Search results for: data quality filtering
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: data quality filtering

Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 296
Finding the Free Stream Velocity Using Flow Generated Sound

Authors: Saeed Hosseini, Ali Reza Tahavvor

Abstract:

Sound processing is one the subjects that newly attracts a lot of researchers. It is efficient and usually less expensive than other methods. In this paper the flow generated sound is used to estimate the flow speed of free flows. Many sound samples are gathered. After analyzing the data, a parameter named wave power is chosen. For all samples, the wave power is calculated and averaged for each flow speed. A curve is fitted to the averaged data and a correlation between the wave power and flow speed is founded. Test data are used to validate the method and errors for all test data were under 10 percent. The speed of the flow can be estimated by calculating the wave power of the flow generated sound and using the proposed correlation.

Keywords: the flow generated sound, free stream, sound processing, speed, wave power

Procedia PDF Downloads 421
Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 287
Instructional Material Development in ODL: Achievements, Prospects, and Challenges

Authors: Felix Gbenoba, Opeyemi Dahunsi

Abstract:

Customised, self-instructional materials are at the heart of instructional delivery in Open and Distance Learning (ODL). The success of any ODL institution depends on the availability of learning materials in quality and quantity. An ODL study material is expected to imitate what the teacher does in the face-to-face learning environment. This paper evaluates these expectation based on existing data and evidence. It concludes that the reality has not matched the expectation so far in terms of pedagogic aspect of instructional delivery especially in West Africa. This does not mean that instructional materials development has not produced any significant positive results in improving the overall learning (and teaching) experience in these institutions; it implies what will help further to identify the new challenges. Obstacles and problems of instructional materials development that could have affected the open educational resource initiatives are well established. The first section of this paper recalls some of the proposed values of instructional materials. The second section compares achievements so far and suggests that instructional materials development should be consider first at an early stage to realise the aspirations of instructional delivery. The third section highlights the challenges of instructional materials development in the future.

Keywords: face-to-face learning, instructional delivery, open and distance education, self-instructional materials

Procedia PDF Downloads 379
Efficiency of DMUs in Presence of New Inputs and Outputs in DEA

Authors: Esmat Noroozi, Elahe Sarfi, Farha Hosseinzadeh Lotfi

Abstract:

Examining the impacts of data modification is considered as sensitivity analysis. A lot of studies have considered the data modification of inputs and outputs in DEA. The issues which has not heretofore been considered in DEA sensitivity analysis is modification in the number of inputs and (or) outputs and determining the impacts of this modification in the status of efficiency of DMUs. This paper is going to present systems that show the impacts of adding one or multiple inputs or outputs on the status of efficiency of DMUs and furthermore a model is presented for recognizing the minimum number of inputs and (or) outputs from among specified inputs and outputs which can be added whereas an inefficient DMU will become efficient. Finally the presented systems and model have been utilized for a set of real data and the results have been reported.

Keywords: data envelopment analysis, efficiency, sensitivity analysis, input, out put

Procedia PDF Downloads 453
Wastewater Treatment by Floating Macrophytes (Salvinia natans) under Algerian Semi-Arid Climate

Authors: Laabassi Ayache, Boudehane Asma

Abstract:

Macrophyte pond has developed strongly in the field of wastewater treatment for irrigation in rural areas and small communities. Their association allows, in some cases, to increase the hydraulic capacity while maintaining the highest level of quality. The present work is devoted to the treatment of domestic wastewater under climatic conditions of Algeria (semi-arid) through a system using two tanks planted with Salvinia natans. The performance study and treatment efficiency of the system overall shows that the latter provides a significant removal of nitrogen pollution: total Kjeldahl nitrogen NTK (85.2%), Ammonium NH₄⁺-N (79%), Nitrite NO₂⁻-N (40%) also, a major meaningful reduction of biochemical oxygen demand BOD₅ was observed at the output of the system (96.9 %). As BOD₅, the chemical oxygen demand (COD) removal was higher than 95% at the exit of the two tanks. A moderately low yield of phosphate-phosphorus (PO₄³-P) was achieved with values not exceeding 37%. In general, the quality of treated effluent meets the Algerian standard of discharge and which allows us to select a suitable species in constructed wetland treatment systems under semi-arid climate.

Keywords: nutrient removal, Salvinia natans, semi-arid climate, wastewater treatment

Procedia PDF Downloads 157
Absenteeism of Nursing Staff in Emergency Care Units of a City in the Interior of SãO Paulo

Authors: B. P. G. Figueira, I. C. Pinto, D. Ferro, F. C. M. Zacharias

Abstract:

The absenteeism at work constitutes in a temporary absence of labor functions resulting from various reasons, bringing damage to production, increasing costs of care and overburdening other workers, has its principal cause due to illness, often due exposure to several risks in the workplace. This study aims to know, identify and analyze the types and causes of absenteeism, such as the frequency at which it occurs by professional category, for employment contract and days not worked in Emergency Care Public in a city in the interior of São Paulo. We conducted exploratory and descriptive study with a quantitative approach, with nursing professionals, after selection of inclusion criteria was reached a universe of 208 subjects, the data collected are for the years from 2010-2013. Research has shown that the professional category of nursing assistant had 88,11% of total absenteeism, absenteeism lasting 1 day was the with the highest frequency, the women were responsible for 74,80% of absenteeism disease. It was concluded that absenteeism shall be monitored to plan control actions, establishing better political for the management of human resources, because it can be an aggravating factor in the quality of care.

Keywords: absenteeism; nursing; emergency medical services, human resource

Procedia PDF Downloads 332
From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 97
Regression for Doubly Inflated Multivariate Poisson Distributions

Authors: Ishapathik Das, Sumen Sen, N. Rao Chaganty, Pooja Sengupta

Abstract:

Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models.

Keywords: copula, Gaussian copula, multivariate distributions, inflated distributios

Procedia PDF Downloads 161
An Exploratory Research of Human Character Analysis Based on Smart Watch Data: Distinguish the Drinking State from Normal State

Authors: Lu Zhao, Yanrong Kang, Lili Guo, Yuan Long, Guidong Xing

Abstract:

Smart watches, as a handy device with rich functionality, has become one of the most popular wearable devices all over the world. Among the various function, the most basic is health monitoring. The monitoring data can be provided as an effective evidence or a clue for the detection of crime cases. For instance, the step counting data can help to determine whether the watch wearer was quiet or moving during the given time period. There is, however, still quite few research on the analysis of human character based on these data. The purpose of this research is to analyze the health monitoring data to distinguish the drinking state from normal state. The analysis result may play a role in cases involving drinking, such as drunk driving. The experiment mainly focused on finding the figures of smart watch health monitoring data that change with drinking and figuring up the change scope. The chosen subjects are mostly in their 20s, each of whom had been wearing the same smart watch for a week. Each subject drank for several times during the week, and noted down the begin and end time point of the drinking. The researcher, then, extracted and analyzed the health monitoring data from the watch. According to the descriptive statistics analysis, it can be found that the heart rate change when drinking. The average heart rate is about 10% higher than normal, the coefficient of variation is less than about 30% of the normal state. Though more research is needed to be carried out, this experiment and analysis provide a thought of the application of the data from smart watches.

Keywords: character analysis, descriptive statistics analysis, drink state, heart rate, smart watch

Procedia PDF Downloads 169
Practice of Social Innovation in School Education: A Study of Third Sector Organisations in India

Authors: Prakash Chittoor

Abstract:

In the recent past, it is realised especially in third sector that employing social innovation is crucial for achieving viable and long lasting social transformation. In this context, education is one among many sectors that have opened up itself for such move where employing social innovation emerges as key for reaching out to the excluded sections who are often failed to get support from either policy or market interventions. In fact, education is being as a crucial factor for social development is well understood at both academic and policy level. In order to move forward to achieve better results, interventions from multiple sectors may be required as its reach cultivates capabilities and skill of the deprived in order to ensure both market and social participation in the long run. Despite state’s intervention, it is found that still millions of children are out of school due to lack of political will, lapses in policy implementation and neoliberal intervention of marketization. As a result, universalisation of elementary education became as an elusive goal to poor and marginalised sections where state obtain constant pressure by corporate sector to withdraw from education sector that led convince in providing quality education. At this juncture, the role of third sector organizations plays is quite remarkable. Especially, it has evolved as a key player in education sector to reach out to the poor and marginalised in the far-flung areas. These organisations work in resources constrain environment, yet, in order to achieve larger social impact they adopt various social innovations from time to time to reach out to the unreached. Their attempts not only limited to just approaching the unreached children but to retain them for long-time in the schooling system in order to ripe the results for their families and communities. There is a need to highlight various innovative ways adopted and practiced by the third sector organisations in India to achieve the elusive goal of universal access of primary education with quality. With this background, the paper primarily attempts to present an in-depth understanding about innovative practices employed by third sectors organisations like Isha Vidya through government schools adoption programme in India where it engages itself with government and build capabilities among the government teachers to promote state run schooling with quality and better infrastructure. Further, this paper assess whether such innovative attempts succeeded in to achieving universal quality education in the areas where it operates and draws implications for State policy.

Keywords: school education, third sector organisations, social innovation, market domination

Procedia PDF Downloads 264
Reverse Logistics End of Life Products Acquisition and Sorting

Authors: Badli Shah Mohd Yusoff, Khairur Rijal Jamaludin, Rozetta Dollah

Abstract:

The emerging of reverse logistics and product recovery management is an important concept in reconciling economic and environmental objectives through recapturing values of the end of life product returns. End of life products contains valuable modules, parts, residues and materials that can create value if recovered efficiently. The main objective of this study is to explore and develop a model to recover as much of the economic value as reasonably possible to find the optimality of return acquisition and sorting to meet demand and maximize profits over time. In this study, the benefits that can be obtained for remanufacturer is to develop demand forecasting of used products in the future with uncertainty of returns and quality of products. Formulated based on a generic disassembly tree, the proposed model focused on three reverse logistics activity, namely refurbish, remanufacture and disposal incorporating all plausible means quality levels of the returns. While stricter sorting policy, constitute to the decrease amount of products to be refurbished or remanufactured and increases the level of discarded products. Numerical experiments carried out to investigate the characteristics and behaviour of the proposed model with mathematical programming model using Lingo 16.0 for medium-term planning of return acquisition, disassembly (refurbish or remanufacture) and disposal activities. Moreover, the model seeks an analysis a number of decisions relating to trade off management system to maximize revenue from the collection of use products reverse logistics services through refurbish and remanufacture recovery options. The results showed that full utilization in the sorting process leads the system to obtain less quantity from acquisition with minimal overall cost. Further, sensitivity analysis provides a range of possible scenarios to consider in optimizing the overall cost of refurbished and remanufactured products.

Keywords: core acquisition, end of life, reverse logistics, quality uncertainty

Procedia PDF Downloads 311
Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting

Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan

Abstract:

Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.

Keywords: electron beam melting, additive manufacturing, Ti6Al4V, surface morphology

Procedia PDF Downloads 118
An Approach to Practical Determination of Fair Premium Rates in Crop Hail Insurance Using Short-Term Insurance Data

Authors: Necati Içer

Abstract:

Crop-hail insurance plays a vital role in managing risks and reducing the financial consequences of hail damage on crop production. Predicting insurance premium rates with short-term data is a major difficulty in numerous nations because of the unique characteristics of hailstorms. This study aims to suggest a feasible approach for establishing equitable premium rates in crop-hail insurance for nations with short-term insurance data. The primary goal of the rate-making process is to determine premium rates for high and zero loss costs of villages and enhance their credibility. To do this, a technique was created using the author's practical knowledge of crop-hail insurance. With this approach, the rate-making method was developed using a range of temporal and spatial factor combinations with both hypothetical and real data, including extreme cases. This article aims to show how to incorporate the temporal and spatial elements into determining fair premium rates using short-term insurance data. The article ends with a suggestion on the ultimate premium rates for insurance contracts.

Keywords: crop-hail insurance, premium rate, short-term insurance data, spatial and temporal parameters

Procedia PDF Downloads 59
Universal Health Coverage 2019 in Indonesia: The Integration of Family Planning Services in Current Functioning Health System

Authors: Fathonah Siti, Ardiana Irma

Abstract:

Indonesia is currently on its track to achieve Universal Health Coverage (UHC) by 2019. The program aims to address issues on disintegration in the implementation and coverage of various health insurance schemes and fragmented fund pooling. Family planning service is covered as one of benefit packages under preventive care. However, little has been done to examine how family planning program are appropriately managed across levels of governments and how family planning services are delivered to the end user. The study is performed through focus group discussion to related policy makers and selected programmers at central and district levels. The study is also benefited from relevant studies on family planning in the UHC scheme and other supporting data. The study carefully investigates some programmatic implications when family planning is integrated in the UHC program encompassing the need to recalculate contraceptive logistics for beneficiaries (eligible couple); policy reformulation for contraceptive service provision including supply chain management; establishment of family planning standard of procedure; and a call to update Management Information System. The study confirms that there is a significant increase in the numbers of contraceptive commodities needs to be procured by the government. Holding an assumption that contraceptive prevalence rate and commodities cost will be as expected increasing at 0.5% annually, the government need to allocate almost IDR 5 billion by 2019, excluded fee for service. The government shifts its focus to maintain eligible health facilities under National Population and Family Planning Board networks. By 2019, the government has set strategies to anticipate the provision of family planning services to 45.340 health facilities distributed in 514 districts and 7 thousand sub districts. Clear division of authorities has been established among levels of governments. Three models of contraceptive supply planning have been developed and currently in the process of being institutionalized. Pre service training for family planning services has been piloted in 10 prominent universities. The position of private midwives has been appreciated as part of the system. To ensure the implementation of quality and health expenditure control, family planning standard has been established as a reference to determine set of services required to deliver to the clients properly and types of health facilities to conduct particular family planning services. Recognition to individual status of program participation has been acknowledged in the Family Enumeration since 2015. The data is precisely recorded by name by address for each family and its members. It supplies valuable information to 15.131 Family Planning Field Workers (FPFWs) to provide information and education related to family planning in an attempt to generate demand and maintain the participation of family planning acceptors who are program beneficiaries. Despite overwhelming efforts described above, some obstacles remain. The program experiences poor socialization and yet removes geographical barriers for those living in remote areas. Family planning services provided for this sub population conducted outside the scheme as a complement strategy. However, UHC program has brought remarkable improvement in access and quality of family planning services.

Keywords: beneficiary, family planning services, national population and family planning board, universal health coverage

Procedia PDF Downloads 192
Safeguarding the Construction Industry: Interrogating and Mitigating Emerging Risks from AI in Construction

Authors: Abdelrhman Elagez, Rolla Monib

Abstract:

This empirical study investigates the observed risks associated with adopting Artificial Intelligence (AI) technologies in the construction industry and proposes potential mitigation strategies. While AI has transformed several industries, the construction industry is slowly adopting advanced technologies like AI, introducing new risks that lack critical analysis in the current literature. A comprehensive literature review identified a research gap, highlighting the lack of critical analysis of risks and the need for a framework to measure and mitigate the risks of AI implementation in the construction industry. Consequently, an online survey was conducted with 24 project managers and construction professionals, possessing experience ranging from 1 to 30 years (with an average of 6.38 years), to gather industry perspectives and concerns relating to AI integration. The survey results yielded several significant findings. Firstly, respondents exhibited a moderate level of familiarity (66.67%) with AI technologies, while the industry's readiness for AI deployment and current usage rates remained low at 2.72 out of 5. Secondly, the top-ranked barriers to AI adoption were identified as lack of awareness, insufficient knowledge and skills, data quality concerns, high implementation costs, absence of prior case studies, and the uncertainty of outcomes. Thirdly, the most significant risks associated with AI use in construction were perceived to be a lack of human control (decision-making), accountability, algorithm bias, data security/privacy, and lack of legislation and regulations. Additionally, the participants acknowledged the value of factors such as education, training, organizational support, and communication in facilitating AI integration within the industry. These findings emphasize the necessity for tailored risk assessment frameworks, guidelines, and governance principles to address the identified risks and promote the responsible adoption of AI technologies in the construction sector.

Keywords: risk management, construction, artificial intelligence, technology

Procedia PDF Downloads 116
The IVAIRE Study: Relative Performance of Energy and Heat Recovery Ventilators in Cold Climates

Authors: D. Aubin, D. Won, H. Schleibinger, P. Lajoie, D. Gauvin, J.-M. Leclerc

Abstract:

This paper describes the results obtained in a two-year randomized intervention field study investigating the impact of ventilation rates on indoor air quality (IAQ) and the respiratory health of asthmatic children in Québec City, Canada. The focus of this article is on the comparative effectiveness of heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) at increasing ventilation rates, improving IAQ, and maintaining an acceptable indoor relative humidity (RH). In 14% of the homes, the RH was found to be too low in winter. Providing more cold and dry outside air to under-ventilated homes in winter further reduces indoor RH. Thus, low-RH homes in the intervention group were chosen to receive ERVs (instead of HRVs) to increase the ventilation rate. The installation of HRVs or ERVs led to a near doubling of the ventilation rates in the intervention group homes which led to a significant reduction in the concentration of several key of pollutants. The ERVs were also effective in maintaining an acceptable indoor RH since they avoided excessive dehumidification of the home by recovering moisture from the exhaust airstream through the enthalpy core, otherwise associated with increased cold supply air rates.

Keywords: asthma, field study, indoor air quality, ventilation

Procedia PDF Downloads 276
Evaluating the Effectiveness of Congestion Pricing in Low- and Middle-Income Cities

Authors: Hermen Cléusia Dabo

Abstract:

Traffic congestion remains a persistent challenge in urban centers worldwide, leading to economic inefficiencies, increased pollution, and diminished quality of life. While congestion pricing has proven effective in high-income countries, its implementation and outcomes in low- and middle-income cities (LMICs) are not as well understood. These cities often face unique challenges, including inadequate public transportation systems, informal transport networks, and socioeconomic inequalities that complicate the adoption of congestion pricing policies. This study evaluates the effectiveness of congestion pricing in LMICs, with a particular focus on Maputo, Mozambique, and its impacts on traffic patterns, environmental sustainability, and equity. The research employs a mixed-methods approach, combining quantitative analyses of traffic flow and emissions with qualitative insights from stakeholder interviews and policy reviews. Maputo serves as the primary case study, offering a unique perspective on the intersection of urban growth, informal transport dependency, and the socioeconomic dynamics prevalent in LMICs. Supporting data from other cities, such as Lagos and Bogotá, provides a comparative framework to contextualize findings. Key variables analyzed include reductions in vehicle kilometers traveled (VKT), changes in air quality indices, revenue generation, and the redistribution of funds to improve public transit infrastructure. The study also examines behavioral responses to congestion pricing, including shifts to alternative modes of transport and changes in travel patterns. Findings indicate that congestion pricing can significantly reduce traffic congestion and improve air quality in Maputo when designed with attention to local conditions. However, challenges such as public resistance, limited administrative capacity, and the need for robust enforcement mechanisms are critical barriers to successful implementation. The research underscores the importance of equitable policy design, particularly in a city like Maputo, where significant income disparities and reliance on informal transport systems complicate mobility solutions. Programs that include exemptions, tiered pricing, or revenue reinvestment in affordable public transit are more likely to gain public acceptance and achieve long-term benefits. Moreover, the study highlights the necessity of integrating congestion pricing within a broader urban mobility framework. Complementary policies, such as investments in non-motorized transport infrastructure, modernization of public transit systems, and public education campaigns, enhance the overall efficacy of congestion pricing initiatives. This research contributes to the growing body of knowledge on sustainable urban mobility in LMICs by providing actionable insights for policymakers and urban planners in Maputo. It emphasizes that while congestion pricing is a powerful tool for managing urban traffic, its success in Maputo depends on context-sensitive implementation, inclusive policymaking, and sustained public engagement.

Keywords: congestion pricing, urban mobility, transport equity, Low and middle income countries

Procedia PDF Downloads 4
Theoretical Comparisons and Empirical Illustration of Malmquist, Hicks–Moorsteen, and Luenberger Productivity Indices

Authors: Fatemeh Abbasi, Sahand Daneshvar

Abstract:

Productivity is one of the essential goals of companies to improve performance, which as a strategy-oriented method, determines the basis of the company's economic growth. The history of productivity goes back centuries, but most researchers defined productivity as the relationship between a product and the factors used in production in the early twentieth century. Productivity as the optimal use of available resources means that "more output using less input" can increase companies' economic growth and prosperity capacity. Also, having a quality life based on economic progress depends on productivity growth in that society. Therefore, productivity is a national priority for any developed country. There are several methods for calculating productivity growth measurements that can be divided into parametric and non-parametric methods. Parametric methods rely on the existence of a function in their hypotheses, while non-parametric methods do not require a function based on empirical evidence. One of the most popular non-parametric methods is Data Envelopment Analysis (DEA), which measures changes in productivity over time. The DEA evaluates the productivity of decision-making units (DMUs) based on mathematical models. This method uses multiple inputs and outputs to compare the productivity of similar DMUs such as banks, government agencies, companies, airports, Etc. Non-parametric methods are themselves divided into the frontier and non frontier approaches. The Malmquist productivity index (MPI) proposed by Caves, Christensen, and Diewert (1982), the Hicks–Moorsteen productivity index (HMPI) proposed by Bjurek (1996), or the Luenberger productivity indicator (LPI) proposed by Chambers (2002) are powerful tools for measuring productivity changes over time. This study will compare the Malmquist, Hicks–Moorsteen, and Luenberger indices theoretically and empirically based on DEA models and review their strengths and weaknesses.

Keywords: data envelopment analysis, Hicks–Moorsteen productivity index, Leuenberger productivity indicator, malmquist productivity index

Procedia PDF Downloads 197
The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions

Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.

Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation

Procedia PDF Downloads 187
Morphometric Study of the Eggs of Pheasant Eggs Phasianus colchicus (Aves, Phasianidae)

Authors: S. Zenia, A. Menasseria, A. E. Kheidous, F. Larinouna, A. Smai, H. Saadi, F. Haddadj, A. Milla, F. Marniche

Abstract:

Pheasant, is a bird of great ornamental value through the beauty of its form and colors, it is among the most popular birds. The present study was conducted in an experimental breeding. The objective of this work is to know the quality of the eggs of this bird. A total of 938 eggs were collected. To deepen the knowledge about the characteristics of external shell quality, biometric parameters were studied, among them we find the weight with a mean value of 29.2± 2, 24 g. Egg length (mm) and egg width (mm) mean value are respectively 43.01 ± 1,84 cm and 34.05 ± 1,44cm. The volume and shape index of eggs obtained are respectively 25,63±2,88cm3 and 79.00 ± 3%, shell index which recorded an average of 68%. Water loss recorded is 13%. Note that all these parameters and others may influence hatching. The analysis of variance applied for the comparison of egg weight shows that there is no significant difference in the same form factor (P> 0.05). Otherwise, the comparison test used shows a significant difference with P <0.05 for length, width, volume, density, indices of shell and water loss of eggs between the different. Indeed, several factors may explain the difference as the absence of sorting eggs during incubation and other factors that will be exposing later.

Keywords: analysis of variance, egg, hatching, morphometry of eggs Phaisan (Phasianus colchicus.L.)

Procedia PDF Downloads 617
Algorithm Optimization to Sort in Parallel by Decreasing the Number of the Processors in SIMD (Single Instruction Multiple Data) Systems

Authors: Ali Hosseini

Abstract:

Paralleling is a mechanism to decrease the time necessary to execute the programs. Sorting is one of the important operations to be used in different systems in a way that the proper function of many algorithms and operations depend on sorted data. CRCW_SORT algorithm executes ‘N’ elements sorting in O(1) time on SIMD (Single Instruction Multiple Data) computers with n^2/2-n/2 number of processors. In this article having presented a mechanism by dividing the input string by the hinge element into two less strings the number of the processors to be used in sorting ‘N’ elements in O(1) time has decreased to n^2/8-n/4 in the best state; by this mechanism the best state is when the hinge element is the middle one and the worst state is when it is minimum. The findings from assessing the proposed algorithm by other methods on data collection and number of the processors indicate that the proposed algorithm uses less processors to sort during execution than other methods.

Keywords: CRCW, SIMD (Single Instruction Multiple Data) computers, parallel computers, number of the processors

Procedia PDF Downloads 315
An Empirical Study of Determinants Influencing Telemedicine Services Acceptance by Healthcare Professionals: Case of Selected Hospitals in Ghana

Authors: Jonathan Kissi, Baozhen Dai, Wisdom W. K. Pomegbe, Abdul-Basit Kassim

Abstract:

Protecting patient’s digital information is a growing concern for healthcare institutions as people nowadays perpetually live their lives through telemedicine services. These telemedicine services have been confronted with several determinants that hinder their successful implementations, especially in developing countries. Identifying such determinants that influence the acceptance of telemedicine services is also a problem for healthcare professionals. Despite the tremendous increase in telemedicine services, its adoption, and use has been quite slow in some healthcare settings. Generally, it is accepted in today’s globalizing world that the success of telemedicine services relies on users’ satisfaction. Satisfying health professionals and patients are one of the crucial objectives of telemedicine success. This study seeks to investigate the determinants that influence health professionals’ intention to utilize telemedicine services in clinical activities in a sub-Saharan African country in West Africa (Ghana). A hybridized model comprising of health adoption models, including technology acceptance theory, diffusion of innovation theory, and protection of motivation theory, were used to investigate these quandaries. The study was carried out in four government health institutions that apply and regulate telemedicine services in their clinical activities. A structured questionnaire was developed and used for data collection. Purposive and convenience sampling methods were used in the selection of healthcare professionals from different medical fields for the study. The collected data were analyzed based on structural equation modeling (SEM) approach. All selected constructs showed a significant relationship with health professional’s behavioral intention in the direction expected from prior literature including perceived usefulness, perceived ease of use, management strategies, financial sustainability, communication channels, patients security threat, patients privacy risk, self efficacy, actual service use, user satisfaction, and telemedicine services systems securities threat. Surprisingly, user characteristics and response efficacy of health professionals were not significant in the hybridized model. The findings and insights from this research show that health professionals are pragmatic when making choices for technology applications and also their willingness to use telemedicine services. They are, however, anxious about its threats and coping appraisals. The identified significant constructs in the study may help to increase efficiency, quality of services, quality patient care delivery, and satisfactory user satisfaction among healthcare professionals. The implantation and effective utilization of telemedicine services in the selected hospitals will aid as a strategy to eradicate hardships in healthcare services delivery. The service will help attain universal health access coverage to all populace. This study contributes to empirical knowledge by identifying the vital factors influencing health professionals’ behavioral intentions to adopt telemedicine services. The study will also help stakeholders of healthcare to formulate better policies towards telemedicine service usage.

Keywords: telemedicine service, perceived usefulness, perceived ease of use, management strategies, security threats

Procedia PDF Downloads 147
Using Crowd-Sourced Data to Assess Safety in Developing Countries: The Case Study of Eastern Cairo, Egypt

Authors: Mahmoud Ahmed Farrag, Ali Zain Elabdeen Heikal, Mohamed Shawky Ahmed, Ahmed Osama Amer

Abstract:

Crowd-sourced data refers to data that is collected and shared by a large number of individuals or organizations, often through the use of digital technologies such as mobile devices and social media. The shortage in crash data collection in developing countries makes it difficult to fully understand and address road safety issues in these regions. In developing countries, crowd-sourced data can be a valuable tool for improving road safety, particularly in urban areas where the majority of road crashes occur. This study is -to our best knowledge- the first to develop safety performance functions using crowd-sourced data by adopting a negative binomial structure model and the Full Bayes model to investigate traffic safety for urban road networks and provide insights into the impact of roadway characteristics. Furthermore, as a part of the safety management process, network screening has been undergone through applying two different methods to rank the most hazardous road segments: PCR method (adopted in the Highway Capacity Manual HCM) as well as a graphical method using GIS tools to compare and validate. Lastly, recommendations were suggested for policymakers to ensure safer roads.

Keywords: crowdsourced data, road crashes, safety performance functions, Full Bayes models, network screening

Procedia PDF Downloads 64
Key Aroma Compounds as Predictors of Pineapple Sensory Quality

Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth

Abstract:

Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.

Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).

Procedia PDF Downloads 61
Review of Different Machine Learning Algorithms

Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui

Abstract:

Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.

Keywords: Data Mining, Web Mining, classification, ML Algorithms

Procedia PDF Downloads 305
Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data

Authors: Rishabh Srivastav, Divyam Sharma

Abstract:

We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.

Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets

Procedia PDF Downloads 255
Forecasting Amman Stock Market Data Using a Hybrid Method

Authors: Ahmad Awajan, Sadam Al Wadi

Abstract:

In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.

Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series

Procedia PDF Downloads 134
Building Information Modeling-Based Information Exchange to Support Facilities Management Systems

Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell

Abstract:

Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.

Keywords: building information modeling, BIM, facilities management systems, interoperability, information management

Procedia PDF Downloads 122
Discussion on the Impact and Improvement Strategy of Bike Sharing on Urban Space

Authors: Bingying Liu, Dandong Ge, Xinlan Zhang, Haoyang Liang

Abstract:

Over the past two years, a new generation of No-Pile Bike sharing, represented by the Ofo, Mobike and HelloBike, has sprung up in various cities in China, and spread rapidly in countries such as Britain, Japan, the United States and Singapore. As a new green public transportation mode, bike sharing can bring a series of benefits to urban space. At first, this paper analyzes the specific impact of bike sharing on urban space in China. Based on the market research and data analyzing, it is found that bike sharing can improve the quality of urban space in three aspects: expanding the radius of public transportation service, filling service blind spots, alleviating urban traffic congestion, and enhancing the vitality of urban space. On the other hand, due to the immature market and the imperfect system, bike sharing has gradually revealed some difficulties, such as parking chaos, malicious damage, safety problems, imbalance between supply and demand, and so on. Then the paper investigates the characteristics of shared bikes, business model, operating mechanism on Chinese market currently. Finally, in order to make bike sharing serve urban construction better, this paper puts forward some specific countermeasures from four aspects. In terms of market operations, it is necessary to establish a public-private partnership model and set up a unified bike-sharing integrated management platform. From technical methods level, the paper proposes to develop an intelligent parking system for regulating parking. From policy formulation level, establishing a bike-sharing assessment mechanism would strengthen supervision. As to urban planning, sharing data and redesigning slow roadway is beneficial for transportation and spatial planning.

Keywords: bike sharing, impact analysis, improvement strategy, urban space

Procedia PDF Downloads 175