Search results for: time series generation
22037 A Study of Smartphone Engagement Patterns of Millennial in India
Authors: Divyani Redhu, Manisha Rathaur
Abstract:
India has emerged as a very lucrative market for the smartphones in a very short span of time. The number of smartphone users here is growing massively with each passing day. Also, the expansion of internet services to far corners of the nation has also given a push to the smartphone revolution in India. Millennial, also known as Generation Y or the Net Generation is the generation born between the early 1980s and mid-1990s (some definitions extending further to early 2000s). Spanning roughly over 15 years, different social classes, cultures, and continents; it is irrational to imagine that millennial have a unified identity. But still, it cannot be denied that the growing millennial population is not only young but is highly tech-savvy too. It is not just the appearance of the device that today; we call it ‘smart’. Rather, it is the numerous tasks and functions that it can perform which has led its name to evolve as that of a ‘smartphone’. From usual tasks that were earlier performed by a simple mobile phone like making calls, sending messages, clicking photographs, recording videos etc.; today, the time has come where most of our day – to – day tasks are being taken care of by our all-time companion, i.e. smartphones. From being our alarm clock to being our note-maker, from our watch to our radio, our book-reader to our reminder, smartphones are present everywhere. Smartphone has now become an essential device for particularly the millennial to communicate not only with their friends but also with their family, colleagues, and teachers. The study by the researchers would be quantitative in nature. For the same, a survey would be conducted in particularly the capital of India, i.e. Delhi and the National Capital Region (NCR), which is the metropolitan area covering the entire National Capital Territory of Delhi and urban areas covering states of Haryana, Uttarakhand, Uttar Pradesh and Rajasthan. The tool of the survey would be a questionnaire and the number of respondents would be 200. The results derived from the study would primarily focus on the increasing reach of smartphones in India, smartphones as technological innovation and convergent tools, smartphone usage pattern of millennial in India, most used applications by the millennial, the average time spent by them, the impact of smartphones on the personal interactions of millennial etc. Thus, talking about the smartphone technology and the millennial in India, it would not be wrong to say that the growth, as well as the potential of the smartphones in India, is still immense. Also, very few technologies have made it possible to give a global exposure to the users and smartphone, if not the only one is certainly an immensely effective one that comes to the mind in this case.Keywords: Delhi – NCR, India, millennial, smartphone
Procedia PDF Downloads 14322036 Generation Z: Insights into Travel Behavior
Authors: Joao Ferreira Do Rosario, Nuno Gustavo, Ana Machado, Lurdes Calisto, Luisa Carvalho, Georgette Andraz
Abstract:
Currently, tourism small and medium enterprises (TSMEs) face serious economic and financial problems, making recovery efforts difficult. How the pandemic will affect tourists' behavior is still to be known. Will tourists be even more cautious regarding their choices or, on the contrary, will they be more adventurers with an enormous desire to travel in search of the lost freedom? Tourists may become even more demanding when traveling, more austere, or less concerned and eager to socialize. Adjusting to this "new tourist" is an added challenge for tourism service providers. Generation Z made up of individuals born in 1995 and following years, currently tends to assume a particular role and meaning in the present and future economic and social context, considering that we are facing the youngest workforce as well as tomorrow's consumers. This generation is distinguished from others as it is the first generation to combine a high level of education and technological knowledge and to fully experience the digital world. These young people are framed by a new value system that can explain new behaviours and consumption, namely, in the context of tourism. All these considerations point to the importance of investigating this target group as it is essential to understand how these individuals perceive, understand, act, and can be involved in a new environment built around a society regulated by new priorities and challenges of a sustainable nature. This leads not only to a focus on short-term market choices but mainly to predict future choices from a longer-term perspective. Together with the social background of a person, values are considered a stable antecedent of behavior and might therefore predict not just immediate, but also future choices. Furthermore, the meaning attributed to travel has a general connotation and goes beyond a specific travel choice or experience. In other words, values and travel's meaning form a chain of influences on the present and future travel behavior. This study explores the social background and values of Generation Z travelers vs the meaning these tourists give to travel. The aim is to discover in their present behavior cues to predict travel choices so that the future of tourism can be secured. This study also provides data for predicting the tourism choices of youngsters in the more immediate future. Methodologically, a quantitative approach was adopted based on the collection of data through a survey. Since academic research on Generation Z of tourists is still scarce, it is expected to contribute to deepening scientific knowledge in this area. Furthermore, it is expected that this research will support tourism professionals in defining differentiated marketing strategies and adapted to the requirements of this target, in a new time.Keywords: Generation Z, travel behavior, travel meaning, Generation Z Values
Procedia PDF Downloads 22622035 Robotic Assisted vs Traditional Laparoscopic Partial Nephrectomy Peri-Operative Outcomes: A Comparative Single Surgeon Study
Authors: Gerard Bray, Derek Mao, Arya Bahadori, Sachinka Ranasinghe
Abstract:
The EAU currently recommends partial nephrectomy as the preferred management for localised cT1 renal tumours, irrespective of surgical approach. With the advent of robotic assisted partial nephrectomy, there is growing evidence that warm ischaemia time may be reduced compared to the traditional laparoscopic approach. There is still no clear differences between the two approaches with regards to other peri-operative and oncological outcomes. Current limitations in the field denote the lack of single surgeon series to compare the two approaches as other studies often include multiple operators of different experience levels. To the best of our knowledge, this study is the first single surgeon series comparing peri-operative outcomes of robotic assisted and laparoscopic PN. The current study aims to reduce intra-operator bias while maintaining an adequate sample size to assess the differences in outcomes between the two approaches. We retrospectively compared patient demographics, peri-operative outcomes, and renal function derangements of all partial nephrectomies undertaken by a single surgeon with experience in both laparoscopic and robotic surgery. Warm ischaemia time, length of stay, and acute renal function deterioration were all significantly reduced with robotic partial nephrectomy, compared to laparoscopic nephrectomy. This study highlights the benefits of robotic partial nephrectomy. Further prospective studies with larger sample sizes would be valuable additions to the current literature.Keywords: partial nephrectomy, robotic assisted partial nephrectomy, warm ischaemia time, peri-operative outcomes
Procedia PDF Downloads 14522034 Islamic Research Methodology (I-Restmo): Eight Series Research Module with Islamic Value Concept
Authors: Noraizah Abu Bakar, Norhayati Alais, Nurdiana Azizan, Fatimah Alwi, Muhammad Zaky Razaly
Abstract:
This is a concise research module with the Islamic values concept proposed to a group of researches, potential researchers, PhD and Master Scholars to prepare themselves for their studies. The intention of designing this module is to help and guide Malaysian citizens to undergone their postgraduate’s studies. This is aligned with the 10th Malaysian plan- MyBrain 15. MyBrain 15 is a financial aid to Malaysian citizens to pursue PhD and Master programs. The program becomes one of Ministry of Education Strategic Plan to ensure by year 2013, there will be 60,000 PhD scholars in Malaysia. This module is suitable for the social science researchers; however it can be useful tool for science technology researchers such as Engineering and Information Technology disciplines too. The module consists of eight (8) series that provides a proper flow of information in doing research with the Islamic Value Application provided in each of the series. This module is designed to produce future researchers with a comprehensive knowledge of humankind and the hereafter. The uniqueness about this research module is designed based on Islamic values concept. Researchers were able to understand the proper research process and simultaneously be able to open their minds to understand Islam more closely. Application of Islamic values in each series could trigger a broader idea for researchers to examine in greater depth of knowledge related to humanities.Keywords: Eight Series Research Module, Islamic Values concept, Teaching Methodology, Flow of Information, Epistemology of research
Procedia PDF Downloads 40222033 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 30922032 The Improvement of Environmental Protection through Motor Vehicle Noise Abatement
Authors: Z. Jovanovic, Z. Masonicic, S. Dragutinovic, Z. Sakota
Abstract:
In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated.Keywords: noise abatement, MV noise sources, noise source identification, muffler
Procedia PDF Downloads 44922031 Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin
Authors: P. Aarumugam, N. Krishnamoorthy, K. Gunasekaran
Abstract:
The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms.Keywords: Anopheles stephensi, deltamethrin, functional mortality, synthetic pyrethroids
Procedia PDF Downloads 39922030 Video on Demand (VOD) Industry in Iran: Study of Reasons of Increasing Film and Series Platforms
Authors: Narges Hamidipour
Abstract:
VOD, which stands for "video on demand", is one kind of watching movies and series on web platforms that, by using them, individuals can access lots of video content by paying abonnement. The first platform in Iran was funded in 2014, and in the last 10 years, it has become the main part of the movie and series industry. There are 374 VOD platforms in Iran, but just three of them are in the mainstream. However, in these years, they have been developed and famed in different ways. This article focuses on the reasons for this development in the past years. For the framework, "digital economy", "media industries," and "political economy" have been used with the interview method. In this research, some experts in SATRA (regulatory organization of inclusive audio and video media in Iran), owners or managers of VODs and some others who directly have been in the system conveyed their opinions. By the way, some documents and analysis statistics are invoked to reach complete results.Keywords: digital economy, political economy, VOD, interview, iran
Procedia PDF Downloads 6922029 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation
Authors: Suprabha Islam, Sifat Ullah Tanzil
Abstract:
During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.Keywords: aeroacoustics, aerodynamic, biomimetics, serrations
Procedia PDF Downloads 17122028 A Semi-supervised Classification Approach for Trend Following Investment Strategy
Authors: Rodrigo Arnaldo Scarpel
Abstract:
Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation
Procedia PDF Downloads 9222027 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 3022026 Determinants of Aggregate Electricity Consumption in Ghana: A Multivariate Time Series Analysis
Authors: Renata Konadu
Abstract:
In Ghana, electricity has become the main form of energy which all sectors of the economy rely on for their businesses. Therefore, as the economy grows, the demand and consumption of electricity also grow alongside due to the heavy dependence on it. However, since the supply of electricity has not increased to match the demand, there has been frequent power outages and load shedding affecting business performances. To solve this problem and advance policies to secure electricity in Ghana, it is imperative that those factors that cause consumption to increase be analysed by considering the three classes of consumers; residential, industrial and non-residential. The main argument, however, is that, export of electricity to other neighbouring countries should be included in the electricity consumption model and considered as one of the significant factors which can decrease or increase consumption. The author made use of multivariate time series data from 1980-2010 and econometric models such as Ordinary Least Squares (OLS) and Vector Error Correction Model. Findings show that GDP growth, urban population growth, electricity exports and industry value added to GDP were cointegrated. The results also showed that there is unidirectional causality from electricity export and GDP growth and Industry value added to GDP to electricity consumption in the long run. However, in the short run, there was found to be a directional causality among all the variables and electricity consumption. The results have useful implication for energy policy makers especially with regards to electricity consumption, demand, and supply.Keywords: electricity consumption, energy policy, GDP growth, vector error correction model
Procedia PDF Downloads 44022025 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 19222024 Friction Stir Welding of Al-Mg-Mn Aluminum Alloy Plates: A Review
Authors: K. Subbaiah, C. V. Jayakumar
Abstract:
Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg-Mn alloys (5000 Series) have been discussed.Keywords: Al-Mg-Mn alloys, friction stir welding, tool pin profile, microstructure and mechanical properties
Procedia PDF Downloads 44622023 Deltamethrin-Induces Oxidative Stress to the Freshwater Ciliate Model: Paramecium tetraurelia
Authors: Amamra Ryma, Djebar Mohamed Reda, Moumeni Ouissem, Otmani Hadjer, Berrebbah Houria
Abstract:
The problem of environmental contamination by the excessive use of organics cannot be neglected. Extensive application is usually companied with serious problems and health risk. It is established that many chemicals, in common use, can produce some toxic effects on biological systems through their mode of action or by production of free radicals that damage all cell compounds. Deltamethrin, a widely used type II pyrethroid pesticide, is one of the most common contaminants in freshwater aquatic system. In this study, we investigate the effects of deltamethrin exposure on the induction of oxidative stress to the freshwater ciliate Paramecium tetraurelia. After the treatment of paramecium cells with increasing concentrations of insecticide, we followed up the growth kinetics, generation time and the percentage response. Also, we studied the variation in biomarkers of stress such as: GSH content, GST, GPX and CAT activities. Our results showed a significant decrease in the proliferation of cells correlated by the decrease in generation number and the increase in generation time. Also, we noted an inhibition in the percentage response. The monitoring of biomarkers revealed depletion in GSH content in a proportional and dose dependent manner accompanied by an increase in the GST activity. In parallel, a strong induction in the CAT and GPX activities was noted specially for the highest dose. In summary, under the current experimental conditions, deltamethrin is highly toxic to the freshwater ciliate Paramecium tetraurelia. Exposure to low concentrations showed significant adverse on growth accompanied with the induction of oxidative damage supported by the decrease in GSH content and the intensification of the antioxidant enzymes.Keywords: deltamethrin, Paramecium tetraurelia, growth, oxidative stress, biomarkers, antioxidant
Procedia PDF Downloads 47122022 Data-Driven Simulations Tools for Der and Battery Rich Power Grids
Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili
Abstract:
Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools
Procedia PDF Downloads 10922021 Attitudes, Experiences and Good Practices of Writing Online Course Material: A Case Study in Makerere University
Authors: Ruth Nsibirano
Abstract:
Online mode of delivery in higher institutions of learning, popularly known in some circles as e-Learning or distance education is a new phenomenon that is steadily taking root in African universities but specifically at Makerere University. For slightly over a decade, the Department of Open and Distance Learning has been offering the first generation mode of distance education. In this, learning and teaching experiences were based on the use of hard copy materials circulated through postal services in a rather correspondence mode. There were more challenges to this including high dropout rates, limited support to the learners and sustainability issues. Fortunately, the Department was supported by the Norwegian Government through a NORHED grant to “leapfrog” to the fifth generation of distance education that makes more use of educational technologies and tools. The capacity of faculty staff was gradually enhanced through a series of training to handle the upgraded structure of fifth generation distance education. The trained staff was then tasked to develop modules befitting an online delivery mode, for use on the program. This paper will present attitudes, experiences of the course writers with a view of sharing the good practices that enabled them leap from e-faculty trainees to distinct online course writers. This perspective will hopefully serve as building blocks to enhance the capacity of other upcoming distance education programs in low capacity universities and also promote the uptake of e-Education on the continent and beyond. Methodologically the findings were collected through individual interviews with the 30 course writers. In addition, semi structured questionnaires were designed to collect data on the profile, challenges and lessons from the writers. Findings show that the attitudes of course writers on project supported activities are so much tagged to the returns from their committed efforts. In conclusion, therefore, it is strategically useful to assess and selectively choose which individual to nominate for involvement at the initial stages.Keywords: distance education, online course content, staff attitudes, best practices in online learning
Procedia PDF Downloads 25622020 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 3922019 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation
Authors: A. T. Kuda, J. J. Dayya, A. Jimoh
Abstract:
This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations
Procedia PDF Downloads 30522018 A Bayesian Population Model to Estimate Reference Points of Bombay-Duck (Harpadon nehereus) in Bay of Bengal, Bangladesh Using CMSY and BSM
Authors: Ahmad Rabby
Abstract:
The demographic trend analyses of Bombay-duck from time series catch data using CMSY and BSM for the first time in Bangladesh. During 2000-2018, CMSY indicates average lowest production in 2000 and highest in 2018. This has been used in the estimation of prior biomass by the default rules. Possible 31030 viable trajectories for 3422 r-k pairs were found by the CMSY analysis and the final estimates for intrinsic rate of population increase (r) was 1.19 year-1 with 95% CL= 0.957-1.48 year-1. The carrying capacity(k) of Bombay-duck was 283×103 tons with 95% CL=173×103 - 464×103 tons and MSY was 84.3×103tons year-1, 95% CL=49.1×103-145×103 tons year-1. Results from Bayesian state-space implementation of the Schaefer production model (BSM) using catch & CPUE data, found catchabilitiy coefficient(q) was 1.63 ×10-6 from lcl=1.27×10-6 to ucl=2.10×10-6 and r= 1.06 year-1 with 95% CL= 0.727 - 1.55 year-1, k was 226×103 tons with 95% CL=170×103-301×103 tons and MSY was 60×103 tons year-1 with 95% CL=49.9 ×103- 72.2 ×103 tons year-1. Results for Bombay-duck fishery management based on BSM assessment from time series catch data illustrated that, Fmsy=0.531 with 95% CL =0.364 - 0.775 (if B > 1/2 Bmsy then Fmsy =0.5r); Fmsy=0.531 with 95% CL =0.364-0.775 (r and Fmsy are linearly reduced if B < 1/2Bmsy). Biomass in 2018 was 110×103 tons with 2.5th to 97.5th percentile=82.3-155×103 tons. Relative biomass (B/Bmsy) in last year was 0.972 from 2.5th percentile to 97.5th percentile=0.728 -1.37. Fishing mortality in last year was 0.738 with 2.5th-97.5th percentile=0.525-1.37. Exploitation F/Fmsy was 1.39, from 2.5th to 97.5th percentile it was 0.988 -1.86. The biological reference points of B/BMSY was smaller than 1.0, while F/FMSY was higher than 1.0 revealed an over-exploitation of the fishery, indicating that more conservative management strategies are required for Bombay-duck fishery.Keywords: biological reference points, catchability coefficient, carrying capacity, intrinsic rate of population increase
Procedia PDF Downloads 13122017 The Impact of Natural Resources on Financial Development: The Global Perspective
Authors: Remy Jonkam Oben
Abstract:
Using a time series approach, this study investigates how natural resources impact financial development from a global perspective over the 1980-2019 period. Some important determinants of financial development (economic growth, trade openness, population growth, and investment) have been added to the model as control variables. Unit root tests have revealed that all the variables are integrated into order one. Johansen's cointegration test has shown that the variables are in a long-run equilibrium relationship. The vector error correction model (VECM) has estimated the coefficient of the error correction term (ECT), which suggests that the short-run values of natural resources, economic growth, trade openness, population growth, and investment contribute to financial development converging to its long-run equilibrium level by a 23.63% annual speed of adjustment. The estimated coefficients suggest that global natural resource rent has a statistically-significant negative impact on global financial development in the long-run (thereby validating the financial resource curse) but not in the short-run. Causality test results imply that neither global natural resource rent nor global financial development Granger-causes each other.Keywords: financial development, natural resources, resource curse hypothesis, time series analysis, Granger causality, global perspective
Procedia PDF Downloads 17622016 Practical Methods for Automatic MC/DC Test Cases Generation of Boolean Expressions
Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau
Abstract:
Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that aims to prove that all conditions involved in a Boolean expression can influence the result of that expression. In the context of automotive, MC/DC is highly recommended and even required for most security and safety applications testing. However, due to complex Boolean expressions that often embedded in those applications, generating a set of MC/DC compliant test cases for any of these expressions is a nontrivial task and can be time consuming for testers. In this paper we present an approach to automatically generate MC/DC test cases for any Boolean expression. We introduce novel techniques, essentially based on binary trees to quickly and optimally generate MC/DC test cases for the expressions. Thus, the approach can be used to reduce the manual testing effort of testers.Keywords: binary trees, MC/DC, test case generation, nontrivial task
Procedia PDF Downloads 45422015 Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means
Authors: Smita Sonker
Abstract:
Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski.Keywords: signals, trigonometric fourier approximation, class W(L^r, \xi(t), conjugate fourier series
Procedia PDF Downloads 40022014 An Experimental Study on Evacuated Tube Solar Collector for Steam Generation in India
Authors: Avadhesh Yadav, Anunaya Saraswat
Abstract:
An evacuated tube solar collector is experimentally studied for steam generation. When the solar radiation falls on evacuated tubes, this energy is absorbed by the tubes and transferred to water with natural conduction and convection. A natural circulation of water occurs due to the inclination in tubes and header. In this experimental study, the efficiency of collector has been calculated. The result shows that the collector attains the maximum efficiency of 46.26% during 14:00 to 15:00h. Steam has been generated for two hours from 13:30 to 15:30 h on a winter day. Maximum solar intensity and maximum ambient temperatures are 795W/m2 and 19oC respectively on this day.Keywords: evacuated tube, solar collector, hot water, steam generation
Procedia PDF Downloads 30422013 The Shannon Entropy and Multifractional Markets
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work.Keywords: Shannon entropy, multifractional Brownian motion, Hurst–Holder exponent, stock indexes
Procedia PDF Downloads 11322012 Risk Factors and Regional Difference in the Prevalence of Fecal Carriage Third-Generation Cephalosporin-Resistant E. Coli in Taiwan
Authors: Wan-Ling Jiang, Hsin Chi, Jia-Lu Cheng, Ming-Fang Cheng
Abstract:
Background: Investigating the risk factors for the fecal carriage of third-generation cephalosporin-resistant E.coli could contribute to further disease prevention. Previous research on third-generation cephalosporin-resistant prevalence in children in different regions of Taiwan is limited. This project aims to explore the risk factors and regional differences in the prevalence of third-generation cephalosporin-resistant and other antibiotic-resistant E. coli in the northern, southern, and eastern regions of Taiwan. Methods: We collected data from children aged 0 to 18 from community or outpatient clinics from July 2022 to May 2023 in southern, northern, and eastern Taiwan. The questionnaire was designed to survey the characteristics of participants and possible risk factors, such as clinical information, household environment, drinking water, and food habits. After collecting fecal samples and isolating stool culture with E.coli, antibiotic sensitivity tests and MLST typing were performed. Questionnaires were used to analyze the risk factors of third-generation cephalosporin-resistant E. coli in the three different regions of Taiwan. Results: In the total 246 stool samples, third-generation cephalosporin-resistant E.coli accounted for 37.4% (97/246) of all isolates. Among the three different regions of Taiwan, the highest prevalence of fecal carriage with third-generation cephalosporin-resistant E.coli was observed in southern Taiwan (42.7%), followed by northern Taiwan (35.5%) and eastern Taiwan (28.4%). Multi-drug resistant E. coli had prevalence rates of 51.9%, 66.3%, and 37.1% in the northern, southern, and eastern regions, respectively. MLST typing revealed that ST131 was the most prevalent type (11.8%). The prevalence of ST131 in northern, southern, and eastern Taiwan was 10.1%, 12.3%, and 13.2%, respectively. Risk factors analysis identified lower paternal education, overweight status, and non-vegetarian diet as statistical significance risk factors for third-generation cephalosporin-resistant E.coli. Conclusion: The fecal carriage rates of antibiotic-resistant E. coli among Taiwanese children were on the rise. This study found regional disparities in the prevalence of third-generation cephalosporin-resistant and multi-drug-resistant E. coli, with southern Taiwan having the highest prevalence. Lower paternal education, overweight, and non-vegetarian diet were the potential risk factors of third-generation cephalosporin-resistant E. coli in this study.Keywords: Escherichia coli, fecal carriage, antimicrobial resistance, risk factors, prevalence
Procedia PDF Downloads 7322011 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 40022010 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches
Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.
Abstract:
A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency
Procedia PDF Downloads 15122009 Managing the Effects of Wet Coal on Generation in Thermal Power Station: A Case Study
Authors: Ravindra Gohane, S. V. Deshmukh
Abstract:
The coal acts as a fuel on a very large scale. Coal forms the basis of any thermal power plant. Different types of coal are available for utilization. The moisture content, volatile nature and ash content determines the type of the coal. Out of these moisture plays a very important part as it is present naturally within the coal and is added while handling the coal and is termed as wet coal. The problems of wet coal are many and more particularly during rainy season such as generation loss, jamming of crusher, reduction in calorific value, transportation of coal etc. Efforts are made to resolve the problems arising out of wet coal worldwide. This paper highlights the issue of resolving the problem due to wet coal with the help of a case study involving installation of V-type wiper on the conveyer belt.Keywords: coal handling plant, wet coal, v-type, generation
Procedia PDF Downloads 36122008 Mapping of Textile Waste Generation across the Value Chains Operating in the Textile Industry
Authors: Veena Nair, Srikanth Prakash, Mayuri Wijayasundara
Abstract:
Globally, the textile industry is a key contributor to the generation of solid waste which gets landfilled. Textile waste generation generally occurs in three stages, namely: producer waste, pre-consumer waste, and post-consumer waste. However, the different processes adopted in textile material extraction, manufacturing, and use have their respective impact in terms of the quantity of waste being diverted to landfills. The study is focused on assessing the value chains of the two most common textile fibres: cotton and polyester, catering to a broad categories of apparel products. This study attempts to identify and evaluate the key processes adopted by the textile industry at each of the stages in their value chain in terms of waste generation. The different processes identified in each of the stages in the textile value chains are mapped to their respective contribution in generating fibre waste which eventually gets diverted to landfill. The results of the study are beneficial for the overall industry in terms of improving the traceability of waste in the value chains and the selection of processes and behaviours facilitating the reduction of environmental impacts associated with landfills.Keywords: textile waste, textile value chains, landfill waste, waste mapping
Procedia PDF Downloads 211