Search results for: ADME properties
4496 Power Plants between Environmental Pollution and Eco-Sustainable Recycling of Industrial Wastes
Authors: Liliana Crăc, Nicolae Giorgi, Gheorghe Fometescu, Mihai Cruceru
Abstract:
Power plants represent the main source of air pollution, through combustion processes, both by releasing large amounts of dust, greenhouse gases and acidifying, and large quantities of waste, slag and ash disposed in landfills covering significant areas. SC Turceni S.A. is one of the largest power generating unit from Romania. Their policy is focused on the production and delivery of electricity in order to increase energy efficiency and to reduce the environmental impact. The paper presents environmental impact produced by slag and ash storage, while pointing out that the recovery of this waste significant improves the air quality in the area. An important aspect is the proprieties of the ash and slag evacuated by Turceni power plant in order to use them for building materials manufacturing.Keywords: ash and slag properties, air pollution, building materials industry, power plants
Procedia PDF Downloads 3304495 The Use of Arabic Gum Mixed with Carbon Nanotubes Functionalized with Dodecylamine to Fabricate Superior Ultrafiltration Membranes
Authors: Yehia Manawi, Viktor Kochkodan, Muataz Hussien
Abstract:
In this paper, the effect of adding Arabic Gum (AG) and carbon nanotubes functionalized with dodecylamine (CNT-DDA) to the casting solutions of polysulfone (PS) was investigated. The aim of adding AG and CNT-DDA was to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. Different CNT-DDA loadings (0.1-3.0 wt.%) in 2 wt.% AG were added to PS/dimethylacetamide (DMAc) casting solutions to prepare PS membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PS/AG/CNT-DDA membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of BSA solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG and CNT-DDA to PS membranes was found to increase the hydrophilicity, porosity and hence the permeate flux of the fabricated membranes.Keywords: Arabic gum, hydrophilicity, polysulfone membrane, ultrafiltration
Procedia PDF Downloads 2404494 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube
Authors: Nirjhar Dhang, S. Vinay Kumar
Abstract:
Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.Keywords: concrete, image processing, plane strain, interfacial transition zone
Procedia PDF Downloads 2414493 An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets
Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang
Abstract:
In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets.Keywords: graphene, nanoporous, Young's modulus, shear modulus
Procedia PDF Downloads 4004492 Brake Force Distribution in Passenger Cars
Authors: Boukhris Lahouari, Bouchetara Mostefa
Abstract:
The active safety of a vehicle is mainly influenced by the properties of the installed braking system. With the increase in road traffic density and travel speeds, increasingly stringent requirements are placed on the vehicle's behaviour during braking. The achievable decelerations are limited by the physical aspect characterized by the coefficient of friction between the tires and the ground. As a result, it follows that an optimized distribution of braking forces becomes necessary for a better use of friction coefficients. This objective could only be achieved if sufficient knowledge is available on the theory of vehicle dynamics during braking and on current standards for the approval of braking systems. These will facilitate the development of a braking force calculation algorithm that will enable an optimized distribution of braking forces to be achieved. Operating safety is conditioned by the requirements of efficiency, progressiveness, regularity or fidelity of a braking system without obviously neglecting the recommendations imposed by the legislator.Keywords: brake force distribution, distribution diagram, friction coefficient, brake by wire
Procedia PDF Downloads 794491 Acidic Dye Removal From Aqueous Solution Using Heat Treated and Polymer Modified Waste Containing Boron Impurity
Authors: Asim Olgun, Ali Kara, Vural Butun, Pelin Sevinc, Merve Gungor, Orhan Ornek
Abstract:
In this study, we investigated the possibility of using waste containing boron impurity (BW) as an adsorbent for the removal of Orange 16 from aqueous solution. Surface properties of the BW, heat treated BW, and diblock copolymer coated BW were examined by using Zeta Meter and scanning electron microscopy (SEM). The polymer modified sample having the highest positive zeta potential was used as an adsorbent. Batch adsorption studies were carried out. The operating variables studied were the initial dye concentration, contact time, solution pH, and adsorbent dosage. It was found that the dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 3. The adsorption followed pseudo-second-order kinetics and the isotherm fit well to the Langmuir model.Keywords: zeta potential, adsorption, Orange 16, isotherms
Procedia PDF Downloads 1984490 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite
Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero
Abstract:
The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.Keywords: belite, silica fume, zeolite, hydraulic reactivity
Procedia PDF Downloads 3474489 Synthesis and Characterization of Doped Li₄Ti₅O₁₂/TiO2 as Potential Anode Materials for Li-Ion Batteries
Authors: S. Merazga, F. Boudeffar, A. Bouaoua, A. Cheriet, M. Berouaken, M. Mebarki, K. Ayouz, N. Gabouze
Abstract:
Several anode materials as transition metal oxides (Fe3O4, SnO2 a, SnO2, LiCoO2, and Li₄Ti₅O₁₂) has been used. Although titanium oxide has attracted great attention as a; superior electrode for Li-ion batteries due tohis excellent characteristic such as: high capacity, low cost and non-toxicity. In this work, the Synthesis and Characterization of Si Doped Li₄Ti₅O₁₂ with hydrothermal Method was electrochemically evaluated. The SEM images shows that the morphology of LTO powders sizes in the range 70nm.The electrochemical properties of synthesizer nanopowders are investigated for use as an anode active material for lithium-ion batteries by galvanostatic techniques in Li-half cells, obtaining reversible discharge capacity of 173.8 mAh/g at 0.1C even upon 100 cycles.Though the doped powders exhibit an upgrade in The electrical conductivity , This is suitable for use as a high-power cathode material for lithium-ion batteries.Keywords: LTO, li-ion, battteries, anode
Procedia PDF Downloads 774488 Experimental Evaluation of Compressive Strength of Concrete with Several Local Sand Exposed to Freeze-Thaw Cycles
Authors: Mlk. Khouadjia, B. Mezghiche
Abstract:
The environment protection has led to a growing interest in the use of crushed sand, which is not correctly exploited due to the high rate of fine particles that it contains and which affect concrete properties. This study will examine the variation of the compressive strength of concrete with several local areas of sand exposed to freeze-thaw cycles and chemical solutions. The experiments have been realized on crushed, river, and dune sands. We use software (MATLAB) to find the coefficient of particle shape. Finally, we have found a relationship between the reference concrete without modification and concrete modified with river and dune sands to predict the variations of resistance after curing in different environments. The results showed that the behavior of concrete is different according to the types of sand and the environment of exposition.Keywords: crushed sand, compressive strength, freeze-thaw, MATLAB, dune sand, river sand
Procedia PDF Downloads 1344487 Effect of Rice Vinegar Containing Monascus-Fermented Soybean on Cosmeceutical Functionality
Authors: Kyung-Soon Choi, Young-Hee Pyo
Abstract:
A cosmeceutical is a cosmetic product the active ingredient of which is meant to have a beneficial physiological effect resulting from an enhanced pharmacological action when compared to an inert cosmetic. Cosmeceutical potentials of unpolished rice vinegars containing different amount of Monascus-fermented soybean powder (soy-koji) were investigated. Four different vinegar types were prepared using 0, 10, 30, and 50% soy-koji addition. Soy-koji vinegar showed stronger cosmeceutical properties, in terms of tyrosinase and elastase inhibitory activities as well as antioxidant capacities than unpolished rice vinegars (P<0.05). The bioactive effects of soy koji vinegar increased with the increased concentrations of total phenolics and isoflavone aglycones(P<0.05). Results indicate that unpolished rice vinegar supplemented with soy-koji can be an efficient strategy to improve bioactivities in vinegar with associated enhancement of cosmeceutical functionality.Keywords: cosmeceutical potentials, isoflavone aglycone, soy-koji vinegar, Monascus sp.
Procedia PDF Downloads 5374486 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry
Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati
Abstract:
One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.Keywords: nanofabrication, cement replacement materials, activation, concrete
Procedia PDF Downloads 6144485 Finite Element Simulation of Deep Drawing Process to Minimize Earing
Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah
Abstract:
Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.Keywords: anisotropy, deep drawing, earing, finite element simulation
Procedia PDF Downloads 3774484 Solution Growth of Titanium Nitride Nanowires for Implantation Application
Authors: Roaa Sait, Richard Cross
Abstract:
The synthesis and characterization of one dimensional nanostructure such as nanowires has received considerable attention. Much effort has concentrated on TiN material especially in the biological field due to its useful and unique properties in this field. Therefore, for the purpose of this project, synthesis of Titanium Nitride (TiN) nanowires (NWs) will be presented. They will be synthesised by growing titanium dioxide (Ti) NWs in an aqueous solution at low temperatures under atmospheric pressure. Then the grown nanowires will undergo a 'Nitrodation process' in which results in the formation of TiN NWs. The structure, morphology and composition of the grown nanowires will be characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Cyclic Voltammetry (CV). Obtaining TiN NWs is a challenging task since it has not been formulated before, as far as we acknowledge. This might be due to the fact that nitriding Ti NWs can be difficult in terms of optimizing experimental parameters.Keywords: nanowires, dissolution-growth, nucleation, PECVD, deposition, spin coating, scanning electron microscopic analysis, cyclic voltammetry analysis
Procedia PDF Downloads 3614483 The Effect of TiO₂ Nanoparticles on Zebrafish Embryos
Authors: Elena Maria Scalisi
Abstract:
Currently, photodegradation by nanoparticles (NPs) is a common solution for wastewater treatment. Nanoparticles are efficient for removing organic and inorganic pollutants, heavy metals from wastewater and killing microorganisms through environmentally friendly. In this context, the major representative of photocatalytic technology for industrial wastewater treatment are TiO₂ nanoparticles (TiO₂-NPs). TiO₂-NPs have a strong catalytic activity that depends to their physicochemical properties. Thanks to their small size (between 1-100 nm), nanoparticles occupy less volume, then their surface area increases. The increase in the surface-to-volume ratio results in the increase of the particle surface energy, which improve their reactivity potential. However, these unique properties represent risks to the ecosystems and organisms when unintentionally TiO₂-NPs are release into the environment and absorbed by living organisms. Several studies confirm that there is a high level of interest concerning the safety of TiO₂-NPs in the aquatic environment, furthermore, ecotoxicological tools are useful to correctly evaluate their toxicity. In the current study, we aimed to characterize potential toxic effects of TiO₂-NP suspension to zebrafish during embryo-larval stages to evaluate parameters such as survival rates, malformation, hatching, the overall length of the larvae heartbeat, and biochemical biomarkers that reflect the acute toxicity and sublethal effects of TiO₂-NPs. Zebrafish embryos were exposed to titanium dioxide nanoparticles (TiO₂-NPs at 1mg/L, 2mg/L, and 4mg/L) from fertilization to the free swimming stage (144hpf). Every day, we recorded the toxicological endpoints, moreover, immunohistochemical analysis has been performed at the end of the exposure. In particular, we have evaluate the expression of the following biomarkers: Heat Shock Protein 70 (HSP70), Poly ADP-Ribose Polymerase-1 (PARP-1), Metallothioneins (MTs). Our results have shown that hatch ability, survival, and malformation rate were not affected by TiO₂ NPs at these exposure levels. However, TiO₂-NPs caused an increase of heartbeat and reduction of body length; at the same time, TiO₂-NPs have inducted the production of ROS and the expression of oxidative stress biomarkers HSP70 and PARP-1. Hight positivity for PARP-1 at all concentration tested was observed. As regards MT, positivity was found in the expression of this biomarker in the whole body of the embryo, with the exception of the end of the tail. Metallothioneins (MT) are biomarkers widely used in environmental monitoring programs for aquatic creatures. At the light of our results i.e. no death until the end of the experiment (144hpf), no malformation and expression of the biomarkers mentioned, it is evident that zebrafish larvae with their natural detoxification pathways are able to resist the presence of toxic substances and then they can tolerate the presence of metal concentrations. However, an excessive oxidative state can compromise cell function, therefore the uncontrolled release of nanoparticles into the environment is severe and must be constantly monitored.Keywords: nanoparticles, embryo zebrafish, HSP70, PARP-1
Procedia PDF Downloads 1394482 Investigating the Capacity of Cracking Torsion of Rectangular and Cylindrical RC Beams with Spiral and Normal Stirrups
Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin, Mehdi Mohammad Rezaei, Saeed Eskanderzadeh
Abstract:
In this paper, the capacity of cracking torsion on rectangular and cylindrical beams with spiral and normal stirrups in similar properties are investigated. Also, in the beams with spiral stirrups, stirrups are not wrapping and spiral stirrups similar to normal stirrups in ACI code. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. In this research, the behavior of rectangular reinforced concrete beams is compared with the cylindrical reinforced concrete beams. The capacity of cracking torsion of rectangular and cylindrical RC beams with spiral and normal stirrups are same. In the other words, the behavior of rectangular RC beams is similar to cylindrical beams.Keywords: cracking torsion, RC beams, spiral stirrups, normal stirrups
Procedia PDF Downloads 2924481 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation
Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras
Abstract:
The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure
Procedia PDF Downloads 2314480 Ab Initio Spectroscopic Study of the Electronic Properties of the (Bana)+ Molecular Ion
Authors: Tahani H. Alluhaybi, Leila Mejrissi
Abstract:
In the present theoretical study, we investigated adiabatically the electronic structure of the (BaNa)+ by the use of the ab initio calculation. We optimized a large atomic GTO basis set for Na and Ba atoms. The (BaNa)+ molecular ion is considered a two-electron thank to a non-empirical pseudo-potentials approach applied to Ba and Na cores with the Core Polarization Potentials operator (CPP). Then, we performed the Full Configuration Interaction (FCI) method. Accordingly, we calculated the adiabatic Potential Energy Curves (PECs) and their spectroscopic constants (well depth De, transition energies Te, the equilibrium distances Re, vibrational constant ⍵e, and anharmonic constant ⍵exe) for 10 electronic states in Σ+ symmetry. Then we determined the vibrational level energies and their spacing, and the electric Permanent Dipole Moments (PDM).Keywords: Ab initio, dipole moment, non-empirical pseudo-potential, potential energy curves, spectroscopic constants, vibrational energy
Procedia PDF Downloads 1154479 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater
Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar
Abstract:
Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater
Procedia PDF Downloads 5904478 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System
Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek
Abstract:
Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.Keywords: mesh network, RFID, wireless sensor network, zigbee
Procedia PDF Downloads 4624477 Population Size Estimation Based on the GPD
Authors: O. Anan, D. Böhning, A. Maruotti
Abstract:
The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators.Keywords: capture, recapture methods, ratio plot, heterogeneous population, zero-truncated count
Procedia PDF Downloads 4354476 Synthesis, Characterization and Anti-Microbial Study of Urethanized Poly Vinyl Alcohol Metal Complexes
Authors: Maha A. Younus, Dhefaf H. Badri, Maha A. Al Abayaji, Taha M. Salih
Abstract:
Polymer metal complexes of poly vinyl alcohol and Cu (II), Ni (II), Mn (II) and Co (III) were prepared from the reaction of PVA with three different percentages of urea. The compound was characterized by fourier transform infrared spectrometry (FTIR) analysis and differential scanning calorimetric (DSC) Analysis. It has been established that the polymer and its metal complexes showed good activities against nine pathogenic bacteria (Escherichia coli, Klebsiellapneumonae, Staphylococcusaureus, Staphylococcus Albus, Salmonella Typhoid, Pseudomonas Aeruginosa, Shigella Dysentery, Proteus Morgani, Brucella Militensis). The polymer metal complexes show activity higher than that of the free polymer. The increasing activities were in the order (polymer < pol-Mn< pol-Co < pol-Ni ˂ pol-Cu). The ability of these compounds to show antimicrobial properties suggests that they can be further evaluated for medicinal and/or environmental applications.Keywords: antimicrobial activity, PVA, polymer-metal complex, urea
Procedia PDF Downloads 3384475 Atomic Force Microscopy Studies of DNA Binding Properties of the Archaeal Mini Chromosome Maintenance Complex
Authors: Amna Abdalla Mohammed Khalid, Pietro Parisse, Silvia Onesti, Loredana Casalis
Abstract:
Basic cellular processes as DNA replication are crucial to cell life. Understanding at the molecular level the mechanisms that govern DNA replication in proliferating cells is fundamental to understand disease connected to genomic instabilities, as a genetic disease and cancer. A key step for DNA replication to take place, is unwinding the DNA double helix and this carried out by proteins called helicases. The archaeal MCM (minichromosome maintenance) complex from Methanothermobacter thermautotrophicus have being studied using Atomic Force Microscopy (AFM), imaging in air and liquid (Physiological environment). The accurate analysis of AFM topographic images allowed to understand the static conformations as well the interaction dynamic of MCM and DNA double helix in the present of ATP.Keywords: DNA, protein-DNA interaction, MCM (mini chromosome manteinance) complex, atomic force microscopy (AFM)
Procedia PDF Downloads 3094474 Water Injection in One of the Southern Iranian Oil Field, a Case Study
Authors: Hooman Fallah
Abstract:
Seawater injection and produced water re-injection are presently the most commonly used approach to enhanced recovery. The dominant factors for total oil recovery are the reservoir temperature, reservoir pressure, crude oil and water composition. In this study, the production under water injection in Soroosh, one of the southern Iranian heavy oil field has been simulated (the fluid properties are focused). In order to reveal the dominant factors in this production process, the sensitivity analysis has been done for the following effective factors, fluid viscosity, initial water saturation, gravity force and injection well strategy. It is crystal clear that the study of the dominant factors in production processes will help the engineers to design the best production mechanisms in our numerous hydrocarbon reservoirs.Keywords: water injection, initial water saturation, oil viscosity, gravity force, injection well strategy
Procedia PDF Downloads 4204473 Precursor Synthesis of Carbon Materials with Different Aggregates Morphologies
Authors: Nikolai A. Khlebnikov, Vladimir N. Krasilnikov, Evgenii V. Polyakov, Anastasia A. Maltceva
Abstract:
Carbon materials with advanced surfaces are widely used both in modern industry and in environmental protection. The physical-chemical nature of these materials is determined by the morphology of primary atomic and molecular carbon structures, which are the basis for synthesizing the following materials: zero-dimensional (fullerenes), one-dimensional (fiber, tubes), two-dimensional (graphene) carbon nanostructures, three-dimensional (multi-layer graphene, graphite, foams) with unique physical-chemical and functional properties. Experience shows that the microscopic morphological level is the basis for the creation of the next mesoscopic morphological level. The dependence of the morphology on the chemical way and process prehistory (crystallization, colloids formation, liquid crystal state and other) is the peculiarity of the last called level. These factors determine the consumer properties of carbon materials, such as specific surface area, porosity, chemical resistance in corrosive environments, catalytic and adsorption activities. Based on the developed ideology of thin precursor synthesis, the authors discuss one of the approaches of the porosity control of carbon-containing materials with a given aggregates morphology. The low-temperature thermolysis of precursors in a gas environment of a given composition is the basis of the above-mentioned idea. The processes of carbothermic precursor synthesis of two different compounds: tungsten carbide WC:nC and zinc oxide ZnO:nC containing an impurity phase in the form of free carbon were selected as subjects of the research. In the first case, the transition metal (tungsten) forming carbides was the object of the synthesis. In the second case, there was selected zinc that does not form carbides. The synthesis of both kinds of transition metals compounds was conducted by the method of precursor carbothermic synthesis from the organic solution. ZnO:nC composites were obtained by thermolysis of succinate Zn(OO(CH2)2OO), formate glycolate Zn(HCOO)(OCH2CH2O)1/2, glycerolate Zn(OCH2CHOCH2OH), and tartrate Zn(OOCCH(OH)CH(OH)COO). WC:nC composite was synthesized from ammonium paratungstate and glycerol. In all cases, carbon structures that are specific for diamond- like carbon forms appeared on the surface of WC and ZnO particles after the heat treatment. Tungsten carbide and zinc oxide were removed from the composites by selective chemical dissolution preserving the amorphous carbon phase. This work presents the results of investigating WC:nC and ZnO:nC composites and carbon nanopowders with tubular, tape, plate and onion morphologies of aggregates that are separated by chemical dissolution of WC and ZnO from the composites by the following methods: SEM, TEM, XPA, Raman spectroscopy, and BET. The connection between the carbon morphology under the conditions of synthesis and chemical nature of the precursor and the possibility of regulation of the morphology with the specific surface area up to 1700-2000 m2/g of carbon-structured materials are discussed.Keywords: carbon morphology, composite materials, precursor synthesis, tungsten carbide, zinc oxide
Procedia PDF Downloads 3364472 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage
Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais
Abstract:
The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless
Procedia PDF Downloads 2954471 The Next Game Changer: 3-D Printed Musical Instruments
Authors: Leonardo Ko
Abstract:
In an era marked by rapid technological innovation, the classical instrument industry nonetheless has not seen significant change. Is this a matter of stubborn traditionalism, or do old, conventional instruments really sound better? Because of the widespread use of 3-D printing, it seems feasible to produce modern, 3-D printed instruments that adhere to the basic conventions of standard construction. This study aimed to design and create a practical, effective 3-D printed acoustic violin. A cost-benefit analysis of materials and design is presented in addition to a report on sound tests in which a pool of professional musicians compared the traditional violin to its synthetic counterpart with regard to acoustic properties. With a low-cost yet functional instrument, musicians of all levels would be able to afford instruments with much greater ease; the present study thus hopes to contribute to efforts to increase the accessibility of classical music education.Keywords: acoustic musical instrument, classical musical education, low-cost, 3-D printing
Procedia PDF Downloads 2294470 Study the Influence of Zn in Zn-MgFe₂O₄ Nanoparticles for CO₂ Gas Sensors
Authors: Maryam Kiani, Xiaoqin Tian, Yu Du, Abdul Basit Kiani
Abstract:
Zn-doped MgFe₂O₄ nanoparticles (ZMFO) (Zn=0.0, 0.2, 0.35, 0.5,) were prepared by Co-precipitation synthesis route. Structural and morphological analysis confirmed the formation of spinel cubic nanostructure by X-Ray diffraction (XRD) data shows high reactive surface area owing to a small average particle size of about 14 nm, which greatly influences the gas sensing mechanism. The gas sensing property of ZMFO for several gases was obtained by measuring the resistance as a function of different factors, like composition and response time in air and in the presence of gas. The sensitivity of spinel ferrite to gases CO₂, O₂, and O₂ at room temperature has been compared. The nanostructured ZMFO exhibited high sensitivity in the order of CO₂>O₂ and showed a good response time of (~1min) to CO₂, demonstrating that this expanse of research can be used in the field of gas sensors devising high sensitivity and good selectivity at 25°C.Keywords: MgFe₂O₄ nanoparticles, hydrothermal synthesis, gas sensing properties, XRD
Procedia PDF Downloads 1204469 Development of Zero-Cement Binder Activated by Carbonation
Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang
Abstract:
Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag
Procedia PDF Downloads 4644468 A Review on the Use of Plastic Waste with Viable Materials in Composite Construction Block
Authors: Mohan T. Harish, Masson Lauriane, Sreevalsa Kolathayar
Abstract:
Environmental issues raise alarm in the constructional field which implies a need for exploring new construction materials derived from the waste and residual products. This paper presents a detailed review of the alternatives approaches employed in the construction field using plastic waste in mixture with mixed with fillers. A detailed analysis of the plastic waste used in concrete, with soil, sand, clay and natural residues like sawdust, rice husk etc are presented. The different process carried forward was also discussed along with the scrutiny of the change in mechanical properties. The effect of coupling agents in the proposed mixture has been appraised in detail which gives implications for its future application in the field of plastic waste with viable materials in composite construction blocks.Keywords: plastic waste, composite materials, construction block, concrete, natural residue, coupling agent
Procedia PDF Downloads 2524467 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors
Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy
Abstract:
The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.Keywords: hyperkalemia, drift, AACVD, organosilicon
Procedia PDF Downloads 123