Search results for: product recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5435

Search results for: product recovery

965 Bioconversion of Capsaicin Using the Optimized Culture Broth of Lipase Producing Bacterium of Stenotrophomonas maltophilia

Authors: Doostishoar Farzad, Forootanfar Hamid, Hasan-Bikdashti Morvarid, Faramarzi Mohammad Ali, Ameri Atefe

Abstract:

Introduction: Chili peppers and related plants in the family of capsaicum produce a mixture of capsaicins represent anticarcinogenic, antimutagenic, and chemopreventive properties. Vanillylamine, the main product of capsaicin hydrolysis is applied as a precursor for manufacturing of natural vanillin (a famous flavor). It is also used in the production of synthetic capsaicins harboring a wide variety of physiological and biological activities such as antibacterial and anti-inflammatory effects as well as enhancing of adrenal catecholamine secretion, analgesic, and antioxidative activities. The ability of some lipases, such as Novozym 677 BG and Novozym 435 and also some proteases e.g. trypsine and penicillin acylase, in capsaicin hydrolysis and green synthesis of vanillylamine has been investigated. In the present study the optimized culture broth of a newly isolated lipase-producing bacterial strain (Stenotrophomonas maltophilia) applied for the hydrolysis of capsaicin. Materials and methods: In order to compare hydrolytic activity of optimized and basal culture broth through capsaicin 2 mL of each culture broth (as sources of lipase) was introduced to capsaicin solution (500 mg/L) and then the reaction mixture (total volume of 3 mL) was incubated at 40 °C and 120 rpm. Samples were taken every 2 h and analyzed for vanillylamine formation using HPLC. Same reaction mixture containing boiled supernatant (to inactivate lipase) designed as blank and each experiment was done in triplicate. Results: 215 mg/L of vanillylamine was produced after the treatment of capsaicin using the optimized medium for 18 h, while only 61 mg/L of vanillylamine was detected in presence of the basal medium under the same conditions. No capsaicin conversion was observed in the blank sample, in which lipase activity was suppressed by boiling of the sample for 10 min. Conclusion: The application of optimized broth culture for the hydrolysis of capsaicin led to a 43% conversion of that pungent compound to vanillylamine.

Keywords: Capsaicin, green synthesis, lipase, stenotrophomonas maltophilia

Procedia PDF Downloads 481
964 The Study of Heat and Mass Transfer for Ferrous Materials' Filtration Drying

Authors: Dmytro Symak

Abstract:

Drying is a complex technologic, thermal and energy process. Energy cost of drying processes in many cases is the most costly stage of production, and can be over 50% of total costs. As we know, in Ukraine over 85% of Portland cement is produced moist, and the finished product energy costs make up to almost 60%. During the wet cement production, energy costs make up over 5500 kJ / kg of clinker, while during the dry only 3100 kJ / kg, that is, switching to a dry Portland cement will allow result into double cutting energy costs. Therefore, to study raw materials drying process in the manufacture of Portland cement is very actual task. The fine ferrous materials drying (small pyrites, red mud, clay Kyoko) is recommended to do by filtration method, that is one of the most intense. The essence of filtration method drying lies in heat agent filtering through a stationary layer of wet material, which is located on the perforated partition, in the "layer-dispersed material - perforated partition." For the optimum drying purposes, it is necessary to establish the dependence of pressure loss in the layer of dispersed material, and the values of heat and mass transfer, depending on the speed of the gas flow filtering. In our research, the experimentally determined pressure loss in the layer of dispersed material was generalized based on dimensionless complexes in the form and coefficients of heat exchange. We also determined the relation between the coefficients of mass and heat transfer. As a result of theoretic and experimental investigations, it was possible to develop a methodology for calculating the optimal parameters for the thermal agent and the main parameters for the filtration drying installation. The comparison of calculated by known operating expenses methods for the process of small pyrites drying in a rotating drum and filtration method shows to save up to 618 kWh per 1,000 kg of dry material and 700 kWh during filtration drying clay.

Keywords: drying, cement, heat and mass transfer, filtration method

Procedia PDF Downloads 262
963 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities

Authors: K. Shailaja

Abstract:

The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.

Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala

Procedia PDF Downloads 431
962 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 389
961 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques

Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti

Abstract:

Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.

Keywords: antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS

Procedia PDF Downloads 205
960 Evaluation of Cooperative Hand Movement Capacity in Stroke Patients Using the Cooperative Activity Stroke Assessment

Authors: F. A. Thomas, M. Schrafl-Altermatt, R. Treier, S. Kaufmann

Abstract:

Stroke is the main cause of adult disability. Especially upper limb function is affected in most patients. Recently, cooperative hand movements have been shown to be a promising type of upper limb training in stroke rehabilitation. In these movements, which are frequently found in activities of daily living (e.g. opening a bottle, winding up a blind), the force of one upper limb has to be equally counteracted by the other limb to successfully accomplish a task. The use of standardized and reliable clinical assessments is essential to evaluate the efficacy of therapy and the functional outcome of a patient. Many assessments for upper limb function or impairment are available. However, the evaluation of cooperative hand movement tasks are rarely included in those. Thus, the aim of this study was (i) to develop a novel clinical assessment (CASA - Cooperative Activity Stroke Assessment) for the evaluation of patients’ capacity to perform cooperative hand movements and (ii) to test its inter- and interrater reliability. Furthermore, CASA scores were compared to current gold standard assessments for upper extremity in stroke patients (i.e. Fugl-Meyer Assessment, Box & Blocks Test). The CASA consists of five cooperative activities of daily living including (1) opening a jar, (2) opening a bottle, (3) open and closing of a zip, (4) unscrew a nut and (5) opening a clipbox. Here, the goal is to accomplish the tasks as fast as possible. In addition to the quantitative rating (i.e. time) which is converted to a 7-point scale, also the quality of the movement is rated in a 4-point scale. To test the reliability of CASA, fifteen stroke subjects were tested within a week twice by the same two raters. Intra-and interrater reliability was calculated using the intraclass correlation coefficient (ICC) for total CASA score and single items. Furthermore, Pearson-correlation was used to compare the CASA scores to the scores of Fugl-Meyer upper limb assessment and the box and blocks test, which were assessed in every patient additionally to the CASA. ICC scores of the total CASA score indicated an excellent- and single items established a good to excellent inter- and interrater reliability. Furthermore, the CASA score was significantly correlated to the Fugl-Meyer and Box & Blocks score. The CASA provides a reliable assessment for cooperative hand movements which are crucial for many activities of daily living. Due to its non-costly setup, easy and fast implementation, we suggest it to be well suitable for clinical application. In conclusion, the CASA is a useful tool in assessing the functional status and therapy related recovery in cooperative hand movement capacity in stroke patients.

Keywords: activitites of daily living, clinical assessment, cooperative hand movements, reliability, stroke

Procedia PDF Downloads 320
959 Optimization of Horticultural Crops by Using the Peats from Rawa Pening Lake as Soil Conditioner

Authors: Addharu Eri, Ningsih P. Lestari, Setyorini Adheliya, Syaiputri Khaidifah

Abstract:

Rawa Pening is a lake at the Ambarawa Basin in Central Java, Indonesia. It serves as a source of power (hydroelectricity), irrigation, and flood control. The potential of this lake is getting worse by the presence of aquatic plants (Eichhornia crassipes) that grows wild, and it can make the lake covered by the cumulation of rotten E. crassipes. This cumulation causes the sediment formation which has high organic material composition. Sediment formation will be lead into a shallowing of the lake and affect water’s quality. The deposition of organic material produces methane gas and hydrogen sulfide, which in rain would turn the water muddy and decompose. Decomposition occuring in the water due to microbe activity in lake's water. The shallowing of Rawa Pening Lake not only will physically can reduce water discharge, but it also has ecologically major impact on water organism. The condition of Rawa Pening Lake peats can not be considered as unimportant issue. One of the solutions that can be applied is by using the peats as a compound materials on growing horticultural crops because the organic materials content on the mineral soil is low, particularly on an old soils. The horticultural crops required organic materials for growth promoting. The horticultural crops that use in this research is mustard cabbage (Brassica sp.). Using Rawa Pening's peats as the medium of plants with high organic materials that also can ameliorate soil’s physical properties, and indirectly serves as soil conditioner. Research will be focus on the peat’s contents and mustard cabbage product’s content. The contents that will be examined is the N-available, Ca, Mg, K, P, and C-organic. The analysis of Ca, Mg, and K is use soil base saturation measurement method and extracting soil is use NH4OAC solution. The aim of this study is to use the peats of Rawa Pening Lake as soil conditioner and increase the productivity of Brassica sp.

Keywords: Brassica sp., peats, rawa pening lake, soil conditioner

Procedia PDF Downloads 252
958 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 110
957 Valorisation of Mango Seed: Response Surface Methodology Based Optimization of Starch Extraction from Mango Seeds

Authors: Tamrat Tesfaye, Bruce Sithole

Abstract:

Box-Behnken Response surface methodology was used to determine the optimum processing conditions that give maximum extraction yield and whiteness index from mango seed. The steeping time ranges from 2 to 12 hours and slurring of the steeped seed in sodium metabisulphite solution (0.1 to 0.5 w/v) was carried out. Experiments were designed according to Box-Behnken Design with these three factors and a total of 15 runs experimental variables of were analyzed. At linear level, the concentration of sodium metabisulphite had significant positive influence on percentage yield and whiteness index at p<0.05. At quadratic level, sodium metabisulphite concentration and sodium metabisulphite concentration2 had a significant negative influence on starch yield; sodium metabisulphite concentration and steeping time*temperature had significant (p<0.05) positive influence on whiteness index. The adjusted R2 above 0.8 for starch yield (0.906465) and whiteness index (0.909268) showed a good fit of the model with the experimental data. The optimum sodium metabisulphite concentration, steeping hours, and temperature for starch isolation with maximum starch yield (66.428%) and whiteness index (85%) as set goals for optimization with the desirability of 0.91939 was 0.255w/v concentration, 2hrs and 50 °C respectively. The determined experimental value of each response based on optimal condition was statistically in accordance with predicted levels at p<0.05. The Mango seeds are the by-products obtained during mango processing and possess disposal problem if not handled properly. The substitution of food based sizing agents with mango seed starch can contribute as pertinent resource deployment for value-added product manufacturing and waste utilization which might play significance role of food security in Ethiopia.

Keywords: mango, synthetic sizing agent, starch, extraction, textile, sizing

Procedia PDF Downloads 232
956 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications

Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu

Abstract:

Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. a­phase microstructure for the EBM production contrast to the a’­phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.

Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)

Procedia PDF Downloads 455
955 Nanotextiles to Marine Collagen: Advancing Skin Care Through Textile Technology

Authors: Anushka Saxena, Rakhi Wahee Pratap

Abstract:

Skincare textiles, an emerging field at the crossroads of textile technology and wellness, offer groundbreaking innovations that aim to enhance health and well-being through everyday wear. This research paper explores the diverse spectrum of skin-friendly textiles, with a focus on key categories such as cosmetotextiles, skincare finishes, marine collagen fabrics, and nanotextiles. These developments reflect a shift towards a more holistic approach to clothing, where garments not only serve as fashion or protection but also contribute actively to personal care and wellness. Cosmetotextiles represent a transformative fusion of beauty and textile industries, where fabrics are impregnated with active cosmetic ingredients that provide skincare benefits as they are worn. By incorporating substances such as vitamins, moisturizers, essential oils, and antioxidants, these textiles continuously release beneficial ingredients to the skin throughout the day. The result is improved skin hydration, enhanced smoothness, and targeted therapeutic effects that redefine how clothing can interact with the body. Marine collagen fabrics introduce a novel approach to skincare, harnessing collagen derived from marine life to improve skin elasticity, hydration, and overall texture. With their natural bioactive compounds, these textiles can help stimulate skin repair and rejuvenation, positioning them as a promising tool in both beauty and medical applications. Marine collagen offers the dual benefit of contributing to sustainable textiles while delivering scientifically-backed skincare benefits. Nanotextiles, on the other hand, leverage the advancements in nanotechnology by integrating nanoparticles into fabric structures. These textiles exhibit multifunctional properties, such as antimicrobial action, UV protection, and wound-healing capabilities, making them highly suitable for medical textiles. Nanotextiles provide an avenue for creating clothing that not only protects the skin from environmental aggressors but also aids in recovery, regeneration, and long-term health maintenance. This paper provides an in-depth overview of healing textiles, examining their current advancements, practical applications, and the challenges faced in their development. Furthermore, it explores the future prospects of this innovative field, particularly its potential in bridging the gap between cutting-edge technology and traditional textile practices. As consumer demand for multifunctional and health-promoting textiles grows, healing textiles present a promising solution for improving quality of life through fabric innovation.

Keywords: skincare textiles, nanotechnology, cosmetotextiles, nanotextiles, marine collagen textiles and health

Procedia PDF Downloads 6
954 Development of a Predictive Model to Prevent Financial Crisis

Authors: Tengqin Han

Abstract:

Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.

Keywords: delinquency, mortgage, model development, model validation

Procedia PDF Downloads 228
953 The Rapid Industrialization Model

Authors: Fredrick Etyang

Abstract:

This paper presents a Rapid Industrialization Model (RIM) designed to support existing industrialization policies, strategies and industrial development plans at National, Regional and Constituent level in Africa. The model will reinforce efforts to attainment of inclusive and sustainable industrialization of Africa by state and non-state actors. The overall objective of this model is to serve as a framework for rapid industrialization in developing economies and the specific objectives range from supporting rapid industrialization development to promoting a structural change in the economy, a balanced regional industrial growth, achievement of local, regional and international competitiveness in areas of clear comparative advantage in industrial exports and ultimately, the RIM will serve as a step-by-step guideline for the industrialization of African Economies. This model is a product of a scientific research process underpinned by desk research through the review of African countries development plans, strategies, datasets, industrialization efforts and consultation with key informants. The rigorous research process unearthed multi-directional and renewed efforts towards industrialization of Africa premised on collective commitment of individual states, regional economic communities and the African union commission among other strategic stakeholders. It was further, established that the inputs into industrialization of Africa outshine the levels of industrial development on the continent. The RIM comes in handy to serve as step-by-step framework for African countries to follow in their industrial development efforts of transforming inputs into tangible outputs and outcomes in the short, intermediate and long-run. This model postulates three stages of industrialization and three phases toward rapid industrialization of African economies, the model is simple to understand, easily implementable and contextualizable with high return on investment for each unit invested into industrialization supported by the model. Therefore, effective implementation of the model will result into inclusive and sustainable rapid industrialization of Africa.

Keywords: economic development, industrialization, economic efficiency, exports and imports

Procedia PDF Downloads 85
952 Partnering with Stakeholders to Secure Digitization of Water

Authors: Sindhu Govardhan, Kenneth G. Crowther

Abstract:

Modernisation of the water sector is leading to increased connectivity and integration of emerging technologies with traditional ones, leading to new security risks. The convergence of Information Technology (IT) with Operation Technology (OT) results in solutions that are spread across larger geographic areas, increasingly consist of interconnected Industrial Internet of Things (IIOT) devices and software, rely on the integration of legacy with modern technologies, use of complex supply chain components leading to complex architectures and communication paths. The result is that multiple parties collectively own and operate these emergent technologies, threat actors find new paths to exploit, and traditional cybersecurity controls are inadequate. Our approach is to explicitly identify and draw data flows that cross trust boundaries between owners and operators of various aspects of these emerging and interconnected technologies. On these data flows, we layer potential attack vectors to create a frame of reference for evaluating possible risks against connected technologies. Finally, we identify where existing controls, mitigations, and other remediations exist across industry partners (e.g., suppliers, product vendors, integrators, water utilities, and regulators). From these, we are able to understand potential gaps in security, the roles in the supply chain that are most likely to effectively remediate those security gaps, and test cases to evaluate and strengthen security across these partners. This informs a “shared responsibility” solution that recognises that security is multi-layered and requires collaboration to be successful. This shared responsibility security framework improves visibility, understanding, and control across the entire supply chain, and particularly for those water utilities that are accountable for safe and continuous operations.

Keywords: cyber security, shared responsibility, IIOT, threat modelling

Procedia PDF Downloads 77
951 The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components

Authors: Alonggot Limcharoen, Jintana Wannarat, Vorawat Panich

Abstract:

This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company’s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target.

Keywords: hard disk drive, line balancing, ECRS, simulation, arena program

Procedia PDF Downloads 227
950 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.

Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis

Procedia PDF Downloads 615
949 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy

Procedia PDF Downloads 320
948 The Effect of Restaurant Residuals on Performance of Japanese Quail

Authors: A. A. Saki, Y. Karimi, H. J. Najafabadi, P. Zamani, Z. Mostafaie

Abstract:

The restaurant residuals reasons such as competition between human and animal consumption of cereals, increasing environmental pollution and the high cost of production of livestock products is important. Therefore, in this restaurant residuals have a high nutritional value (protein and high energy) that it is possible can replace some of the poultry diets are especially Japanese quail. Today, the challenges of processing and consumption of these lesions occurring in modern industry would be confronting. Increasing costs, pressures, and problems associated with waste excretion, the need for re-evaluation and utilization of waste to livestock and poultry feed fortifies. This study aimed to investigate the effects of different levels of restaurant residuals on performance of 300 layer Japanese quails. This experiment included 5 treatments, 4 replicates, and 15 quails in each from 10 to 18 weeks age in a completely randomized design (CRD). The treatments consist of basal diet including corn and soybean meal (without residual restaurants), and treatments 2, 3, 4 and 5, includes a basal diet containing 5, 10, 15 and 20% of restaurant residuals, respectively. There were no significant effect of restaurant residuals levels on body weight (BW), feed conversion ratio (FCR), percentage of egg production (EP), egg mass (EM) between treatments (P > 0/05). However, feed intake (FI) of 5% restaurant residual was significantly higher than 20% treatment (P < 0/05). Egg weight (EW) was also higher by receiving 20% restaurant residuals compared with 10% in this respect (P < 0/05). Yolk weight (YW) of treatments containing 10 and 20% of the residual restaurant were significantly higher than control (P < 0/05). Eggs white weight (EWW) of 20 and 5% restaurants residual treatments were significantly increased compared by 10% (P < 0/05). Furthermore, EW, egg weight to shell surface area and egg surface area in 20% treatment were significantly higher than control and 10% treatment (P < 0/05). The overall results of this study have shown that restaurant residuals for laying quail diets in levels of 10 and 15 percent could be replaced with a part of the quail ration without any adverse effect.

Keywords: by-product, laying quail, performance, restaurant residuals

Procedia PDF Downloads 167
947 Properties Soft Cheese as Diversification of Dangke: A Natural Cheese of South Sulawesi Indonesia

Authors: Ratmawati Malaka, Effendi Abustam, Kusumandari Indah Prahesti, Sudirman Baco

Abstract:

Dangke is natural cheese from Enrekang South Sulawesi, Indonesia produced through aglutination buffalo milk, cow, goat or sheep using the sap of papaya (Carica papaya). Dangke has been widely known in South Sulawesi but this soft cheese product diversification by using passion fruit juice as milk clotting agents has not been used. Passion fruit juice has a high acidity with a pH of around 4 - 4.5 and has a proteolytic enzyme, so that it can be used to agglutinate milk. The purpose of this study was to investigate the nature Dangke using passion fruit juice as coagulate milk. Dangke made by 10 lt of raw milk by heating at a temperature of 73oC with coagulant passion fruit juice (7.5% and 10%), and added 1% salt. Curd clot and then be formed using a coconut shell, is then pressed until the cheese is compact. The cheese is then observed for 28 days ripening at a temperature of about 5 ° C. Dangke then studied to violence, pH, fat levels and microstructure. Hardness is determined using CD-shear Force, pH is measured using a pH meter Hanna, and fat concentrations were analyzed with methods of proximate. Microstructure viewed using a light microscope with magnification 1000 x. The results showed that the levels of clotting material very significant influence on hardness, pH, and lipid levels. Maturation increase the hardness but lower the pH, the level of fat soft cheese with an average Dangke respectively 21.4% and 30.5% on 7.5% addition of passion fruit juice and 10%. Dangke violence is increasing with the increasing maturation time (1.38 to 3.73 kg / cm), but Dangke pH was decreased by the increase in storage maturation (5.34 to 4.1). Microktrukture cheeses coagulated with 10% of the passion fruit are very firmer and compact with a full globular fat of 7.5%. But the sensory properties of the soft cheese similar in both treatment. The manufacturing process with the addition of coagulant passion fruit juice on making Dangke affect hardness, pH, fat content and microstructure during storage at 5 ° C for 1 d - 28 d.

Keywords: dangke, passion fruits, microstructure, cheese

Procedia PDF Downloads 411
946 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings

Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier

Abstract:

Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.

Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests

Procedia PDF Downloads 205
945 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 91
944 Cold Formed Steel Sections: Analysis, Design and Applications

Authors: A. Saha Chaudhuri, D. Sarkar

Abstract:

In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.

Keywords: cold form steel sections, applications, present research review, blast resistant design

Procedia PDF Downloads 150
943 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.

Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling

Procedia PDF Downloads 434
942 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 140
941 Environmental Degradation and Sustainable Measures: A Case Study in Nepal

Authors: Megha Raj Regmi

Abstract:

Water Supply and Sanitation coverage in Nepal is not satisfactory in South Asia. Far less than expected achievements have been realized in sanitation following the SDG for Nepal. There are so many queues of buckets to fetch water in the heart of the capital city Kathmandu. In Kathmandu Valley, daily water demand is 400 million litres, but the supply is only 200 million litres daily. Over- exploitation of ground water and traditional water sources causing the water levels to drop to alarming levels while most of the traditional waterspouts are also drying up. While about 40% of the World's population is deprived of drinking water, the urban populace uses excessive quantities of fresh water to flush the excreta. Water Supply and Basic Sanitation coverage in Nepal is 86% and 92%, respectively, of the total population. This research work basically deals with more than one thousand dry toilets constructed in peri-urban areas. The work has used appropriate technology and studied their performances in the context of Nepal based on complete laboratory analyses and regular monitoring. It has been found that dry toilets have a clear advantage in NPK recovery over traditional water-borne sanitation technology. This paper also deals with the effect of temperature in the decomposition process in dry toilets and also focuses on the different distinct technologies employed in Kathmandu Valley. This paper suggests the modifications needed in the implementation and study of the effect of human urine in composting and application on agriculture and the experience of more than one thousand Dry toilets in Kathmandu Valley. It also deals with the practices of bio-gas generation and community-led total sanitation to cope with the challenges of sanitation and hygiene in Nepal. The paper also describes in depth the different types of biomass energy production methods from the human and cattle manure units, including bio-gas generation from the kitchen wastes produced by a student hostel mixed with toilet waste. The uses of decomposed feces as a soil conditioner have been described along with the challenges and prospects of the uses of urine in agriculture as eco-friendly fertilizer in the context of Nepal. Finally, the paper exhibits a comparative study of all types of dry toilet developments in developed and developing countries like Australia, South Korea, Malaysia, China, India, Ukraine and Nepal. The community groups in our financial assistance have made many models of public toilets with biogas which are very successful in the height of 600 m up to 2000 meters from the mean sea level. In conclusion it makes a plea for the acceptance of these toilets for planners and decision makers with a set of pragmatic recommendations.

Keywords: bio- gas public toilet, dry toilet, low-cost technology, sustainable sanitation, total sanitation

Procedia PDF Downloads 14
940 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia

Authors: Zelalem Teshager

Abstract:

The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.

Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions

Procedia PDF Downloads 55
939 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines

Authors: Chandra Shekhar Verma, Umesh Chandra Mishra

Abstract:

Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.

Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter

Procedia PDF Downloads 173
938 Benefits of Shaping a Balance on Environmental and Economic Sustainability for Population Health

Authors: Edna Negron-Martinez

Abstract:

Our time's global challenges and trends —like those associated with climate change, demographics displacements, growing health inequalities, and increasing burden of diseases— have complex connections to the determinants of health. Information on the burden of disease causes and prevention is fundamental for public health actions, like preparedness and responses for disasters, and recovery resources after the event. For instance, there is an increasing consensus about key findings of the effects and connections of the global burden of disease, as it generates substantial healthcare costs, consumes essential resources and prevents the attainment of optimal health and well-being. The goal of this research endeavor is to promote a comprehensive understanding of the connections between social, environmental, and economic influences on health. These connections are illustrated by pulling from clearly the core curriculum of multidisciplinary areas —as urban design, energy, housing, and economy— as well as in the health system itself. A systematic review of primary and secondary data included a variety of issues as global health, natural disasters, and critical pollution impacts on people's health and the ecosystems. Environmental health is challenged by the unsustainable consumption patterns and the resulting contaminants that abound in many cities and urban settings around the world. Poverty, inadequate housing, and poor health are usually linked. The house is a primary environmental health context for any individual and especially for more vulnerable groups; such as children, older adults and those who are sick. Nevertheless, very few countries show strong decoupling of environmental degradation from economic growth, as indicated by a recent 2017 Report of the World Bank. Worth noting, the environmental fraction of the global burden of disease in a 2016 World Health Organization (WHO) report estimated that 12.6 million global deaths, accounting for 23% (95% CI: 13-34%) of all deaths were attributable to the environment. Among the environmental contaminants include heavy metals, noise pollution, light pollution, and urban sprawl. Those key findings make a call to the significance to urgently adopt in a global scale the United Nations post-2015 Sustainable Development Goals (SDGs). The SDGs address the social, environmental, and economic factors that influence health and health inequalities, advising how these sectors, in turn, benefit from a healthy population. Consequently, more actions are necessary from an inter-sectoral and systemic paradigm to enforce an integrated sustainability policy implementation aimed at the environmental, social, and economic determinants of health.

Keywords: building capacity for workforce development, ecological and environmental health effects of pollution, public health education, sustainability

Procedia PDF Downloads 109
937 Effect of Oxidative Stress on Glutathione Reductase Activity of Escherichia coli Clinical Isolates from Patients with Urinary Tract Infection

Authors: Fariha Akhter Chowdhury, Sabrina Mahboob, Anamika Saha, Afrin Jahan, Mohammad Nurul Islam

Abstract:

Urinary tract infection (UTI) is frequently experienced by the female population where the prevalence increases with aging. Escherichia coli, one of the most common UTI causing organisms, retains glutathione defense mechanism that aids the organism to withstand the harsh physiological environment of urinary tract, host oxidative immune response and even to affect antibiotic-mediated cell death and the emergence of resistance. In this study, we aimed to investigate the glutathione reductase activity of uropathogenic E. coli (UPEC) by observing the reduced glutathione (GSH) level alteration under stressful condition. Urine samples of 58 patients with UTI were collected. Upon isolation and identification, 88% of the samples presented E. coli as UTI causing organism among which randomly selected isolates (n=9), obtained from urine samples of female patients, were considered for this study. E. coli isolates were grown under normal and stressful conditions where H₂O₂ was used as the stress-inducing agent. GSH level estimation of the isolates in both conditions was carried out based on the colorimetric measurement of 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) and GSH reaction product using microplate reader assay. The GSH level of isolated E. coli sampled from adult patients decreased under stress compared to normal condition (p = 0.011). On the other hand, GSH production increased markedly in samples that were collected from elderly subjects (p = 0.024). A significant partial correlation between age and change of GSH level was found as well (p = 0.007). This study may help to reveal ways for better understanding of E. coli pathogenesis of UTI prevalence in elderly patients.

Keywords: Escherichia coli, glutathione reductase activity, oxidative stress, reduced glutathione (GSH), urinary tract infection (UTI)

Procedia PDF Downloads 331
936 Supply Chain Collaboration Comparison Practices between Developed and Developing Countries

Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz

Abstract:

In the industrial sector the collaboration along the supply chain is key especially in order to develop product, production methods or process innovations. The access to resources and knowledge not being available inside the company, the achievement of cost competitive solutions, the reduction of the time required to innovate are some of the benefits linked with the collaboration with suppliers. The big industrial manufacturers have a long tradition to collaborate with their suppliers to develop new products in the developed countries. Since they have increased their global supply chains and global sourcing activities, the objective of the research is to analyse if the same best practices, way of working, experiences, information technology tools, governance methodologies are applied when collaborating with suppliers in the developed world or in developing countries. Most of the current research focuses to analyse the Supply Chain Collaboration in the developed countries and in recent years the number of publications related to the Supply Chain Collaboration in developing countries has increased, but there is still a lack of research comparing both and analysing the similarities, differences and key success factors among the Supply Chain Collaboration practices in developed and developing countries. With this gap in mind, the research under preparation will focus on the following goals: -Identify the most important elements required for a successful supply chain collaboration in the developed and developing countries. -Set up the optimal governance framework to manage the supply chain collaboration in the developed and developing countries. -Define some recommendations about required improvements in the current supply chain collaboration business relationship practices in place. Following the case methodology we will analyze the way manufacturers and suppliers collaborate in the development of new products, production methods or process innovations and in the set up of new global supply chains in two industries with different level of technology intensity and collaboration history being the automotive and aerospace industries.

Keywords: global supply chain networks, Supply Chain Collaboration, supply chain governance, supply chain performance

Procedia PDF Downloads 605