Search results for: squared prediction risk
3692 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism
Abstract:
Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning
Procedia PDF Downloads 183691 Bi-Liquid Free Surface Flow Simulation of Liquid Atomization for Bi-Propellant Thrusters
Authors: Junya Kouwa, Shinsuke Matsuno, Chihiro Inoue, Takehiro Himeno, Toshinori Watanabe
Abstract:
Bi-propellant thrusters use impinging jet atomization to atomize liquid fuel and oxidizer. Atomized propellants are mixed and combusted due to auto-ignitions. Therefore, it is important for a prediction of thruster’s performance to simulate the primary atomization phenomenon; especially, the local mixture ratio can be used as indicator of thrust performance, so it is useful to evaluate it from numerical simulations. In this research, we propose a numerical method for considering bi-liquid and the mixture and install it to CIP-LSM which is a two-phase flow simulation solver with level-set and MARS method as an interfacial tracking method and can predict local mixture ratio distribution downstream from an impingement point. A new parameter, beta, which is defined as the volume fraction of one liquid in the mixed liquid within a cell is introduced and the solver calculates the advection of beta, inflow and outflow flux of beta to a cell. By validating this solver, we conducted a simple experiment and the same simulation by using the solver. From the result, the solver can predict the penetrating length of a liquid jet correctly and it is confirmed that the solver can simulate the mixing of liquids. Then we apply this solver to the numerical simulation of impinging jet atomization. From the result, the inclination angle of fan after the impingement in the bi-liquid condition reasonably agrees with the theoretical value. Also, it is seen that the mixture of liquids can be simulated in this result. Furthermore, simulation results clarify that the injecting condition affects the atomization process and local mixture ratio distribution downstream drastically.Keywords: bi-propellant thrusters, CIP-LSM, free-surface flow simulation, impinging jet atomization
Procedia PDF Downloads 2793690 Salmon Diseases Connectivity between Fish Farm Management Areas in Chile
Authors: Pablo Reche
Abstract:
Since 1980’s aquaculture has become the biggest economic activity in southern Chile, being Salmo salar and Oncorhynchus mykiss the main finfish species. High fish density makes both species prone to contract diseases, what drives the industry to big losses, affecting greatly the local economy. Three are the most concerning infective agents, the infectious salmon anemia virus (ISAv), the bacteria Piscirickettsia salmonis and the copepod Caligus rogercresseyi. To regulate the industry the government arranged the salmon farms within management areas named as barrios, which coordinate the fallowing periods and antibiotics treatments of their salmon farms. In turn, barrios are gathered into larger management areas, named as macrozonas whose purpose is to minimize the risk of disease transmission between them and to enclose the outbreaks within their boundaries. However, disease outbreaks still happen and transmission to neighbor sites enlarges the initial event. Salmon disease agents are mostly transported passively by local currents. Thus, to understand how transmission occurs it must be firstly studied the physical environment. In Chile, salmon farming takes place in the inner seas of the southernmost regions of western Patagonia, between 41.5ºS-55ºS. This coastal marine system is characterised by western winds, latitudinally modulated by the position of the South-Eats Pacific high-pressure centre, high precipitation rates and freshwater inflows from the numerous glaciers (including the largest ice cap out of Antarctic and Greenland). All of these forcings meet in a complex bathymetry and coastline system - deep fjords, shallow sills, narrow straits, channels, archipelagos, inlets, and isolated inner seas- driving an estuarine circulation (fast outflows westwards on surface and slow deeper inflows eastwards). Such a complex system is modelled on the numerical model MIKE3, upon whose 3D current fields particle-track-biological models (one for each infective agent) are decoupled. Each agent biology is parameterized by functions for maturation and mortality (reproduction not included). Such parameterizations are depending upon environmental factors, like temperature and salinity, so their lifespan will depend upon the environmental conditions those virtual agents encounter on their way while passively transported. CLIC (Connectivity-Langrangian–IFOP-Chile) is a service platform that supports the graphical visualization of the connectivity matrices calculated from the particle trajectories files resultant of the particle-track-biological models. On CLIC users can select, from a high-resolution grid (~1km), the areas the connectivity will be calculated between them. These areas can be barrios and macrozonas. Users also can select what nodes of these areas are allowed to release and scatter particles from, depth and frequency of the initial particle release, climatic scenario (winter/summer) and type of particle (ISAv, Piscirickettsia salmonis, Caligus rogercresseyi plus an option for lifeless particles). Results include probabilities downstream (where the particles go) and upstream (where the particles come from), particle age and vertical distribution, all of them aiming to understand how currently connectivity works to eventually propose a minimum risk zonation for aquaculture purpose. Preliminary results in Chiloe inner sea shows that the risk depends not only upon dynamic conditions but upon barrios location with respect to their neighbors.Keywords: aquaculture zonation, Caligus rogercresseyi, Chilean Patagonia, coastal oceanography, connectivity, infectious salmon anemia virus, Piscirickettsia salmonis
Procedia PDF Downloads 1553689 Blockchain-Based Assignment Management System
Authors: Amogh Katti, J. Sai Asritha, D. Nivedh, M. Kalyan Srinivas, B. Somnath Chakravarthi
Abstract:
Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf,.doc,.ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators.Keywords: education technology, learning management system, decentralized applications, blockchain
Procedia PDF Downloads 843688 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure
Authors: T. Nozu, K. Hibi, T. Nishiie
Abstract:
This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure
Procedia PDF Downloads 2443687 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan
Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf
Abstract:
Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor
Procedia PDF Downloads 5843686 Analyzing Changes in Runoff Patterns Due to Urbanization Using SWAT Models
Authors: Asawari Ajay Avhad
Abstract:
The Soil and Water Assessment Tool (SWAT) is a hydrological model designed to predict the complex interactions within natural and human-altered watersheds. This research applies the SWAT model to the Ulhas River basin, a small watershed undergoing urbanization and characterized by bowl-like topography. Three simulation scenarios (LC17, LC22, and LC27) are investigated, each representing different land use and land cover (LULC) configurations, to assess the impact of urbanization on runoff. The LULC for the year 2027 is generated using the MOLUSCE Plugin of QGIS, incorporating various spatial factors such as DEM, Distance from Road, Distance from River, Slope, and distance from settlements. Future climate data is simulated within the SWAT model using historical data spanning 30 years. A susceptibility map for runoff across the basin is created, classifying runoff into five susceptibility levels ranging from very low to very high. Sub-basins corresponding to major urban settlements are identified as highly susceptible to runoff. With consideration of future climate projections, a slight increase in runoff is forecasted. The reliability of the methodology was validated through the identification of sub-basins known for experiencing severe flood events, which were determined to be highly susceptible to runoff. The susceptibility map successfully pinpointed these sub-basins with a track record of extreme flood occurrences, thus reinforcing the credibility of the assessment methodology. This study suggests that the methodology employed could serve as a valuable tool in flood management planning.Keywords: future land use impact, flood management, run off prediction, ArcSWAT
Procedia PDF Downloads 463685 Epidemiological Data of Schistosoma haematobium Bilharzia in Rural and Urban Localities in the Republic of Congo
Authors: Jean Akiana, Digne Merveille Nganga Bouanga, Nardiouf Sjelin Nsana, Wilfrid Sapromet Ngoubili, Chyvanelle Ndous Akiridzo, Vishnou Reize Ampiri, Henri-Joseph Parra, Florence Fenollar, Didier Raoult, Oleg Mediannikov, Cheikh Sadhibou Sokhna
Abstract:
Schistosoma haematobium schistosomiasis is an endemic disease in which the level of human exposure, incidence, and fatality attributed to it remains, unfortunately, high worldwide. The erection of hydroelectric infrastructures constitute a major factor in the emergence of this disease. In the context of the Republic of the Congo, which considers industrialization and modernization as two essential pillars of development, building the hydroelectric dams of Liouesso (19 Mw) and the feasibility studies of the dams of Chollet (600MW) in the Sangha, of Sounda (1000MW) in Kouilou and Kouembali (150MW) on Lefini is necessary to increase the country's energy capacities. Likewise, the urbanization of former endemic localities should take into account the maintenance of contamination points. However, health impact studies on schistosomiasis epidemiology in general and urinary bilharzia, in particular, have never been carried out in these areas, neither before nor after the erection of those dams. Participants benefited from an investigative questionnaire, urinalysis both by dipstick and urine filtrate examined under a microscope. Assessment of the genetic diversity of schistosoma species populations was considered as well as PCR analysis to confirm the test strip and microscopy tests. 405 participants were registered in five localities. The sampling was made up of a balanced population in terms of male/female ratio, which is around 1. The prevalence rate was 45% (55/123) in Nkayi, 10.40% (11/106) in Loudima, 1 case in Mbomo (West Cuvette), which would probably be imported, zero in Liouesso and Kabo. The highest oviuria (number of eggs per volume of urine) is 150 S. haematobium eggs/10ml in Nkayi, apart from the case of imported Mbomo, imported from Gabon, which has 160 S. haematobium eggs/10ml. The lowest oviuria was 2 S. haematobium eggs/10ml. Prevalence rates are still high in semi-urban areas (Nkayi). As praziquantel treatments are available and effective, it is important to step up mass treatment campaigns in high risk areas already largely initiated by the National Schistosomiasis Control Program. Prevalence rates are still high in semi-urban areas (Nkayi). As praziquantel treatments are available and effective, it is important to step up mass treatment campaigns in high risk areas already largely initiated by the National Schistosomiasis Control Program.Keywords: Bilharzia, Schistosoma haematobium, oviuria, urbanization, Congo
Procedia PDF Downloads 1493684 Evaluating Traffic Congestion Using the Bayesian Dirichlet Process Mixture of Generalized Linear Models
Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig
Abstract:
This study applied traffic speed and occupancy to develop clustering models that identify different traffic conditions. Particularly, these models are based on the Dirichlet Process Mixture of Generalized Linear regression (DML) and change-point regression (CR). The model frameworks were implemented using 2015 historical traffic data aggregated at a 15-minute interval from an Interstate 295 freeway in Jacksonville, Florida. Using the deviance information criterion (DIC) to identify the appropriate number of mixture components, three traffic states were identified as free-flow, transitional, and congested condition. Results of the DML revealed that traffic occupancy is statistically significant in influencing the reduction of traffic speed in each of the identified states. Influence on the free-flow and the congested state was estimated to be higher than the transitional flow condition in both evening and morning peak periods. Estimation of the critical speed threshold using CR revealed that 47 mph and 48 mph are speed thresholds for congested and transitional traffic condition during the morning peak hours and evening peak hours, respectively. Free-flow speed thresholds for morning and evening peak hours were estimated at 64 mph and 66 mph, respectively. The proposed approaches will facilitate accurate detection and prediction of traffic congestion for developing effective countermeasures.Keywords: traffic congestion, multistate speed distribution, traffic occupancy, Dirichlet process mixtures of generalized linear model, Bayesian change-point detection
Procedia PDF Downloads 2943683 Analysis of Digital Transformation in Banking: The Hungarian Case
Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi
Abstract:
The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.Keywords: big data, digital transformation, dynamic capabilities, mobile banking
Procedia PDF Downloads 643682 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling
Authors: Ghita Benayad
Abstract:
Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market
Procedia PDF Downloads 473681 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance
Authors: Habtamu Tkubet Ebuy
Abstract:
Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort
Procedia PDF Downloads 1043680 The Role of Phase Morphology on the Corrosion Fatigue Mechanism in Marine Steel
Authors: Victor Igwemezie, Ali Mehmanparast
Abstract:
The correct knowledge of corrosion fatigue mechanism in marine steel is very important. This is because it enables the design, selection, and use of steels for offshore applications. It also supports realistic corrosion fatigue life prediction of marine structures. A study has been conducted to increase the understanding of corrosion fatigue mechanism in marine steels. The materials investigated are normalized and advanced S355 Thermomechanical control process (TMCP) steels commonly used in the design of offshore wind turbine support structures. The experimental study was carried out by conducting corrosion fatigue tests under conditions pertinent to offshore wind turbine operations, using the state of the art facilities. A careful microstructural study of the crack growth path was conducted using metallurgical optical microscope (OM), scanning electron microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX). The test was conducted on three subgrades of S355 steel: S355J2+N, S355G8+M and S355G10+M and the data compared with similar studies in the literature. The result shows that the ferrite-pearlite morphology primarily controls the corrosion-fatigue crack growth path in marine steels. A corrosion fatigue mechanism which relies on the hydrogen embrittlement of the grain boundaries and pearlite phase is used to explain the crack propagation behaviour. The crack growth trend in the Paris region of the da/dN vs. ΔK curve is used to explain the dependency of the corrosion-fatigue crack growth rate on the ferrite-pearlite morphology.Keywords: corrosion-fatigue mechanism, fatigue crack growth rate, ferritic-pearlitic steel, microstructure, phase morphology
Procedia PDF Downloads 1603679 Effect of 12 Weeks Pedometer-Based Workplace Program on Inflammation and Arterial Stiffness in Young Men with Cardiovascular Risks
Authors: Norsuhana Omar, Amilia Aminuddina Zaiton Zakaria, Raifana Rosa Mohamad Sattar, Kalaivani Chellappan, Mohd Alauddin Mohd Ali, Norizam Salamt, Zanariyah Asmawi, Norliza Saari, Aini Farzana Zulkefli, Nor Anita Megat Mohd. Nordin
Abstract:
Inflammation plays an important role in the pathogenesis of vascular dysfunction leading to arterial stiffness. Pulse wave velocity (PWV) and augmentation index (AS), as tools for the assessment of vascular damages are widely used and have been shown to predict cardiovascular disease (CVD). C-reactive protein (CRP) is a marker of inflammation. Several studies noted that regular exercise is associated with reduced arterial stiffness. The lack of exercise among Malaysians and the increasing CVD morbidity and mortality among young men are of concern. In Malaysia data on the workplace exercise intervention is scarce. A programme was designed to enable subjects to increase their level of walking as part of their daily work routine and self-monitored by using pedometers. The aim of this study to evaluate the reducing of inflammation by measuring CRP and improvement arterial stiffness measured by carotid femoral PWV (PWVCF) and AI. A total of 70 young men (20 - 40 years) who were sedentary, achieving less than 5,000 steps/day in casual walking with 2 or more cardiovascular risk factors were recruited in Institute of Vocational Skills for Youth (IKBN Hulu Langat). Subjects were randomly assigned to a control (CG) (n=34; no change in walking) and pedometer group (PG) (n=36; minimum target: 8,000 steps/day). The CRP was measured by using immunological method while PWVCF and AI were measured using Vicorder. All parameters were measured at baseline and after 12 weeks. Data for analysis was conducted using Statistical Package of Social Sciences Version 22 (SPSS Inc., Chicago, IL, USA). At post intervention, the CG step counts were similar (4983 ± 366vs 5697 ± 407steps/day). The PG increased step count from 4996 ± 805 to 10,128 ±511 steps/day (P<0.001). The PG showed significant improvement in anthropometric variables and lipid (time and group effect p<0.001). For vascular assessment, the PG showed significantly decreased for time and effect (p<0.001) for PWV (7.21± 0.83 to 6.42 ± 0.89) m/s; AI (11.88± 6.25 to 8.83 ± 3.7) % and CRP (pre= 2.28 ± 3.09, post=1.08± 1.37mg/L). However, no changes were seen in CG. As a conclusion, a pedometer-based walking programme may be an effective strategy for promoting increased daily physical activity which reduces cardiovascular risk markers and thus improve cardiovascular health in terms of inflammation and arterial stiffness. The community intervention for health maintenance has potential to adopt walking as an exercise and adopting vascular fitness index as the performance measuring tools.Keywords: arterial stiffness, exercise, inflammation, pedometer
Procedia PDF Downloads 3533678 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest
Procedia PDF Downloads 1883677 Slope Effect in Emission Evaluation to Assess Real Pollutant Factors
Authors: G. Meccariello, L. Della Ragione
Abstract:
The exposure to outdoor air pollution causes lung cancer and increases the risk of bladder cancer. Because air pollution in urban areas is mainly caused by transportation, it is necessary to evaluate pollutant exhaust emissions from vehicles during their real-world use. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we dealt with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars. Finally the slope analysis can be correlated to the emission and consumption values in a specific road position, and it could be evaluated its influence on their behaviour.Keywords: air pollution, driving cycles, GPS signal, slope, emission factor, fuel consumption
Procedia PDF Downloads 3913676 Impact of Financial Technology Growth on Bank Performance in Gulf Cooperation Council Region
Authors: Ahmed BenSaïda
Abstract:
This paper investigates the association between financial technology (FinTech) growth and bank performance in the Gulf Cooperation Council (GCC) region. Application is conducted on a panel dataset containing the annual observations of banks covering the period from 2012 to 2021. FinTech growth is set as an explanatory variable on three proxies of bank performance. These proxies are the return on assets (ROA), return on equity (ROE), and net interest margin (NIM). Moreover, several control variables are added to the model, including bank-specific and macroeconomic variables. The results are significant as all the proxies of the bank performance are negatively affected by the growth of FinTech startups. Consequently, banks are urged to proactively invest in FinTech startups and engage in partnerships to avoid the risk of disruption.Keywords: financial technology, bank performance, GCC countries, panel regression
Procedia PDF Downloads 783675 Classification of Construction Projects
Authors: M. Safa, A. Sabet, S. MacGillivray, M. Davidson, K. Kaczmarczyk, C. T. Haas, G. E. Gibson, D. Rayside
Abstract:
To address construction project requirements and specifications, scholars and practitioners need to establish a taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.Keywords: project classification, project definition rating index (PDRI), risk, project goals alignment
Procedia PDF Downloads 6783674 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management
Procedia PDF Downloads 143673 Characterization of Erodibility Using Soil Strength and Stress-Strain Indices for Soils in Some Selected Sites in Enugu State
Authors: C. C. Egwuonwu, N. A. A. Okereke, K. O. Chilakpu, S. O. Ohanyere
Abstract:
In this study, initial soil strength indices (qu) and stress-strain characteristics, namely failure strain (ϵf), area under the stress-strain curve up to failure (Is) and stress-strain modulus between no load and failure (Es) were investigated as potential indicators for characterizing the erosion resistance of two compacted soils, namely sandy clay loam (SCL) and clay loam (CL) in some selected sites in Enugu State, Nigeria. The unconfined compressive strength (used in obtaining strength indices) and stress-strain measurements were obtained as a function of moisture content in percentage (mc %) and dry density (γd). Test were conducted over a range of 8% to 30% moisture content and 1.0 g/cm3 to 2.0 g/cm3 dry density at applied loads of 20, 40, 80, 160 and 320 kPa. Based on the results, it was found out that initial soil strength alone was not a good indicator of erosion resistance. For instance, in the comparison of exponents of mc% and γd for jet index or erosion resistance index (Ji) and the strength measurements, qu and Es agree in signs for mc%, but are opposite in signs for γd. Therefore, there is an inconsistency in exponents making it difficult to develop a relationship between the strength parameters and Ji for this data set. In contrast, the exponents of mc% and γd for Ji and ϵf and Is are opposite in signs, there is potential for an inverse relationship. The measured stress-strain characteristics, however, appeared to have potential in providing useful information on erosion resistance. The models developed for the prediction of the extent or the susceptibility of soils to erosion and subjected to sensitivity test on some selected sites achieved over 90% efficiency in their functions.Keywords: characterization of erodibility, selected sites in Enugu state, soil strength, stress-strain indices
Procedia PDF Downloads 4143672 Analysis of OPG Gene Polymorphism T245G (rs3134069) in Slovak Postmenopausal Women
Authors: I. Boroňová, J. Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, S. Mačeková, J. Poráčová, M. M. Blaščáková
Abstract:
Osteoporosis is a common multifactorial disease with a strong genetic component characterized by reduced bone mass and increased risk of fractures. Genetic factors play an important role in the pathogenesis of osteoporosis. The aim of our study was to identify the genotype and allele distribution of T245G polymorphism in OPG gene in Slovak postmenopausal women. A total of 200 unrelated Slovak postmenopausal women with diagnosed osteoporosis and 200 normal controls were genotyped for T245G (rs3134069) polymorphism of OPG gene. Genotyping was performed using the Custom Taqman®SNP Genotyping assays. Genotypes and alleles frequencies showed no significant differences (p=0.5551; p=0.6022). The results of the present study confirm the importance of T245G polymorphism in OPG gene in the pathogenesis of osteoporosis.Keywords: OPG gene, T245G polymorphism, osteoporosis, T245G polymorphism, real-time PCR
Procedia PDF Downloads 4093671 The Law of Donation and Transplantation of Human Body Organs in the Kurdistan Region of Iraq
Authors: Rebaz Sdiq Ismail
Abstract:
Organ donation and transplantation is one of the most debated topics in modern jurisprudence. It is a surgical procedure that aims to prolong a person’s life suffering from damaged or missing organs. This surgical procedure is carried out by removing an organ from a donor and transplanting it into the body of the recipient. As human life is of high value in Islamic Sharia, therefore, the donor and recipient should go through an intensive medical examination to remove any health risk associated with the organ and transplantation procedure. Thus, in carrying out the organ donation process, any violation of the Sharia decree that might cause harm to the human body is strictly prohibited. The researcher concludes that the former scholars of Islamic Sharia, along with some of the contemporary scholars, are against the entire concept of organ donation and transplant. However, the majority of contemporary scholars support organ donation.Keywords: law, donation, organ, Kurdistan, sharia
Procedia PDF Downloads 293670 Nutritional Status of Children in a Rural Food Environment, Haryana: A Paradox for the Policy Action
Authors: Neha Gupta, Sonika Verma, Seema Puri, Nikhil Tandon, Narendra K. Arora
Abstract:
The concurrent increasing prevalence of underweight and overweight/obesity among children with changing lifestyle and the rapid transitioning society has necessitated the need for a unifying/multi-level approach to understand the determinants of the problem. The present community-based cross-sectional research study was conducted to assess the associations between lifestyle behavior and food environment of the child at household, neighborhood, and school with the BMI of children (6-12 year old) (n=612) residing in three rural clusters of Palwal district, Haryana. The study used innovative and robust methods for assessing the lifestyle and various components of food environment in the study. The three rural clusters selected for the study were located at three different locations according to their access to highways in the SOMAARTH surveillance site. These clusters were significantly different from each other in terms of their socio-demographic and socio-economic profile, living conditions, environmental hygiene, health seeking behavior and retail density. Despite of being different, the quality of living conditions and environmental hygiene was poor across three clusters. The children had higher intakes of dietary energy and sugars; one-fifth share of the energy being derived from unhealthy foods, engagement in high levels of physical activity and significantly different food environment at home, neighborhood and school level. However, despite having a high energy intake, 22.5% of the recruited children were thin/severe thin, and 3% were overweight/obese as per their BMI-for-age categories. The analysis was done using multi-variate logistic regression at three-tier hierarchy including individual, household and community level. The factors significantly explained the variability in governing the risk of getting thin/severe thin among children in rural area (p-value: 0.0001; Adjusted R2: 0.156) included age (>10years) (OR: 2.1; 95% CI: 1.0-4.4), the interaction between minority category and poor SES of the household (OR: 4.4; 95% CI: 1.6-12.1), availability of sweets (OR: 0.9; 95% CI: 0.8-0.99) and cereals (OR: 0.9; 95% CI: 0.8-1.0) in the household and poor street condition (proxy indicator of the hygiene and cleanliness in the neighborhood) (OR: 0.3; 95% CI: 0.1-1.1). The homogeneity of other factors at neighborhood and school level food environment diluted the heterogeneity in the lifestyles and home environment of the recruited children and their households. However, it is evident that when various individual factors interplay at multiple levels amplifies the risk of undernutrition in a rural community. Conclusion: These rural areas in Haryana are undergoing developmental, economic and societal transition. In correspondence, no improvements in the nutritional status of children have happened. Easy access to the unhealthy foods has become a paradox.Keywords: transition, food environment, lifestyle, undernutrition, overnutrition
Procedia PDF Downloads 1803669 Estimation of Level of Pesticide in Recurrent Pregnancy Loss and Its Correlation with Paraoxanase1 Gene in North Indian Population
Authors: Apurva Singh, S. P. Jaiswar, Apala Priyadarshini, Akancha Pandey
Abstract:
Objective: The aim of this study is to find the association of PON1 gene polymorphism with pesticides In RPL subjects. Background: Recurrent pregnancy loss (RPL) is defined as three or more sequential abortions before the 20th week of gestation. Pesticides and its derivatives (organochlorine and organophosphate) are proposed to accommodate a ruler chemical for RPL in the sub-humid region of India. The paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity Methodology: This is a case-control study done in Department of Obstetrics & Gynaecology & Department of Biochemistry, K.G.M.U, Lucknow, India. The subjects were enrolled after fulfilling the inclusion & exclusion criteria. Inclusion criteria: Cases- Subject having two or more spontaneous abortions & Control- Healthy female having one or more alive child was selected. Exclusion criteria: Cases & Control- Subject having the following disease will be excluded from the study Diabetes mellitus, Hypertension, Tuberculosis, Immunocompromised patients, any endocrine disorder and genital, colon or breast cancer any other malignancies. Blood samples were collected in EDTA tubes from cases & healthy control women & genomic DNA was extracted by phenol-chloroform method. The estimation of pesticides residue from blood was done by HPLC. Biochemical estimation was also performed. Genotyping of PON1 gene polymorphism was performed by RFLP. Statistical analysis of the data was performed using the SPSS16.3 software. Results: A sum of total 14 pesticides (12 organochlorine and 2 organophosphate) selected on the basis of their persistent nature and consumption rate. The significant level of pesticide (ppb) estimated by the Mann whiney test and it was found to be significant at higher level of β-HCH (p:0.04), γ-HCH (p:0.001), δ-HCH (p: 0.002), chloropyrifos (p:0.001), pp-DDD (p:0.001) and fenvalrate (p: 0.001) in case group compare to its control. The level of antioxidant enzymes were found to be significantly decreased among the cases. Wild homozygous TT was more frequent and prevalent among control groups. However, heterozygous group (Tt) was more in cases than control groups (CI-0.3-1.3) (p=0.06). Conclusion: Higher levels of pesticides with endocrine disrupting potential in cases indicate the possible role of these compounds as one of the causes of recurrent pregnancy loss. Possibly, increased pesticide level appears to indicate increased levels of oxidative damage that has been associated with the possible cause of Recurrent Miscarriage, it may reflect indirect evidence of toxicity rather than the direct cause. Since both factors are reported to increase risk, individuals with higher levels of these 'Toxic compounds' especially in 'high-risk genotypes' might be more susceptible to recurrent pregnancy loss.Keywords: paraoxonase, pesticides, PON1, RPL
Procedia PDF Downloads 1433668 Teamwork on Innovation in Young Enterprises: A Qualitative Analysis
Authors: Polina Trusova
Abstract:
The majority of young enterprises is founded and run by teams and develops new, innovative products or services. While problems within the team are considered to be an important reason for the failure of young enterprises, effective teamwork on innovation may be a key success factor. It may require special teamwork design or members’ creativity not needed during work routine. However, little is known about how young enterprises develop innovative solutions in teams, what makes their teamwork special and what influences its effectivity. Extending this knowledge is essential for understanding the success and failure factors for young enterprises. Previous research focused on working on innovation or professional teams in general. Rare studies combining these issues usually concentrate on homogenous groups like IT expert teams in innovation projects of big, well-established firms. The transferability of those studies’ findings to the entrepreneurial context is doubtful because of several reasons why teamwork should differ significantly between big, well-established firms and young enterprises. First, teamwork is conducted by team members, e.g., employees. The personality of employees in young enterprises, in contrast to that of employees in established firms, has been shown to be more similar to the personality of entrepreneurs. As entrepreneurs were found to be more open to experience and show less risk aversion, it may have a positive impact on their teamwork. Persons open to novelty are more likely to develop or accept a creative solution, which is especially important for teamwork on innovation. Secondly, young enterprises are often characterized by a flat hierarchy, so in general, teamwork should be more participative there. It encourages each member (and not only the founder) to produce and discuss innovative ideas, increasing their variety and enabling the team to select the best idea from the larger idea pool. Thirdly, teams in young enterprises are often multidisciplinary. It has some advantages but also increases the risk of internal conflicts making teamwork less effective. Despite the key role of teamwork on innovation and presented barriers for transferring existing evidence to the context of young enterprises, only a few researchers have addressed this issue. In order to close the existing research gap, to explore and understand how innovations are developed in teams of young enterprises and which factors influencing teamwork may be especially relevant for such teams, a qualitative study has been developed. The study consisting of 20 half-structured interviews with (co-)founders of young innovative enterprises in the UK and USA started in September 2017. The interview guide comprises but is not limited to teamwork dimensions discussed in literature like members’ skill or authority differentiation. Data will be evaluated following the rules of qualitative content analysis. First results indicate some factors which may be relevant especially for teamwork in young innovative enterprises. They will enrich the scientific discussion and provide the evidence needed to test a possible causality between identified factors and teamwork effectivity in future research on young innovative enterprises. Results and their discussion can be presented at the conference.Keywords: innovation, qualitative study, teamwork, young enterprises
Procedia PDF Downloads 1983667 Gender and Asylum: A Critical Reassessment of the Case Law of the European Court of Human Right and of United States Courts Concerning Gender-Based Asylum Claims
Authors: Athanasia Petropoulou
Abstract:
While there is a common understanding that a person’s sex, gender, gender identity, and sexual orientation shape every stage of the migration experience, theories of international migration had until recently not been focused on exploring and incorporating a gender perspective in their analysis. In a similar vein, refugee law has long been the object of criticisms for failing to recognize and respond appropriately to women’s and sexual minorities’ experiences of persecution. The present analysis attempts to depict the challenges faced by the European Court of Human Rights (ECtHR) and U.S. courts when adjudicating in cases involving asylum claims with a gendered perspective. By providing a comparison between adjudicating strategies of international and national jurisdictions, the article aims to identify common or distinctive approaches in addressing gendered based claims. The paper argues that, despite the different nature of the judicial bodies and the different legal instruments applied respectively, judges face similar challenges in this context and often fail to qualify and address the gendered dimensions of asylum claims properly. The ECtHR plays a fundamental role in safeguarding human rights protection in Europe not only for European citizens but also for people fleeing violence, war, and dire living conditions. However, this role becomes more difficult to fulfill, not only because of the obvious institutional constraints but also because cases related to claims of asylum seekers concern a domain closely linked to State sovereignty. Amid the current “refugee crisis,” risk assessment performed by national authorities, like in the process of asylum determination, is shaped by wider geopolitical and economic considerations. The failure to recognize and duly address the gendered dimension of non - refoulement claims, one of the many shortcomings of these processes, is reflected in the decisions of the ECtHR. As regards U.S. case law, the study argues that U.S. courts either fail to apply any connection between asylum claims and their gendered dimension or tend to approach gendered based claims through the lens of the “political opinion” or “membership of a particular social group” reasons of fear of persecution. This exercise becomes even more difficult, taking into account that the U.S. asylum law inappropriately qualifies gendered-based claims. The paper calls for more sociologically informed decision-making practices and for a more contextualized and relational approach in the assessment of the risk of ill-treatment and persecution. Such an approach is essential for unearthing the gendered patterns of persecution and addressing effectively related claims, thus securing the human rights of asylum seekers.Keywords: asylum, European court of human rights, gender, human rights, U.S. courts
Procedia PDF Downloads 1083666 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7
Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam
Abstract:
Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints
Procedia PDF Downloads 3233665 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies
Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid
Abstract:
Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance
Procedia PDF Downloads 5033664 Convolution Neural Network Based on Hypnogram of Sleep Stages to Predict Dosages and Types of Hypnotic Drugs for Insomnia
Authors: Chi Wu, Dean Wu, Wen-Te Liu, Cheng-Yu Tsai, Shin-Mei Hsu, Yin-Tzu Lin, Ru-Yin Yang
Abstract:
Background: The results of previous studies compared the benefits and risks of receiving insomnia medication. However, the effects between hypnotic drugs used and enhancement of sleep quality were still unclear. Objective: The aim of this study is to establish a prediction model for hypnotic drugs' dosage used for insomnia subjects and associated the relationship between sleep stage ratio change and drug types. Methodologies: According to American Academy of Sleep Medicine (AASM) guideline, sleep stages were classified and transformed to hypnogram via the polysomnography (PSG) in a hospital in New Taipei City (Taiwan). The subjects with diagnosis for insomnia without receiving hypnotic drugs treatment were be set as the comparison group. Conversely, hypnotic drugs dosage within the past three months was obtained from the clinical registration for each subject. Furthermore, the collecting subjects were divided into two groups for training and testing. After training convolution neuron network (CNN) to predict types of hypnotics used and dosages are taken, the test group was used to evaluate the accuracy of classification. Results: We recruited 76 subjects in this study, who had been done PSG for transforming hypnogram from their sleep stages. The accuracy of dosages obtained from confusion matrix on the test group by CNN is 81.94%, and accuracy of hypnotic drug types used is 74.22%. Moreover, the subjects with high ratio of wake stage were correctly classified as requiring medical treatment. Conclusion: CNN with hypnogram was potentially used for adjusting the dosage of hypnotic drugs and providing subjects to pre-screening the types of hypnotic drugs taken.Keywords: convolution neuron network, hypnotic drugs, insomnia, polysomnography
Procedia PDF Downloads 1953663 Inpatient Glycemic Management Strategies and Their Association with Clinical Outcomes in Hospitalized SARS-CoV-2 Patients
Authors: Thao Nguyen, Maximiliano Hyon, Sany Rajagukguk, Anna Melkonyan
Abstract:
Introduction: Type 2 Diabetes is a well-established risk factor for severe SARS-CoV-2 infection. Uncontrolled hyperglycemia in patients with established or newly diagnosed diabetes is associated with poor outcomes, including increased mortality and hospital length of stay. Objectives: Our study aims to compare three different glycemic management strategies and their association with clinical outcomes in patients hospitalized for moderate to severe SARS-CoV-2 infection. Identifying optimal glycemic management strategies will improve the quality of patient care and improve their outcomes. Method: This is a retrospective observational study on patients hospitalized at Adventist Health White Memorial with severe SARS-CoV-2 infection from 11/1/2020 to 02/28/2021. The following inclusion criteria were used: positive SARS-CoV-2 PCR test, age >18 yrs old, diabetes or random glucose >200 mg/dL on admission, oxygen requirement >4L/min, and treatment with glucocorticoids. Our exclusion criteria included: ICU admission within 24 hours, discharge within five days, death within five days, and pregnancy. The patients were divided into three glycemic management groups: Group 1, managed solely by the Primary Team, Group 2, by Pharmacy; and Group 3, by Endocrinologist. Primary outcomes were average glucose on Day 5, change in glucose between Days 3 and 5, and average insulin dose on Day 5 among groups. Secondary outcomes would be upgraded to ICU, inpatient mortality, and hospital length of stay. For statistics, we used IBM® SPSS, version 28, 2022. Results: Most studied patients were Hispanic, older than 60, and obese (BMI >30). It was the first CV-19 surge with the Delta variant in an unvaccinated population. Mortality was markedly high (> 40%) with longer LOS (> 13 days) and a high ICU transfer rate (18%). Most patients had markedly elevated inflammatory markers (CRP, Ferritin, and D-Dimer). These, in combination with glucocorticoids, resulted in severe hyperglycemia that was difficult to control. Average glucose on Day 5 was not significantly different between groups primary vs. pharmacy vs. endocrine (220.5 ± 63.4 vs. 240.9 ± 71.1 vs. 208.6 ± 61.7 ; P = 0.105). Change in glucose from days 3 to 5 was not significantly different between groups but trended towards favoring the endocrinologist group (-26.6±73.6 vs. 3.8±69.5 vs. -32.2±84.1; P= 0.052). TDD insulin was not significantly different between groups but trended towards higher TDD for the endocrinologist group (34.6 ± 26.1 vs. 35.2 ± 26.4 vs. 50.5 ± 50.9; P=0.054). The endocrinologist group used significantly more preprandial insulin compared to other groups (91.7% vs. 39.1% vs. 65.9% ; P < 0.001). The pharmacy used more basal insulin than other groups (95.1% vs. 79.5% vs. 79.2; P = 0.047). There were no differences among groups in the clinical outcomes: LOS, ICU upgrade, or mortality. Multivariate regression analysis controlled for age, sex, BMI, HbA1c level, renal function, liver function, CRP, d-dimer, and ferritin showed no difference in outcomes among groups. Conclusion: Given high-risk factors in our population, despite efforts from the glycemic management teams, it’s unsurprising no differences in clinical outcomes in mortality and length of stay.Keywords: glycemic management, strategies, hospitalized, SARS-CoV-2, outcomes
Procedia PDF Downloads 448