Search results for: adaptive genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5559

Search results for: adaptive genetic algorithm

1089 Place and Importance of Goats in the Milk Sector in Algeria

Authors: Tennah Safia, Azzag Naouelle, Derdour Salima, Hafsi Fella, Laouadi Mourad, Laamari Abdalouahab, Ghalmi Farida, Kafidi Nacerredine

Abstract:

Currently, goat farming is widely practiced among the rural population of Algeria. Although milk yield of goats is low (110 liters per goat and per year on average), this milk partly ensures the feeding of small children and provides raw milk, curd, and fermented milk to the whole family. In addition, given its investment cost, which is ten times lower than that of a cow, this level of production is still of interest. This interest is reinforced by the qualities of goat's milk, highly sought after for its nutritional value superior to that of cow's milk. In the same way, its aptitude for the transformation, in particular in quality cheeses, is very sought after. The objective of this study is to give the situation of goat milk production in rural areas of Algeria and to establish a classification of goat breeds according to their production potential. For this, a survey was carried out with goat farmers in Algerian steppe. Three indigenous breeds were encountered in this study: the breed Arabia, Mozabite, and Mekatia; Arabia being the most dominant. The Mekatia breed and the Mozabite breed appear to have higher production and milking abilities than other local breeds. They are therefore indicated to play the role of local dairy breeds par excellence. The other breed that could be improved milk performance is the Arabia breed. There, however, the milk performance of this breed is low. However, in order to increase milk production, uncontrolled crosses with imported breeds (mainly Saanen and Alpine) were carried out. The third population that can be included in the category for dairy production is the dairy breed group of imported origin. There are farms in Algeria composed of Alpine and Saanen breeds born locally. Improved milk performance of local goats, Crusader population, and dairy breeds of imported origin could be done by selection. For this, it is necessary to set up a milk control to detect the best animals. This control could be carried out among interested farmers in each large goat breeding area. In conclusion, sustained efforts must be made to enable the sustainable development of the goat sector in Algeria. It will, therefore, be necessary to deepen the reflection on a national strategy to valorize goat's milk, taking into account the specificities of the environment, the genetic biodiversity, and the eating habits of the Algerian consumer.

Keywords: goat, milk, Algeria, biodiversity

Procedia PDF Downloads 179
1088 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 437
1087 Visual and Chemical Servoing of a Hexapod Robot in a Confined Environment Using Jacobian Estimator

Authors: Guillaume Morin-Duponchelle, Ahmed Nait Chabane, Benoit Zerr, Pierre Schoesetters

Abstract:

Industrial inspection can be achieved through robotic systems, allowing visual and chemical servoing. A popular scheme for visual servo-controlled robotic is the image-based servoing sys-tems. In this paper, an approach of visual and chemical servoing of a hexapod robot using a visual and chemical Jacobian matrix are proposed. The basic idea behind the visual Jacobian matrix is modeling the differential relationship between the camera system and the robotic control system to detect and track accurately points of interest in confined environments. This approach allows the robot to easily detect and navigates to the QR code or seeks a gas source localization using surge cast algorithm. To track the QR code target, a visual servoing based on Jacobian matrix is used. For chemical servoing, three gas sensors are embedded on the hexapod. A Jacobian matrix applied to the gas concentration measurements allows estimating the direction of the main gas source. The effectiveness of the proposed scheme is first demonstrated on simulation. Finally, a hexapod prototype is designed and built and the experimental validation of the approach is presented and discussed.

Keywords: chemical servoing, hexapod robot, Jacobian matrix, visual servoing, navigation

Procedia PDF Downloads 124
1086 Content Based Video Retrieval System Using Principal Object Analysis

Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham

Abstract:

Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.

Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM

Procedia PDF Downloads 300
1085 A Study of ZY3 Satellite Digital Elevation Model Verification and Refinement with Shuttle Radar Topography Mission

Authors: Bo Wang

Abstract:

As the first high-resolution civil optical satellite, ZY-3 satellite is able to obtain high-resolution multi-view images with three linear array sensors. The images can be used to generate Digital Elevation Models (DEM) through dense matching of stereo images. However, due to the clouds, forest, water and buildings covered on the images, there are some problems in the dense matching results such as outliers and areas failed to be matched (matching holes). This paper introduced an algorithm to verify the accuracy of DEM that generated by ZY-3 satellite with Shuttle Radar Topography Mission (SRTM). Since the accuracy of SRTM (Internal accuracy: 5 m; External accuracy: 15 m) is relatively uniform in the worldwide, it may be used to improve the accuracy of ZY-3 DEM. Based on the analysis of mass DEM and SRTM data, the processing can be divided into two aspects. The registration of ZY-3 DEM and SRTM can be firstly performed using the conjugate line features and area features matched between these two datasets. Then the ZY-3 DEM can be refined by eliminating the matching outliers and filling the matching holes. The matching outliers can be eliminated based on the statistics on Local Vector Binning (LVB). The matching holes can be filled by the elevation interpolated from SRTM. Some works are also conducted for the accuracy statistics of the ZY-3 DEM.

Keywords: ZY-3 satellite imagery, DEM, SRTM, refinement

Procedia PDF Downloads 340
1084 Challenging Weak Central Coherence: An Exploration of Neurological Evidence from Visual Processing and Linguistic Studies in Autism Spectrum Disorder

Authors: Jessica Scher Lisa, Eric Shyman

Abstract:

Autism spectrum disorder (ASD) is a neuro-developmental disorder that is characterized by persistent deficits in social communication and social interaction (i.e. deficits in social-emotional reciprocity, nonverbal communicative behaviors, and establishing/maintaining social relationships), as well as by the presence of repetitive behaviors and perseverative areas of interest (i.e. stereotyped or receptive motor movements, use of objects, or speech, rigidity, restricted interests, and hypo or hyperactivity to sensory input or unusual interest in sensory aspects of the environment). Additionally, diagnoses of ASD require the presentation of symptoms in the early developmental period, marked impairments in adaptive functioning, and a lack of explanation by general intellectual impairment or global developmental delay (although these conditions may be co-occurring). Over the past several decades, many theories have been developed in an effort to explain the root cause of ASD in terms of atypical central cognitive processes. The field of neuroscience is increasingly finding structural and functional differences between autistic and neurotypical individuals using neuro-imaging technology. One main area this research has focused upon is in visuospatial processing, with specific attention to the notion of ‘weak central coherence’ (WCC). This paper offers an analysis of findings from selected studies in order to explore research that challenges the ‘deficit’ characterization of a weak central coherence theory as opposed to a ‘superiority’ characterization of strong local coherence. The weak central coherence theory has long been both supported and refuted in the ASD literature and has most recently been increasingly challenged by advances in neuroscience. The selected studies lend evidence to the notion of amplified localized perception rather than deficient global perception. In other words, WCC may represent superiority in ‘local processing’ rather than a deficit in global processing. Additionally, the right hemisphere and the specific area of the extrastriate appear to be key in both the visual and lexicosemantic process. Overactivity in the striate region seems to suggest inaccuracy in semantic language, which lends itself to support for the link between the striate region and the atypical organization of the lexicosemantic system in ASD.

Keywords: autism spectrum disorder, neurology, visual processing, weak coherence

Procedia PDF Downloads 126
1083 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 151
1082 A Case Study of Deep Learning for Disease Detection in Crops

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.

Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture

Procedia PDF Downloads 257
1081 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 134
1080 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System

Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas

Abstract:

This paper presents a comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in the speaker-dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signals to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients give best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose, the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfies the real-time requirements and is suitable for applications in embedded systems.

Keywords: isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW

Procedia PDF Downloads 493
1079 Increment of Panel Flutter Margin Using Adaptive Stiffeners

Authors: S. Raja, K. M. Parammasivam, V. Aghilesh

Abstract:

Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.

Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape

Procedia PDF Downloads 291
1078 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description

Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu

Abstract:

Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.

Keywords: runoff, roughness coefficient, PAR, WRM model

Procedia PDF Downloads 374
1077 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method

Authors: M. M. Qasaymeh, M. A. Khodeir

Abstract:

Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme.

Keywords: frequency hopping, channel model, time delay estimation, RRLU, RRQR, MUSIC, LS-ESPRIT

Procedia PDF Downloads 408
1076 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness

Procedia PDF Downloads 253
1075 Hydroinformatics of Smart Cities: Real-Time Water Quality Prediction Model Using a Hybrid Approach

Authors: Elisa Coraggio, Dawei Han, Weiru Liu, Theo Tryfonas

Abstract:

Water is one of the most important resources for human society. The world is currently undergoing a wave of urban growth, and pollution problems are of a great impact. Monitoring water quality is a key task for the future of the environment and human species. In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for environmental monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the artificial intelligence algorithm. This study derives the methodology and demonstrates its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.In recent times, researchers, using Smart Cities technologies are trying to mitigate the problems generated by the population growth in urban areas. The availability of huge amounts of data collected by a pervasive urban IoT can increase the transparency of decision making. Several services have already been implemented in Smart Cities, but more and more services will be involved in the future. Water quality monitoring can successfully be implemented in the urban IoT. The combination of water quality sensors, cloud computing, smart city infrastructure, and IoT technology can lead to a bright future for the environment monitoring. In the past decades, lots of effort has been put on monitoring and predicting water quality using traditional approaches based on manual collection and laboratory-based analysis, which are slow and laborious. The present study proposes a new methodology for implementing a water quality prediction model using artificial intelligence techniques and comparing the results obtained with different algorithms. Furthermore, a 3D numerical model will be created using the software D-Water Quality, and simulation results will be used as a training dataset for the Artificial Intelligence algorithm. This study derives the methodology and demonstrate its implementation based on information and data collected at the floating harbour in the city of Bristol (UK). The city of Bristol is blessed with the Bristol-Is-Open infrastructure that includes Wi-Fi network and virtual machines. It was also named the UK ’s smartest city in 2017.

Keywords: artificial intelligence, hydroinformatics, numerical modelling, smart cities, water quality

Procedia PDF Downloads 185
1074 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 49
1073 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes

Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari

Abstract:

The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.

Keywords: Arabic language acquisition and learning, natural language processing, morphological analyzer, part-of-speech

Procedia PDF Downloads 150
1072 Multidisciplinary Rehabilitation Algorithm after Mandibular Resection for Ameloblastoma

Authors: Joaquim de Almeida Dultra, Daiana Cristina Pereira Santana, Fátima Karoline Alves Araújo Dultra, Liliane Akemi Kawano Shibasaki, Mariana Machado Mendes de Carvalho, Ieda Margarida Crusoé Rocha Rebello

Abstract:

Defects originating from mandibular resections can cause significant functional impairment and facial disharmony, and they have complex rehabilitation. The aim of this report is to demonstrate the authors' experience facing challenging rehabilitation after mandibular resection in a patient with ameloblastoma. Clinical and surgical steps are described simultaneously, highlighting the adaptation of the final fixed prosthesis, reported in an unprecedented way in the literature. A 37-year-old male patient was seen after a sports accident, where a pathological fracture in the symphysis and left mandibular body was identified, where a large radiolucent lesion was found. The patient underwent resection, bone graft, distraction osteogenesis, rehabilitation with dental implants, prosthesis, and finally, orofacial harmonization, in an interval of six years. Rehabilitation should consider the patient's needs individually and should have as the main objective to provide similar aesthetics and function to that present before the disease. We also emphasize the importance of interdisciplinary work during the course of rehabilitation.

Keywords: ameloblastoma, mandibular reconstruction, distraction osteogenesis, dental implants. dental prosthesis, implant-supported, treatment outcome

Procedia PDF Downloads 110
1071 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization

Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun

Abstract:

Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.

Keywords: airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design

Procedia PDF Downloads 581
1070 Investigation Two Polymorphism of hTERT Gene (Rs 2736098 and Rs 2736100) and miR- 146a rs2910164 Polymorphism in Cervical Cancer

Authors: Hossein Rassi, Alaheh Gholami Roud-Majany, Zahra Razavi, Massoud Hoshmand

Abstract:

Cervical cancer is multi step disease that is thought to result from an interaction between genetic background and environmental factors. Human papillomavirus (HPV) infection is the leading risk factor for cervical intraepithelial neoplasia (CIN)and cervical cancer. In other hand, some of hTERT and miRNA polymorphism may plays an important role in carcinogenesis. This study attempts to clarify the relation of hTERT genotypes and miR-146a genotypes in cervical cancer. Forty two archival samples with cervical lesion retired from Khatam hospital and 40 sample from healthy persons used as control group. A simple and rapid method was used to detect the simultaneous amplification of the HPV consensus L1 region and HPV-16,-18, -11, -31, 33 and -35 along with the b-globin gene as an internal control. We use Multiplex PCR for detection of hTERT and miR-146a rs2910164 genotypes in our lab. Finally, data analysis was performed using the 7 version of the Epi Info(TM) 2012 software and test chi-square(x2) for trend. Cervix lesions were collected from 42 patients with Squamous metaplasia, cervical intraepithelial neoplasia, and cervical carcinoma. Successful DNA extraction was assessed by PCR amplification of b-actin gene (99bp). According to the results, hTERT ( rs 2736098) GG genotype and miR-146a rs2910164 CC genotype was significantly associated with increased risk of cervical cancer in the study population. In this study, we detected 13 HPV 18 from 42 cervical cancer. The connection between several SNP polymorphism and human virus papilloma in rare researches were seen. The reason of these differences in researches' findings can result in different kinds of races and geographic situations and also differences in life grooves in every region. The present study provided preliminary evidence that a p53 GG genotype and miR-146a rs2910164 CC genotype may effect cervical cancer risk in the study population, interacting synergistically with HPV 18 genotype. Our results demonstrate that the testing of hTERT rs 2736098 genotypes and miR-146a rs2910164 genotypes in combination with HPV18 can serve as major risk factors in the early identification of cervical cancers. Furthermore, the results indicate the possibility of primary prevention of cervical cancer by vaccination against HPV18 in Iran.

Keywords: polymorphism of hTERT gene, miR-146a rs2910164 polymorphism, cervical cancer, virus

Procedia PDF Downloads 319
1069 Randomness in Cybertext: A Study on Computer-Generated Poetry from the Perspective of Semiotics

Authors: Hongliang Zhang

Abstract:

The use of chance procedures and randomizers in poetry-writing can be traced back to surrealist works, which, by appealing to Sigmund Freud's theories, were still logocentrism. In the 1960s, random permutation and combination were extensively used by the Oulipo, John Cage and Jackson Mac Low, which further deconstructed the metaphysical presence of writing. Today, the randomly-generated digital poetry has emerged as a genre of cybertext which should be co-authored by readers. At the same time, the classical theories have now been updated by cybernetics and media theories. N· Katherine Hayles put forward the concept of ‘the floating signifiers’ by Jacques Lacan to be the ‘the flickering signifiers’ , arguing that the technology per se has become a part of the textual production. This paper makes a historical review of the computer-generated poetry in the perspective of semiotics, emphasizing that the randomly-generated digital poetry which hands over the dual tasks of both interpretation and writing to the readers demonstrates the intervention of media technology in literature. With the participation of computerized algorithm and programming languages, poems randomly generated by computers have not only blurred the boundary between encoder and decoder, but also raises the issue of human-machine. It is also a significant feature of the cybertext that the productive process of the text is full of randomness.

Keywords: cybertext, digital poetry, poetry generator, semiotics

Procedia PDF Downloads 174
1068 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.

Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona

Procedia PDF Downloads 456
1067 Network Based Molecular Profiling of Intracranial Ependymoma over Spinal Ependymoma

Authors: Hyeon Su Kim, Sungjin Park, Hae Ryung Chang, Hae Rim Jung, Young Zoo Ahn, Yon Hui Kim, Seungyoon Nam

Abstract:

Ependymoma, one of the most common parenchymal spinal cord tumor, represents 3-6% of all CNS tumor. Especially intracranial ependymomas, which are more frequent in childhood, have a more poor prognosis and more malignant than spinal ependymomas. Although there are growing needs to understand pathogenesis, detailed molecular understanding of pathogenesis remains to be explored. A cancer cell is composed of complex signaling pathway networks, and identifying interaction between genes and/or proteins are crucial for understanding these pathways. Therefore, we explored each ependymoma in terms of differential expressed genes and signaling networks. We used Microsoft Excel™ to manipulate microarray data gathered from NCBI’s GEO Database. To analyze and visualize signaling network, we used web-based PATHOME algorithm and Cytoscape. We show HOX family and NEFL are down-regulated but SCL family is up-regulated in cerebrum and posterior fossa cancers over a spinal cancer, and JAK/STAT signaling pathway and Chemokine signaling pathway are significantly different in the both intracranial ependymoma comparing to spinal ependymoma. We are considering there may be an age-dependent mechanism under different histological pathogenesis. We annotated mutation data of each gene subsequently in order to find potential target genes.

Keywords: systems biology, ependymoma, deg, network analysis

Procedia PDF Downloads 298
1066 Gender Based Variability Time Series Complexity Analysis

Authors: Ramesh K. Sunkaria, Puneeta Marwaha

Abstract:

Nonlinear methods of heart rate variability (HRV) analysis are becoming more popular. It has been observed that complexity measures quantify the regularity and uncertainty of cardiovascular RR-interval time series. In the present work, SampEn has been evaluated in healthy Normal Sinus Rhythm (NSR) male and female subjects for different data lengths and tolerance level r. It is demonstrated that SampEn is small for higher values of tolerance r. Also SampEn value of healthy female group is higher than that of healthy male group for short data length and with increase in data length both groups overlap each other and it is difficult to distinguish them. The SampEn gives inaccurate results by assigning higher value to female group, because male subject have more complex HRV pattern than that of female subjects. Therefore, this traditional algorithm exhibits higher complexity for healthy female subjects than for healthy male subjects, which is misleading observation. This may be due to the fact that SampEn do not account for multiple time scales inherent in the physiologic time series and the hidden spatial and temporal fluctuations remains unexplored.

Keywords: heart rate variability, normal sinus rhythm group, RR interval time series, sample entropy

Procedia PDF Downloads 280
1065 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems

Authors: Ting Gao, Mingyue He

Abstract:

Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.

Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning

Procedia PDF Downloads 149
1064 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.

Keywords: space-based detection, aerial targets, optical system design, detectability characterization

Procedia PDF Downloads 167
1063 Analysis of Heat Transfer in a Closed Cavity Ventilated Inside

Authors: Benseghir Omar, Bahmed Mohamed

Abstract:

In this work, we presented a numerical study of the phenomenon of heat transfer through the laminar, incompressible and steady mixed convection in a closed square cavity with the left vertical wall of the cavity is subjected to a warm temperature, while the right wall is considered to be cold. The horizontal walls are assumed adiabatic. The governing equations were discretized by finite volume method on a staggered mesh and the SIMPLER algorithm was used for the treatment of velocity-pressure coupling. The numerical simulations were performed for a wide range of Reynolds numbers 1, 10, 100, and 1000 numbers are equal to 0.01,0.1 Richardson, 0.5,1 and 10.The analysis of the results shows a flow bicellular (two cells), one is created by the speed of the fan placed in the inner cavity, one on the left is due to the difference between the temperatures right wall and the left wall. Knowledge of the intensity of each of these cells allowed us to get an original result. And the values obtained from each of Nuselt convection which allow to know the rate of heat transfer in the cavity.Finally we find that there is a significant influence on the position of the fan on the heat transfer (Nusselt evolution) for values of Reynolds studied and for low values of Richardson handed this influence is negligible for high values of the latter.

Keywords: thermal transfer, mixed convection, square cavity, finite volume method

Procedia PDF Downloads 432
1062 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures

Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat

Abstract:

In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.

Keywords: association rules, clustering, similarity measure, statistical approaches

Procedia PDF Downloads 320
1061 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production

Authors: Apurva Gupta, Surendra Singh

Abstract:

Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.

Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin

Procedia PDF Downloads 167
1060 Genomic Characterisation of Equine Sarcoid-derived Bovine Papillomavirus Type 1 and 2 Using Nanopore-Based Sequencing

Authors: Lien Gysens, Bert Vanmechelen, Maarten Haspeslagh, Piet Maes, Ann Martens

Abstract:

Bovine papillomavirus (BPV) types 1 and 2 play a central role in the etiology of the most common neoplasm in horses, the equine sarcoid. The unknown mechanism behind the unique variety in a clinical presentation on the one hand and the host-dependent clinical outcome of BPV-1 infection, on the other hand, indicate the involvement of additional factors. Earlier studies have reported the potential functional significance of intratypic sequence variants, along with the existence of sarcoid-sourced BPV variants. Therefore, intratypic sequence variation seems to be an important emerging viral factor. This study aimed to give a broad insight in sarcoid-sourced BPV variation and explore its potential association with disease presentation. In order to do this, a nanopore sequencing approach was successfully optimized for screening a wide spectrum of clinical samples. Specimens of each tumour were initially screened for BPV-1/-2 by quantitative real-time PCR. A custom-designed primer set was used on BPV-positive samples to amplify the complete viral genome in two multiplex PCR reactions, resulting in a set of overlapping amplicons. For phylogenetic analysis, separate alignments were made of all available complete genome sequences for BPV-1/-2. The resulting alignments were used to infer Bayesian phylogenetic trees. We found substantial genetic variation among sarcoid-derived BPV-1, although this variation could not be linked to disease severity. Several of the BPV-1 genomes had multiple major deletions. Remarkably, the majority of the cluster within the region coding for late viral genes. Together with the extensiveness (up to 603 nucleotides) of the described deletions, this suggests an altered function of L1/L2 in disease pathogenesis. By generating a significant amount of complete-length BPV genomes, we succeeded in introducing next-generation sequencing into veterinary research focusing on the equine sarcoid, thus facilitating the first report of both nanopore-based sequencing of complete sarcoid-sourced BPV-1/-2 and the simultaneous nanopore sequencing of multiple complete genomes originating from a single clinical sample.

Keywords: Bovine papillomavirus, equine sarcoid, horse, nanopore sequencing, phylogenetic analysis

Procedia PDF Downloads 176