Search results for: tensile failure load
5195 Applied Methods for Lightweighting Structural Systems
Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi
Abstract:
With gravity load reduction in the structural and non-structural components, the lightweight construction will be achieved as well as the improvement of efficiency and functional specifications. The advantages of lightweight construction can be examined in two levels. The first is the mass reduction of load bearing structure which results in increasing internal useful space and the other one is the mass reduction of building which decreases the effects of seismic load as a result. In order to achieve this goal, the essential building materials specifications and also optimum load bearing geometry of structural systems and elements have to be considered, so lightweight materials selection particularly with lightweight aggregate for building components will be the first step of lightweight construction. In the next step, in addition to selecting the prominent samples of Iran's traditional architecture, the process of these works improvement is analyzed through the viewpoints of structural efficiency and lightweighting and also the practical methods of lightweight construction have been extracted. The optimum design of load bearing geometry of structural system has to be considered not only in the structural system elements, but also in their composition and the selection of dimensions, proportions, forms and optimum orientations, can lead to get a maximum materials efficiency for loads and stresses bearing.Keywords: gravity load, lightweighting structural system, load bearing geometry, seismic behavior
Procedia PDF Downloads 5215194 Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites
Authors: S. F. Halim, H. F. Naguib, S. N. Lawandy, R. S. Hegazy, M. N. Baheg
Abstract:
The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture.Keywords: carbon fiber, CFRP, composites, epoxy resins, flexural strength
Procedia PDF Downloads 1275193 Slope Stability Considering the Top Building Load
Authors: Micke Didit, Xiwen Zhang, Weidong Zhu
Abstract:
Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. Therefore, it is of great importance to study the relationship between the load and the stability of the slope. This study aims to analyze the influence of the building load applied on the top of the slope and deduces its effect on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (fos) increases with the increase of the distance between the top-loading and the slope shoulder, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.Keywords: building load, finite-difference analysis, FLAC3D software, slope factor of safety, slope stability
Procedia PDF Downloads 1765192 The Survey of Relationship between Health Literacy and Knowledge of Heart Failure with Rehospitalization in Patients with Heart Failure Admitted to Heart Failure Clinic
Authors: Jaleh Mohammad Aliha, Rezvan Razazi, Nasim Naderi
Abstract:
Introduction: Despite the progress in new effective drugs in the treatment of heart failure, the disease still accompanied with frequent hospitalization, impaired quality of life, early mortality and significant economic burden. Patients with chronic disease and consequently patients with heart failure need the knowledge and optimal health literacy to improve the quality of life and minimize the rate of rehopitalizatio. So, considering to importance of knowledge and health literacy in this patients as well as contradictory literature, this study conducted to investigate the relationship between health literacy and Knowledge of heart failure with rehospitalization in patients with heart failure admitted to heart failure clinic in Rajai Heart center in 1394. Methods: The cross-sectional method with convenience sampling method was used in this study. After obtaining the necessary permissions from the ethics committee and the Shahid Rajai Heart center, 238 patients who were older than 18 years and had ejection fraction 35% or less with the ability to read and write and lack of psychiatric, neurological and cognitive disorders and signed the informed consent were recruited. Data collection were perfomed through demographic data questionnaire, short standard health literacy questionnaire 'Short-TOFHLA-16' and Vanderwall (2005) knowledge of heart failure questionnaire. Reliability was assessed by internal consistency method and Cronbach's alpha for both questionnaires was more than 0.7. Then data were analysed by SPSS-20 with descriptive statistic and analytical statistic such as T-test, Chi-square and ANOVA. Results: The majority of patients were male (66%), married (80%) and had age between 50 to 70 years old (42%). The majority of studied men and women have good health literacy and About half of them have adequate knowledge about heart failure. Fisher's exact test showed that there was a significant statistical correlation between health literacy and knowlegh about heart failure. In other words, higher health literacy associated with more knowledge about their condition. Also findings showed that there was no significant statistical correlation between health literacy and knowledge about heart failure and frequency of CCU and emergency admissions. Conclusion: The study results showed that the higher health literacy, associated with the greater knowledge about heart failure and patients' perception about caring recommendations and disease outcomes. Therefore, the knowledge about heart failure and factors which related to severity of the disease, is the important issue to problem identification and treatment and reduction of rehospitalization.Keywords: health literacy, heart failure, knowlegde, rehospitalization
Procedia PDF Downloads 4015191 The Load Balancing Algorithm for the Star Interconnection Network
Authors: Ahmad M. Awwad, Jehad Al-Sadi
Abstract:
The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.Keywords: load balancing, star network, interconnection networks, algorithm
Procedia PDF Downloads 3195190 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen
Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon
Abstract:
Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement
Procedia PDF Downloads 3885189 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model
Authors: Ariful Islam, Showkat Ahmad Lone
Abstract:
The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability
Procedia PDF Downloads 2735188 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel
Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung
Abstract:
In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.Keywords: Basalt Fiber Reinforced Polymer (BFRP), buckling performance, FEM analysis, sandwich infill panel
Procedia PDF Downloads 4415187 Behavior of Double Skin Circular Tubular Steel-Concrete-Composite Column
Authors: Usha Sivasankaran, Seetha Raman
Abstract:
Experimental work on Double skin Concrete Filled tubes (DSCFT) are a variation of CFT (Concrete- filled steel tubular) with a hollow core formed by two concentric steel tubes in – filled with concrete. Six Specimens with three different volume fractions of steel fibres are cast and tested. Experiments on circular steel tubes in – filled with steel fibre reinforced concrete (SFRC) and normal concrete have been performed to investigate the contribution of steel fibres to the load bearing capacity of Short Composite Columns. The main Variable considered in the test study is the percentage of steel fibres added to the in –filled concrete. All the specimens were tested under axial compression until failure state realisation. This project presents the percentage Variation in the compression strengths of the 3 types of Composite members taken under Study. The results show that 1.5% SFRC in filled steel columns exhibit enhanced ultimate load carrying capacity.Keywords: composite columns, optimization of steel, double skin, DSCFT
Procedia PDF Downloads 5485186 Seismic Behaviour of CFST-RC Columns
Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian
Abstract:
Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance
Procedia PDF Downloads 2455185 Experimental Study of the Infill Masonry Walls Response Subjected to Out-Of-Plane Static Loadings
Authors: André Furtado, Hugo Rodrigues, António Arêde, Humberto Varum
Abstract:
Besides characterized as non-structural elements, infill masonry (IM) walls have an important contribute in the structural response of reinforced concrete structures as proved by the damages observed recent earthquakes. In particular, the out-of-plane (OOP) collapse has been one of the most observed failure mechanism. The aim of this research is to contribute to the increase of understanding regarding the OOP behaviour of full-scale infill panels considering different variables such as panel support width and axial load on the top of columns. For this, it was carried out in the Laboratory of Earthquake and Structural Engineering (LESE) an experimental campaign of five full-scale IM walls subjected to OOP distributed cyclic loadings. Specimens with different variables such as previous in-plane damage, support conditions, axial load on the top of the columns were studied. The results will be presented and discussed along the manuscript in terms of force-displacement hysteretic curves, cracking pattern, initial stiffness, stiffness degradation and accumulative energy dissipation.Keywords: infill masonry walls, experimental testing, out-of-plane, full-scale
Procedia PDF Downloads 3905184 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology
Authors: Joseph C. Chen, Venkata Karthik Jakka
Abstract:
The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.Keywords: injection molding processes, taguchi parameter design, tensile strength, high-density polyethylene(HDPE)
Procedia PDF Downloads 1965183 Worst-Case Load Shedding in Electric Power Networks
Authors: Fu Lin
Abstract:
We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis
Procedia PDF Downloads 1395182 The Effect of Traffic Load on the Maximum Response of a Cable-Stayed Bridge under Blast Loads
Authors: S. K. Hashemi, M. A. Bradford, H. R. Valipour
Abstract:
The Recent collapse of bridges has raised the awareness about safety and robustness of bridges subjected to extreme loading scenarios such as intentional/unintentional blast loads. The air blast generated by the explosion of bombs or fuel tankers leads to high-magnitude short-duration loading scenarios that can cause severe structural damage and loss of critical structural members. Hence, more attentions need to put towards bridge structures to develop guidelines to increase the resistance of such structures against the probable blast. Recent advancements in numerical methods have brought about the viable and cost effective facilities to simulate complicated blast scenarios and subsequently provide useful reference for safeguarding design of critical infrastructures. In the previous studies common bridge responses to blast load, the traffic load is sometimes not included in the analysis. Including traffic load will increase the axial compression in bridge piers especially when the axial load is relatively small. Traffic load also can reduce the uplift of girders and deck when the bridge experiences under deck explosion. For more complicated structures like cable-stayed or suspension bridges, however, the effect of traffic loads can be completely different. The tension in the cables increase and progressive collapse is likely to happen while traffic loads exist. Accordingly, this study is an attempt to simulate the effect of traffic load cases on the maximum local and global response of an entire cable-stayed bridge subjected to blast loadings using LS-DYNA explicit finite element code. The blast loads ranged from small to large explosion placed at different positions above the deck. Furthermore, the variation of the traffic load factor in the load combination and its effect on the dynamic response of the bridge under blast load is investigated.Keywords: blast, cable-stayed bridge, LS-DYNA, numerical, traffic load
Procedia PDF Downloads 3325181 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper
Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon
Abstract:
This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.Keywords: short-term load forecasting, power demand, neural networks, load forecasting
Procedia PDF Downloads 1905180 Static Strain Aging in Ferritic and Austenitic Stainless Steels
Authors: Songul Kurucay, Mustafa Acarer, Harun Sepet
Abstract:
Static strain aging occurs when metallic materials are subjected to deformation and then heat treated at low temperatures such as 150-200oC. Static strain aging occurs in BCC metals and results and increasing in yield and tensile strength and decreasing ductility due to carbon and/or nitrogen atoms locking dislocations. The locked dislocations increase yield and tensile strength. In this study, static strain aging behaviors of ferritic and austenitic stainless steel were investigated. Ferritic stainless steel was prestained at %5, %10 and %15 and then aged at 150oC and 200oC for 30 minutes. Austenitic stainless steel was also prestained at %20 and %30 and then heat treated at 200, 400 and 600oC for 30 minutes. After the heat treatment, the tensile test was performed to determine the effect of prestain and heat treatment on the steels. Hardness measurements and detailed microstructure characterization were also done. While AISI 430 ferritic stainless steel sample which was prestained at 15% and aged at 200oC, showed the highest increasing in the yield strength, AISI 304 austenitic stainless steel which was prestained at 30% and aged at 600oC, has the highest yield strength. Microstructure photographs also support the mechanical test results.Keywords: austenitic stainless steel, ferritic stainless steel, static strain aging, tensile strength
Procedia PDF Downloads 4405179 Characterization Microstructural Dual Phase Steel for Application In Civil Engineering
Authors: S. Habibi, T. E. Guarcia, A. Megueni, A. Ziadi, L. Aminallah, A. S. Bouchikhi
Abstract:
The characterization of the microstructure of Dual Phase steel in various low-carbon, with a yield stress between 400 and 900 MPa were conducted .In order to assess the mechanical properties of steel, we examined the influence of their chemical compositions interictal and heat treatments (austenite + ferrite area) on their micro structures. In this work, we have taken a number of commercial DP steels, micro structurally characterized and used the conventional tensile testing of these steels for mechanical characterization.Keywords: characterization, construction in civil engineering, micro structure, tensile DP steel
Procedia PDF Downloads 4645178 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement
Procedia PDF Downloads 1435177 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap
Authors: Furqan Farooq, Arslan Akbar, Sana Gul
Abstract:
Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.Keywords: seismic design, carbon fiber, strengthening, ductility
Procedia PDF Downloads 2015176 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs
Authors: Gaurav Sancheti
Abstract:
This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques
Procedia PDF Downloads 2215175 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine
Authors: B. Engel, Sara Salman Hassan Al-Maeeni
Abstract:
Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.Keywords: failure analysis, fatigue life, FEM analysis, shaft, stress analysis
Procedia PDF Downloads 3015174 Characterization of Erodibility Using Soil Strength and Stress-Strain Indices for Soils in Some Selected Sites in Enugu State
Authors: C. C. Egwuonwu, N. A. A. Okereke, K. O. Chilakpu, S. O. Ohanyere
Abstract:
In this study, initial soil strength indices (qu) and stress-strain characteristics, namely failure strain (ϵf), area under the stress-strain curve up to failure (Is) and stress-strain modulus between no load and failure (Es) were investigated as potential indicators for characterizing the erosion resistance of two compacted soils, namely sandy clay loam (SCL) and clay loam (CL) in some selected sites in Enugu State, Nigeria. The unconfined compressive strength (used in obtaining strength indices) and stress-strain measurements were obtained as a function of moisture content in percentage (mc %) and dry density (γd). Test were conducted over a range of 8% to 30% moisture content and 1.0 g/cm3 to 2.0 g/cm3 dry density at applied loads of 20, 40, 80, 160 and 320 kPa. Based on the results, it was found out that initial soil strength alone was not a good indicator of erosion resistance. For instance, in the comparison of exponents of mc% and γd for jet index or erosion resistance index (Ji) and the strength measurements, qu and Es agree in signs for mc%, but are opposite in signs for γd. Therefore, there is an inconsistency in exponents making it difficult to develop a relationship between the strength parameters and Ji for this data set. In contrast, the exponents of mc% and γd for Ji and ϵf and Is are opposite in signs, there is potential for an inverse relationship. The measured stress-strain characteristics, however, appeared to have potential in providing useful information on erosion resistance. The models developed for the prediction of the extent or the susceptibility of soils to erosion and subjected to sensitivity test on some selected sites achieved over 90% efficiency in their functions.Keywords: characterization of erodibility, selected sites in Enugu state, soil strength, stress-strain indices
Procedia PDF Downloads 4145173 Additive Manufacturing Optimization Via Integrated Taguchi-Gray Relation Methodology for Oil and Gas Component Fabrication
Authors: Meshal Alsaiari
Abstract:
Fused Deposition Modeling is one of the additive manufacturing technologies the industry is shifting to nowadays due to its simplicity and low affordable cost. The fabrication processing parameters predominantly influence FDM part strength and mechanical properties. This presentation will demonstrate the influences of the two manufacturing parameters on the tensile testing evaluation indexes, infill density, and Printing Orientation, which were analyzed to create a piping spacer suitable for oil and gas applications. The tensile specimens are made of two polymers, Acrylonitrile Styrene Acrylate (ASA) and High high-impact polystyrene (HIPS), to characterize the mechanical properties performance for creating the final product. The mechanical testing was carried out per the ASTM D638 testing standard, following Type IV requirements. Taguchi's experiment design using an L-9 orthogonal array was used to evaluate the performance output and identify the optimal manufacturing factors. The experimental results demonstrate that the tensile test is more pronounced with 100% infill for ASA and HIPS samples. However, the printing orientations varied in reactions; ASA is maximum at 0 degrees while HIPS shows almost similar percentages between 45 and 90 degrees. Taguchi-Gray integrated methodology was adopted to minimize the response and recognize optimal fabrication factors combinations.Keywords: FDM, ASTM D638, tensile testing, acrylonitrile styrene acrylate
Procedia PDF Downloads 935172 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion
Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng
Abstract:
The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear
Procedia PDF Downloads 3015171 Analysis of Shallow Foundation Using Conventional and Finite Element Approach
Authors: Sultan Al Shafian, Mozaher Ul Kabir, Khondoker Istiak Ahmad, Masnun Abrar, Mahfuza Khanum, Hossain M. Shahin
Abstract:
For structural evaluation of shallow foundation, the modulus of subgrade reaction is one of the most widely used and accepted parameter for its ease of calculations. To determine this parameter, one of the most common field method is Plate Load test method. In this field test method, the subgrade modulus is considered for a specific location and according to its application, it is assumed that the displacement occurred in one place does not affect other adjacent locations. For this kind of assumptions, the modulus of subgrade reaction sometimes forced the engineers to overdesign the underground structure, which eventually results in increasing the cost of the construction and sometimes failure of the structure. In the present study, the settlement of a shallow foundation has been analyzed using both conventional and numerical analysis. Around 25 plate load tests were conducted on a sand fill site in Bangladesh to determine the Modulus of Subgrade reaction of ground which is later used to design a shallow foundation considering different depth. After the collection of the field data, the field condition was appropriately simulated in a finite element software. Finally results obtained from both the conventional and numerical approach has been compared. A significant difference has been observed in the case of settlement while comparing the results. A proper correlation has also been proposed at the end of this research work between the two methods of in order to provide the most efficient way to calculate the subgrade modulus of the ground for designing the shallow foundation.Keywords: modulus of subgrade reaction, shallow foundation, finite element analysis, settlement, plate load test
Procedia PDF Downloads 1805170 An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy
Authors: Rajveer, Abhinav Saxena, Sanjeev Das
Abstract:
The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy.Keywords: aluminum alloy 6082, strength, forging, age hardening
Procedia PDF Downloads 4325169 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge
Authors: Fan Yang, Ye-Lu Wang, Yang Zhao
Abstract:
The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.Keywords: continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling
Procedia PDF Downloads 1595168 Estimating the Properties of Polymer Concrete Using the Response Surface Method
Authors: Oguz Ugurkan Akkaya, Alpaslan Sipahi, Ozgur Firat Pamukcu, Murat Yasar, Tolga Guler, Arif Ulu, Ferit Cakir
Abstract:
With the increase in human population, expansion, and renovation of cities, infrastructure systems today need to be manufactured to be more durable and long-lasting. The most cost-effective and durable manufacturing of components is a general problem of all engineering disciplines. Therefore, it is important to determine the most optimal components. This study mainly focuses on the most optimal component design of the polymer concrete. For this purpose, the lower and upper limits of the three main components of the polymer concrete are determined. The effects of these three principal components on the compressive strength, tensile strength, and unit price of polymer concrete are estimated using the response surface method. Box-Behnken Design is used in designing the experiments. Compressive strength, tensile strength, and unit prices are successfully estimated with variance ratios (R²) of 0.82, 0.92, and 0.90, respectively, and the optimum mixture quantity is determined.Keywords: Box-Behnken Design, compressive strength, mechanical tests, polymer concrete, tensile strength
Procedia PDF Downloads 1705167 Research on Load Balancing Technology for Web Service Mobile Host
Authors: Yao Lu, Xiuguo Zhang, Zhiying Cao
Abstract:
In this paper, Load Balancing idea is used in the Web service mobile host. The main idea of Load Balancing is to establish a one-to-many mapping mechanism: An entrance-mapping request to plurality of processing node in order to realize the dividing and assignment processing. Because the mobile host is a resource constrained environment, there are some Web services which cannot be completed on the mobile host. When the mobile host resource is not enough to complete the request, Load Balancing scheduler will divide the request into a plurality of sub-requests and transfer them to different auxiliary mobile hosts. Auxiliary mobile host executes sub-requests, and then, the results will be returned to the mobile host. Service request integrator receives results of sub-requests from the auxiliary mobile host, and integrates the sub-requests. In the end, the complete request is returned to the client. Experimental results show that this technology adopted in this paper can complete requests and have a higher efficiency.Keywords: Dinic, load balancing, mobile host, web service
Procedia PDF Downloads 3285166 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions
Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju
Abstract:
Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation
Procedia PDF Downloads 214