Search results for: traditional scheduling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7099

Search results for: traditional scheduling algorithms

6679 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 495
6678 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks

Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain

Abstract:

As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.

Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)

Procedia PDF Downloads 192
6677 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
6676 The Effect of Critical Activity on Critical Path and Project Duration in Precedence Diagram Method

Authors: J. Nisar, S. Halim

Abstract:

The additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activity in Precedence Diagram Method (PDM) provides a more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in the PDM network will have an anomalous effect on the critical path and the project completion date. In this study, we classified the critical activities in two groups i.e., 1. activity on single critical path and 2. activity on multi-critical paths, and six classes i.e., normal, reverse, neutral, perverse, decrease-reverse and increase-normal, based on their effects on project duration in PDM. Furthermore, we determined the maximum float of time by which the duration each type of critical activities can be changed without effecting the project duration. This study would help the project manager to clearly understand the behavior of each critical activity on critical path, and he/she would be able to change the project duration by shortening or lengthening activities based on project budget and project deadline.

Keywords: construction management, critical path method, project scheduling network, precedence diagram method

Procedia PDF Downloads 222
6675 Investigating the Effect of Handicrafts Recreation on the Interior Design of Traditional Arts Gallery

Authors: Amir Masoud Dabagh, Mahsa Khaleghi

Abstract:

The world has entered a new phase of cultural, social, economic, and so on in the last two centuries. Apart from its positive benefits and achievements to the world, it has also incurred many costs, most of which can be mentioned as destroying or at least diminishing the role of the costumes, traditions and authentic culture of the past communities. Understanding what lasts in traditional arts is vital and worthy of study because receiving it and embracing art and forms of art using that last the artistic creation removes the age-old color and smell of its face, making it immortal and persistent in all ages. This paper attempts to present traditional art concepts and solutions for interior design with the approach of handicrafts recreation as a symbol and manifestation of national identity and proof of ancient civilizations, which is at the center of tourists' attention today. The research method is a descriptive-analytical one that first explores the theoretical foundations of research, which are the concepts of recreation and traditional arts, and analyzes the process of recreation that conceals the recollection of past experiences as well as the dynamics and creativity.

Keywords: recreation, handicrafts, interior design, concept, traditional arts

Procedia PDF Downloads 111
6674 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 479
6673 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 167
6672 Nutrition Strategy Using Traditional Tibetan Medicine in the Preventive Measurement

Authors: Ngawang Tsering

Abstract:

Traditional Tibetan medicine is primarily focused on promoting health and keeping away diseases from its unique in prescribing specific diet and lifestyle. The prevalence of chronic diseases has been rising day by day and kills a number of people due to the lack of proper nutritional design in modern times. According to traditional Tibetan medicine, chronic diseases such as diabetes, cancer, cardiovascular diseases, respiratory diseases, and arthritis are heavily associated with an unwholesome diet and inappropriate lifestyles. Diet and lifestyles are the two main conditions of diseases and healthy life. The prevalence of chronic diseases is one of the challenges, with massive economic impact and expensive health issues. Though chronic diseases are challenges, it has a solution in the preventive measurements by using proper nutrition design based on traditional Tibetan medicine. Until today, it is hard to evaluate whether traditional Tibetan medicine nutrition strategy could play a major role in preventive measurement as of the lack of current research evidence. However, compared with modern nutrition, it has an exclusive valuable concept, such as a holistic way and diet or nutrition recommendation based on different aspects. Traditional Tibetan medicine is one of the oldest ancient existing medical systems known as Sowa Rigpa (Science of Healing) highlights different aspects of dietetics and nutrition, namely geographical, seasonal, age, personality, emotional, food combination, the process of individual metabolism, potency, and amount of food. This article offers a critical perspective on the preventive measurement against chronic diseases through nutrition design using traditional Tibetan medicine and also needs attention for a deeper understanding of traditional Tibetan medicine in the modern world.

Keywords: traditional Tibetan medicine, nutrition, chronic diseases, preventive measurement, holistic approach, integrative

Procedia PDF Downloads 158
6671 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator

Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard

Abstract:

Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.

Keywords: blade tip timing, blisk, finite element, vibration measurement

Procedia PDF Downloads 311
6670 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 113
6669 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta

Abstract:

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.

Keywords: channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, lévy flight distribution, optimization, improved multi–objective firefly algorithms, Pareto optimal

Procedia PDF Downloads 322
6668 Reconstruction and Renewal of Traditional Houses and its Impact on Tourism Development in Rasht

Authors: Parvaneh Ziviyar, Simin Armaghan

Abstract:

Traditional house in Rasht contains monuments and heritage of ancestors who once lived in these houses. These houses represent the customs, culture and lifestyle of the people of Rasht and bridge the gap between modern people and their past that is being forgotten. Maintenance of the buildings and architectural heritage together with their unique architecture and climatic related construction has an important role in tourism attraction and sustainable development. The purpose of this study was to develop a new definition of vacation shacks that is different with the definition of Cultural Heritage Organization. The place to stay and visit that is rebuilt or renovated based on traditional architectural style of Rasht and yet provides modern amenities so that it would not undermine indigenous traditional sense of the house. Data collection for this study is based on review of literature and field study. Results and the statistics of this study will prove that the research hypothesis is supported and there is a correlation between traditional houses of Rasht, as tourism–accommodation place and tourist attraction. It also indicates the capability and potential of these ancient monuments in the introduction of the culture of this land, and calling people and many tourists come to visit and stay in such places.

Keywords: architecture, traditional houses, vacation shacks, tourism

Procedia PDF Downloads 273
6667 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 304
6666 Yeasts Associated to Spontaneous Date Vinegar Process

Authors: F. Halladj, H. Amellal, S. Benamara

Abstract:

Current consumer trends go towards natural products defined as the products obtained by a traditional manufacturing method. Vinegar is one of those products marketed; it may be industrially obtained by a submerged (fast) or traditional (slow) processes. The latter exhibited a high quality because of its complex microbiological transformations (or two-stage fermentation) by the native must flora. Moreover, although that Acetic acid bacteria have traditionally been considered to play the leading role in vinegar production, some studies have recently highlighted that also yeasts metabolism can affect traditional vinegar chemical properties in a remarkable way. Thus, the aim of this study was to monitor a traditional slow process of vinegar as applied in the south of Algeria using date with hard texture (Degla-Beida variety) to isolate and identify the involved yeasts in order to select them as starter culture. Phenotypic and molecular analysis show that the non-Saccharomyces were the main yeasts species isolated throughout the alcoholic spontaneous fermentation and they included Hanseniaspora guilliermondii and Torulaspora delbrueckii.

Keywords: date vinegar, traditional production, yeasts, Phenotypic, Algeria

Procedia PDF Downloads 431
6665 A Metaheuristic Approach for Optimizing Perishable Goods Distribution

Authors: Bahare Askarian, Suchithra Rajendran

Abstract:

Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.

Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models

Procedia PDF Downloads 20
6664 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling

Procedia PDF Downloads 459
6663 Changing the Traditional Role of CFOs

Authors: Seyedmohammad Mousavian

Abstract:

Technological advancements are becoming unprecedentedly dominant everywhere. This dominance requires drastic chTechnological advancements are becoming unprecedentedly dominant everywhere. This dominance requires drastic changes in traditional thinking, procedures, and responsibilities. Chief Financial Officers (CFOs) have long played a key role in every organization around the globe and must adapt themselves to the disruptive technology which brings positive and negative points. This paper will discuss the shift of the traditional role of CFOs from just reporting toward more innovative roles like “Storytelling”, business partnering, and strategic planning.

Keywords: accounting information system, technology, data, CFO, finance

Procedia PDF Downloads 140
6662 Continuity and Changes on Traditional Puppetry in Java: The Existences of Wayang Hip Hop

Authors: Taufik Hidayah

Abstract:

Wayang is a traditional puppet show originated from Java. This traditional art is characterized by distinctive Hinduism influence. Wayang reflects the social life of the Javanese society. It contains Javanese philosophy, myths, magical stories, and religion, as well as educational media and transmission for noble values of Javanese society conveyed through the story. Nowadays, the performance of wayang has faced a new challenge to maintain its existence in the public life of Javanese society. Modernity has penetrated into every shape of culture. Many people consider traditional culture as old fashioned, particularly the young generation. That is one of the reasons why many people have left traditional culture. For maintaining the existence of wayang, a new art called ‘wayang hip hop’ has arisen. Wayang hip hop seeks to modify wayang show into a more modern form, but without removing any principles and main functions of wayang art. This article will discuss theoretically the changes and traditional continuity in wayang hip hop based on a literature review and qualitative approaches. Wayang hip hop uses hip-hop music as the background music in the show. It will discuss about the impact that comes with the existential strengthening of wayang hip hop especially among the Javanese society and discuss the opportunities that arise regarding the function of wayang hip-hop as a medium of education, social criticism, and cultural revitalization of the Javanese society.

Keywords: cultural revitalization, social criticism, education, continuity and change

Procedia PDF Downloads 241
6661 Digital Publics, Analogue Institutions: Everyday Urban Politics in Gated Neighborhoods in India

Authors: Praveen Priyadarshi

Abstract:

What is the nature of the 'political subjects' in the new urban spaces of the Indian cities? How do they become a 'public'? The paper explores these questions by studying the National Capital Region's gated communities in India. Even as the 'gated-ness' of these neighborhoods constantly underlines the definitive spatial boundary of the 'public' that it is constituted within the walls of a particular gated community, the making of this 'public' occurs as much in the digital spaces—in the digital space of online messaging apps and platforms—populated by unique digital identities. It is through constant exchanges of the digital identities that the 'public' is created. However, the institutional framework and the formal rules governing the making of the public are still analogue because they presume and privilege traditional modes of participation for people to constitute a 'public'. The institutions are designed as rules and norms governing people's behavior when they participate in traditional, physical mode, whereas rules and norms designed in the algorithms regulate people's social and political behavior in the digital domain. In exploring this disjuncture between the analogue institutions and the digital public, the paper analytically evaluates the nature of everyday politics in gates neighborhoods in India.

Keywords: gated communities, everyday politics, new urban spaces, digital publics

Procedia PDF Downloads 165
6660 A Study and Design Scarf Collection Applied Vietnamese Traditional Patterns by Using Printing Method on Fabric

Authors: Mai Anh Pham Ho

Abstract:

Scarf products today is a symbol of fashion to decorate, to make our life more beautiful and bring new features to our living space. It also shows the cultural identity by using the traditional patterns that make easily to introduce the image of Vietnam to other nations all over the world. Therefore, the purpose of this research is to classify Vietnamese traditional patterns according to the era and dynasties. Vietnamese traditional patterns through the dynasties of Vietnamese history are done and classified by five groups of patterns including the geometric patterns, the natural patterns, the animal patterns, the floral patterns, and the character patterns in the Prehistoric times, the Bronze and Iron age, the Chinese domination, the Ngo-Dinh-TienLe-Ly-Tran-Ho dynasty, and the LeSo-Mac-LeTrinh-TaySon-Nguyen dynasty. Besides, there are some special kinds of Vietnamese traditional patterns like buffalo, lotus, bronze-drum, Phuc Loc Tho character, and so on. Extensive research was conducted for modernizing scarf collection applied Vietnamese traditional patterns which the fashion trend is used on creating works. The concept, target, image map, lifestyle map, motif, colours, arrangement and completion of patterns on scarf were set up. The scarf collection is designed and developed by the Adobe Illustrator program with three colour ways for each scarf. Upon completion of the research, digital printing technology is chosen for using on scarf collection which Vietnamese traditional patterns were researched deeply and widely with the purpose of establishment the basic background for Vietnamese culture in order to identify Vietnamese national personality as well as establish and preserve the cultural heritage.

Keywords: scarf collection, Vietnamese traditional patterns, printing methods, fabric design

Procedia PDF Downloads 342
6659 Analysis of Kilistra (Gokyurt) Settlement within the Context of Traditional Residential Architecture

Authors: Esra Yaldız, Tugba Bulbul Bahtiyar, Dicle Aydın

Abstract:

Humans meet their need for shelter via housing which they structure in line with habits and necessities. In housing culture, traditional dwelling has an important role as a social and cultural transmitter. It provides concrete data by being planned in parallel with users’ life style and habits, having their own dynamics and components as well as their designs in harmony with nature, environment and the context they exist. Textures of traditional dwelling create a healthy and cozy living environment by means of adaptation to natural conditions, topography, climate, and context; utilization of construction materials found nearby and usage of traditional techniques and forms; and natural isolation of construction materials used. One of the examples of traditional settlements in Anatolia is Kilistra (Gökyurt) settlement of Konya province. Being among the important centers of Christianity in the past, besides having distinctive architecture, culture, natural features, and geographical differences (climate, geological structure, material), Kilistra can also be identified as a traditional settlement consisting of family, religious and economic structures as well as cultural interaction. The foundation of this study is the traditional residential texture of Kilistra with its unique features. The objective of this study is to assess the conformity of traditional residential texture of Kilistra with present topography, climatic data, and geographical values within the context of human scale construction, usage of green space, indigenous construction materials, construction form, building envelope, and space organization in housing.

Keywords: traditional residential architecture, Kilistra, Anatolia, Konya

Procedia PDF Downloads 412
6658 Understanding Traditional Healing Practices and the Categories of Practices from Fijian iTaukei’s Perspectives

Authors: Dan Frederick Orcherton, Maria Orcherton, Matthew Kensen

Abstract:

This study takes an in-depth look at how traditional healing practices (THPs) are perceived by the iTaukei people living in villages and periurban areas in Fiji Islands. The research used both qualitative and quantitative knowledge/data gathered from six villages in Viti Levu, Fiji Islands, to determine, first, the perception(s) of THPs among the iTaukei; second, what THPs successfully survive and are still important to the iTaukei way of life; and third, what factors influence the iTaukei’s health-seeking behavior or choices between Western and traditional medical systems in their villages. Results confirm that the knowledge healers used to hold to cure common illnesses is now more dispersed and shared with community members; healers/elders’ roles in iTaukei villages are important for cultural–spiritual–social causes of illnesses, and for more complex cases, there are specialized iTaukei healers. Recommendations in the form of categories of practices are offered for practitioners to work more effectively and affectively with the iTaukei.

Keywords: iTaukei peoples, traditional healing practices, traditional healers, categories of practice

Procedia PDF Downloads 19
6657 Speed Control of DC Motor Using Optimization Techniques Based PID Controller

Authors: Santosh Kumar Suman, Vinod Kumar Giri

Abstract:

The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers.

Keywords: DC motor, PID controller, optimization techniques, genetic algorithm (GA), objective function, IAE

Procedia PDF Downloads 420
6656 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 97
6655 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar

Authors: Shaolin Allen Liao, Hual-Te Chien

Abstract:

Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.

Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar

Procedia PDF Downloads 345
6654 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data

Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan

Abstract:

Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.

Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data

Procedia PDF Downloads 441
6653 Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy.

Keywords: controller, Stewart platform, docking operation, spacecraft

Procedia PDF Downloads 51
6652 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images

Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge

Abstract:

Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.

Keywords: band selection, fuzzy c-means, k-means, hyperspectral image

Procedia PDF Downloads 408
6651 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 138
6650 Comparative Study of Traditional Classroom Learning and Distance Learning in Pakistan

Authors: Muhammad Afzal Malik

Abstract:

Traditional Learning & Distance based learning are the two systems prevailing in Pakistan. These systems affect the level of education standard. The purpose of this study was to compare the traditional classroom learning and distance learning in Pakistan: (a) To explore the effectiveness of the traditional to Distance learning in Pakistan; (b) To identify the factors that affect traditional and distance learning. This review found that, on average, students in traditional classroom conditions performed better than those receiving education in and distance learning. The difference between student outcomes for traditional Classroom and distance learning classes —measured as the difference between treatment and control means, divided by the pooled standard deviation— was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. This research was conducted to highlight the impact of distance learning education system on education standard. The education standards were institutional support, course development, learning process, student support, faculty support, evaluation and assessment. A well developed questionnaire was administered and distributed among 26 faculty members of GCET, H-9 and Virtual University of Pakistan from each. Data was analyzed through correlation and regression analysis. Results confirmed that there is a significant relationship and impact of DLE system on education standards. This will also provide baseline for future research. It will add value to the existing body of knowledge.

Keywords: distance learning education, higher education, education standards, student performance

Procedia PDF Downloads 280