positively to evolving at risk teenagers' participation in their preferred sport.Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers
Procedia PDF Downloads 771021 Analysis of the Role of Population Ageing on Crosstown Roads' Traffic Accidents Using Latent Class Clustering
Authors: N. Casado-Sanz, B. Guirao
Abstract:
The population aged 65 and over is projected to double in the coming decades. Due to this increase, driver population is expected to grow and in the near future, all countries will be faced with population aging of varying intensity and in unique time frames. This is the greatest challenge facing industrialized nations and due to this fact, the study of the relationships of dependency between population aging and road safety is becoming increasingly relevant. Although the deterioration of driving skills in the elderly has been analyzed in depth, to our knowledge few research studies have focused on the road infrastructure and the mobility of this particular group of users. In Spain, crosstown roads have one of the highest fatality rates. These rural routes have a higher percentage of elderly people who are more dependent on driving due to the absence or limitations of urban public transportation. Analysing road safety in these routes is very complex because of the variety of the features, the dispersion of the data and the complete lack of related literature. The objective of this paper is to identify key factors that cause traffic accidents. The individuals under study were the accidents with killed or seriously injured in Spanish crosstown roads during the period 2006-2015. Latent cluster analysis was applied as a preliminary tool for segmentation of accidents, considering population aging as the main input among other socioeconomic indicators. Subsequently, a linear regression analysis was carried out to estimate the degree of dependence between the accident rate and the variables that define each group. The results show that segmenting the data is very interesting and provides further information. Additionally, the results revealed the clear influence of the aging variable in the clusters obtained. Other variables related to infrastructure and mobility levels, such as the crosstown roads layout and the traffic intensity aimed to be one of the key factors in the causality of road accidents.Keywords: cluster analysis, population ageing, rural roads, road safety
Procedia PDF Downloads 1101020 Evaluation Of Reservoir Quality In Cretaceous Sandstone Complex, Western Flank Of Anambra Basin, Southern Nigeria
Authors: Bayole Omoniyi
Abstract:
This study demonstrates the value of outcrops as analogues for evaluating reservoir quality of sandbody in a typical high-sinuosity fluvial system. The study utilized data acquired from selected outcrops in the Campanian-Maastrichtian siliciclastic succession of the western flank of Anambra Basin, southern Nigeria. Textural properties derived from outcrop samples were correlated and compared with porosity and permeability using established standard charts. Porosity was estimated from thin sections of selected samples to reduce uncertainty in the estimates. Following facies classification, 14 distinct facies were grouped into three facies associations (FA1-FA3) and were subsequently modeled as discrete properties in a block-centered Cartesian grid on a scale that captures geometry of principal sandbodies. Porosity and permeability estimated from charts were populated in the grid using comparable geostatistical techniques that reflect their spatial distribution. The resultant models were conditioned to facies property to honour available data. The results indicate a strong control of geometrical parameters on facies distribution, lateral continuity and connectivity with resultant effect on porosity and permeability distribution. Sand-prone FA1 and FA2 display reservoir quality that varies internally from channel axis to margin in each succession. Furthermore, isolated stack pattern of sandbodies reduces static connectivity and thus, increases risk of poor communication between reservoir-quality sandbodies. FA3 is non-reservoir because it is mud-prone. In conclusion, the risk of poor communication between sandbodies may be effectively accentuated in reservoirs that have similar architecture because of thick lateral accretion deposits, usually mudstone, that tend to disconnect good-quality point-bar sandbodies. In such reservoirs, mudstone may act as a barrier to impede flow vertically from one sandbody to another and laterally at the margins of each channel-fill succession in the system. The development plan, therefore, must be designed to effectively mitigate these risks and the risk of stratigraphic compartmentalization for maximum hydrocarbon recovery.Keywords: analogues, architecture, connectivity, fluvial
Procedia PDF Downloads 231019 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass
Authors: Raheleh Farzanmanesh, Christopher J. Weston
Abstract:
Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2
Procedia PDF Downloads 711018 Developing Countries and the Entrepreneurial Intention of Postgraduates: A Study of Nigerian Postgraduates in UUM
Authors: Mahmoud Ahmad Mahmoud
Abstract:
The surge in unemployment among nations and the understanding of the important role played by entrepreneurship in job creation by researchers and policy makers have steered to the postulation that entrepreneurship activities can be spurred through the development of entrepreneurial intentions. Notwithstanding, entrepreneurial intention studies are very scarce in the developing world especially in the African continent. Even among the developed countries, studies of entrepreneurial intention were mostly focused on the undergraduate candidates. This paper therefore, aimed at filling the gap by employing the descriptive quantitative survey method to examine the entrepreneurial intention of 158 Nigerian postgraduate candidates of Universiti Utara Malaysia (UUM), comprising 46 Masters and 112 PhD candidates who are studying in the College of Business (COB), College of Arts and Sciences (CAS) and College of Legal, Government and International Studies (COLGIS), the theory of planned behaviour (TPB) model was used due its reputable validity, with attitudes, subjective norms and perceived behavioural control as the independent variables. Preliminary analysis and data screening were conducted which qualifies the data to the multivariate analysis assumptions. The reliability test was performed using the Cronbach Alpha method which shows all variables as reliable with a value of >0.70. However, the data is free from the multicollinearity issue with all factors in the Pearson correlation having <0.9 value and the VIF having <10. Regression analysis has shown the sufficiency and predictive capability of the TPB model to entrepreneurship intention with attitude, subjective norms and perceived behavioural control being positively and significantly related to the entrepreneurial intention of Nigerian postgraduates. Considering the Beta values, perceived behavioural control emerged as the strongest factor that influences the postgraduates entrepreneurial intention. Developing countries are therefore, recommended to make efforts in redesigning their entrepreneurship development policies to fit candidates of the highest level of academia. Further studies should replicate in a larger sample that comprises more than one university and more than one developing country.Keywords: attitude, entrepreneurial intention, Nigeria, perceived behavioral control, postgraduates, subjective norms
Procedia PDF Downloads 4321017 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1241016 Rate of Force Development, Net Impulse and Modified Reactive Strength as Predictors of Volleyball Spike Jump Height among Young Elite Players
Authors: Javad Sarvestan, Zdenek Svoboda
Abstract:
Force-time (F-T) curvature characteristics are globally referenced as the main indicators of athletic jump performance. Nevertheless, to the best of authors’ knowledge, no investigation tried to deeply study the relationship between F-T curve variables and real-game jump performance among elite volleyball players. To this end, this study was designated to investigate the association between F-T curve variables, including movement timings, force, velocity, power, rate of force development (RFD), modified reactive strength index (RSImod), and net impulse with spike jump height during real-game circumstances. Twelve young elite volleyball players performed 3 countermovement jump (CMJ) and 3 spike jump in real-game circumstances with 1-minute rest intervals to prevent fatigue. Shapiro-Wilk statistical test illustrated the normality of data distribution, and Pearson’s product correlation test portrayed a significant correlation between CMJ height and peak RFD (0.85), average RFD (r=0.81), RSImod (r=0.88) and concentric net impulse (r=0.98), and also significant correlation between spike jump height and peak RFD (0.73), average RFD (r=0.80), RSImod (r=0.62) and concentric net impulse (r=0.71). Multiple regression analysis also reported that these factors have a strong contribution in predicting of CMJ (98%) and spike jump (77%) heights. Outcomes of this study confirm that the RFD, concentric net impulse, and RSImod values could precisely monitor and track the volleyball attackers’ explosive strength, muscular stretch-shortening cycle function efficiency, and ultimate spike jump height. To this effect, volleyball coaches and trainers are advised to have an in-depth focus on their athletes’ progression or the impacts of strength trainings by observing and chasing the F-T curve variables such as RFD, net impulse, and RSImod.Keywords: net impulse, reactive strength index, rate of force development, stretch-shortening cycle
Procedia PDF Downloads 1341015 Development of Interaction Diagram for Eccentrically Loaded Reinforced Concrete Sandwich Walls with Different Design Parameters
Authors: May Haggag, Ezzat Fahmy, Mohamed Abdel-Mooty, Sherif Safar
Abstract:
Sandwich sections have a very complex nature due to variability of behavior of different materials within the section. Cracking, crushing and yielding capacity of constituent materials enforces high complexity of the section. Furthermore, slippage between the different layers adds to the section complex behavior. Conventional methods implemented in current industrial guidelines do not account for the above complexities. Thus, a throughout study is needed to understand the true behavior of the sandwich panels thus, increase the ability to use them effectively and efficiently. The purpose of this paper is to conduct numerical investigation using ANSYS software for the structural behavior of sandwich wall section under eccentric loading. Sandwich walls studied herein are composed of two RC faces, a foam core and linking shear connectors. Faces are modeled using solid elements and reinforcement together with connectors are modeled using link elements. The analysis conducted herein is nonlinear static analysis incorporating material nonlinearity, crashing and crushing of concrete and yielding of steel. The model is validated by comparing it to test results in literature. After validation, the model is used to establish extensive parametric analysis to investigate the effect of three key parameters on the axial force bending moment interaction diagram of the walls. These parameters are the concrete compressive strength, face thickness and number of shear connectors. Furthermore, the results of the parametric study are used to predict a coefficient that links the interaction diagram of a solid wall to that of a sandwich wall. The equation is predicted using the parametric study data and regression analysis. The predicted α was used to construct the interaction diagram of the investigated wall and the results were compared with ANSYS results and showed good agreement.Keywords: sandwich walls, interaction diagrams, numerical modeling, eccentricity, reinforced concrete
Procedia PDF Downloads 4011014 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia
Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay
Abstract:
Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.Keywords: job satisfaction, extension health professionals, Addis Ababa
Procedia PDF Downloads 761013 A Study on the Relationships among Teacher Empowerment, Professional Commitment and School Effectiveness
Authors: S. C. Lin, W. F. Hung, W. W. Cheng
Abstract:
Teacher empowerment was regarded as investing teachers with the right to participate in the determination of school goals and policies and to exercise professional judgment about what and how to teach. Professional commitment was considered as a person’s belief in and acceptance of the values of his or her chosen occupation or line of work, and a willingness to maintain membership in that occupation. An effective school has been defined as one in which students’ progress further than might be expected from consideration of its intake. An effective school thus adds extra value to its students' outcomes, in comparison with other schools serving similar intakes. A number of literature from various countries explored that teacher empowerment and professional commitment significantly influenced school effectiveness. However, there lacked more empirical studies to examine the relationships among them. Hence, this study was to explore the relationships among teacher empowerment, professional commitment and school effectiveness in junior high schools in Taiwan. Samples were seven hundred and five junior high school teachers selected from Taichung City, Changhua County and Nantou County. Questionnaire was applied to collect data. Data were analyzed by using descriptive statistics, t-test, one-way ANOVA, Pearson’s product-moment correlation, and multiple regression analysis. The findings of this study were as follows: First, the overall performances of teachers’ perceptions of teacher empowerment, teacher professional commitment and school effectiveness were above average. Second, the teachers’ perceptions of teacher empowerment were significant different in gender, designated duty, and school size. Third, the teachers’ perceptions of teacher professional commitment were significant different in gender, designated duty, and school size. Fourth, the teachers’ perceptions of school effectiveness were significant different in designated duty. Fifth, teacher empowerment was mid-positively correlation by teacher professional commitment. Sixth, there was mid-positively correlation between teacher empowerment and school effectiveness. Seventh, there was mid-positively correlation between teacher professional commitment and school effectiveness. Eighth, Teacher empowerment and professional commitment could significantly predict school effectiveness. Based on the findings of this study, the study proposed some suggestions for educational authorities, schools, teachers, and future studies as well.Keywords: junior high school teacher, teacher empowerment, teacher professional commitment, school effectiveness
Procedia PDF Downloads 4601012 Spatial Analysis of the Perception of Family Planning among Teenage Mothers in Nigeria
Authors: Mbuotidem Brendan, Nathanael Afolabi
Abstract:
Teenage pregnancy is a major health concern because of its association with high morbidity and mortality for both mother and child. In 2013, 23% of women in Nigeria, aged 15 - 19 yr have begun childbearing: 17% have had a child and 5% are pregnant with their first child. Reported differences across locations have been attributed to factors such as educational attainment and exposure to mass media. This study therefore seeks to determine the difference in the level of exposure among teenage mothers and older women of reproductive age in Nigeria. Over 12,000 women of reproductive age (18 – 49 yr) were interviewed across 8 states from the Northern and Southern region of Nigeria. The women were further segregated into two groups of 0 (women aged 18 – 20 yr who had children of their own) and 1 (women of reproductive age excluding teenage mothers). Data was collected via structured questionnaires on mobile devices using the open data kit platform. Initial data formatting and recoding was done using STATA 13 package. Initial analysis was also conducted using SPSS version 21 and the data points were mapped on QuantumGIS package. From the results of analyzed data obtained from the studied states, there were various mean ages of first births across the supported states. Though Akwa Ibom had one of the oldest mean ages (21.2 yr) at first birth and the lowest fertility rate of 3.9 births/woman according to the National Demographic Health Survey 2013, Akwa Ibom had the highest rate of teenage pregnancy (18.2%) across the respondents. Based on education, the respondents that had completed secondary school education (56.9%) made up the greatest cohorts of the teenage parents. This is counter indicative of the initial thinking that there is an inverse relationship between level of education and teenage pregnancy. Akwa Ibom, Bauchi and Delta states are states where respondents felt that contraceptive use is dangerous to health and they were the top 4 states that had a large proportion of teenage mothers. Similarly, across the states examined, all the women of reproductive age felt they could convince their spouses to use contraceptives, as using family planning does not cause women to be promiscuous. This study thus reveals that across the states studied, there was no marked variation in the perception of family planning between teenage parents and women of reproductive age. The study also highlights the need for future planning and exposure to family planning messages at secondary school level.Keywords: adolescent, family planning, mass media, teenage mothers
Procedia PDF Downloads 1801011 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia
Authors: Atikah Nurhayati, Asep A. Handaka
Abstract:
Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.Keywords: fishery, food security, logistic, supply chain
Procedia PDF Downloads 2391010 The Evolution of Traditional Rhythms in Redefining the West African Country of Guinea
Authors: Janice Haworth, Karamoko Camara, Marie-Therèse Dramou, Kokoly Haba, Daniel Léno, Augustin Mara, Adama Noël Oulari, Silafa Tolno, Noël Zoumanigui
Abstract:
The traditional rhythms of the West African country of Guinea have played a centuries-long role in defining the different people groups that make up the country. Throughout their history, before and since colonization by the French, the different ethnicities have used their traditional music as a distinct part of their historical identities. That is starting to change. Guinea is an impoverished nation created in the early twentieth-century with little regard for the history and cultures of the people who were included. The traditional rhythms of the different people groups and their heritages have remained. Fifteen individual traditional Guinean rhythms were chosen to represent popular rhythms from the four geographical regions of Guinea. Each rhythm was traced back to its native village and video recorded on-site by as many different local performing groups as could be located. The cyclical patterns rhythms were transcribed via a circular, spatial design and then copied into a box notation system where sounds happening at the same time could be studied. These rhythms were analyzed for their consistency-over-performance in a Fundamental Rhythm Pattern analysis so rhythms could be compared for how they are changing through different performances. The analysis showed that the traditional rhythm performances of the Middle and Forest Guinea regions were the most cohesive and showed the least evidence of change between performances. The role of music in each of these regions is both limited and focused. The Coastal and High Guinea regions have much in common historically through their ethnic history and modern-day trade connections, but the rhythm performances seem to be less consistent and demonstrate more changes in how they are performed today. In each of these regions the role and usage of music is much freer and wide-spread. In spite of advances being made as a country, different ethnic groups still frequently only respond and participate (dance and sing) to the music of their native ethnicity. There is some evidence that this self-imposed musical barrier is beginning to change and evolve, partially through the development of better roads, more access to electricity and technology, the nation-wide Ebola health crisis, and a growing self-identification as a unified nation.Keywords: cultural identity, Guinea, traditional rhythms, west Africa
Procedia PDF Downloads 3901009 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture
Authors: K. N. Ashna
Abstract:
Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test
Procedia PDF Downloads 2621008 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations
Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey
Abstract:
Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES
Procedia PDF Downloads 521007 Residential Satisfaction and Public Perception of Socialized Housing Projects in Davao City, Philippines
Authors: Micah Amor P. Yares
Abstract:
Aside from the provision of adequate housing, the Philippine government faces the challenge of ensuring that the housing units provided conform to the Filipino’s ambition to self as manifested by owning a small house on a big lot. The study aimed to explore the levels of satisfaction of end-users and the public perception towards socialized housing in Davao City, Philippines. The residential satisfaction survey includes three types of respondents, which are end-users of single-detached, duplex and rowhouse socialized housing units. Respondents were asked to rate their level of satisfaction and perception to the following housing components: Dwelling Unit; Public Facilities; Social Environment; Neighborhood Facilities; Management Systems; and Acquisition and Financing. The data were subjected to Exploratory Factor Analysis to determine if variables can be grouped together, and Confirmatory Factor Analysis to measure if the model fits the construct. In determining which component affects the level of perception and satisfaction, a Multiple Linear Regression Analysis was employed. Lastly, an Individual Samples T-Test was performed to compare the levels of satisfaction and perception among respondents. Results revealed that residents of socialized housing were highly satisfied with their living conditions despite concerns on management systems, public and neighborhood facilities. Residents' satisfaction is primarily influenced by the Social Environment, Acquisition and Financing, and the Dwelling Unit. However, a significant difference in residential satisfaction level was observed among different types of housing with rowhouse residents recording the lowest satisfaction level compared to single-detached and duplex units. Moreover, the general public perceived Socialized housing as moderately satisfactory having the same determinant as the end-users aside from the Public Facilities. This study recommends revisiting the current Socialized Housing policies by considering the feedback from the end-users based on their lived experience and the public according to their perception.Keywords: public perception, residential satisfaction, rowhouse, socialized housing
Procedia PDF Downloads 2331006 The Impact of Perspective Taking and Gender Differences on the Encouragement of Social Competence for the Next Generation: The Evidence From Chinese Parents
Authors: Yi Huang
Abstract:
Background: For the development of children, it is important for parents to encourage children not only on academic competence but also on children’s social competence. In the western cultural context, parents emphasize more heavily on female children’s social-behavioral development. However, whether the conclusion is correct in eastern culture and whether the parent’s gender affects such an emphasis remains unclear. And, more valuably, from the perspective of intervention, except for the nature factors - child’s gender and parent’s gender, it is also worth to probe whether the improvable factors, such as parent’s perspective taking, influence parent’s emphasis on child’s social competence. Aim: This study was aimed to investigate the impact of parent’s gender, child’s gender, and parent’s perspective-taking on parent’s attitudes of encouragement of the child’s social competence under the Chinese cultural context. Method: 461 Chinese parents whose children were in the first year of middle school during the research time participated in this study. Among all participants, there were 155 fathers and 306 mothers. The research adopted the self-report of perspective-taking, which is the sub-scale of the Interpersonal Reactivity Index and the self-report of the encouragement on a child’s social communication, which is the sub-scale of the Chinese version of The Children Rearing Practice Report. In this study, 291 parents reported regarding male children, and 170 parents reported regarding female children. Results: Contrary to the traditional western theory, which usually suggests parent puts more attention on social development and competence to girl the instead of the boy, in the Chinese context, parent emphasizes social competence more on the male child. Analogically, in China, compared to mother, father underscores the child’s social competence more heavily. By constructing the hierarchical regression model, the result indicated that after controlling the variables of the gender of child and the gender of parent, parent’s perspective-taking still explains for the variance of parent’s encouragement on child’s social competence, which means, parent’s perspective-taking predicts parent’s encouragement on child’s social competence after excluding the impact of the gender of parent and child. Conclusion: For Chinese parents, the ability of perspective-taking is beneficial to enhance their awareness of encouraging children’s social competence.Keywords: parent; child, gender differences, perspective-taking, social development
Procedia PDF Downloads 135