Search results for: neural stem/precursor cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5688

Search results for: neural stem/precursor cells

5268 The Inhibitory Effect of Weissella koreensis 521 Isolated from Kimchi on 3T3-L1 Adipocyte Differentiation

Authors: Kyungbae Pi, Kibeom Lee, Yongil Kim, Eun-Jung Lee

Abstract:

Abnormal adipocyte growth, in terms of increased cell numbers and increased cell differentiation, is considered to be a major pathological feature of obesity. Thus, the inhibition of preadipocyte mitogenesis and differentiation could help prevent and suppress obesity. The aim of this study was to assess whether extracts from Weissella koreensis 521 cells isolated from kimchi could exert anti-adipogenic effects in 3T3-L1 cells (fat cells). Differentiating 3T3-L1 cells were treated with W. koreensis 521 cell extracts (W. koreensis 521_CE), and cell viability was assessed by MTT assays. At concentrations below 0.2 mg/ml, W. koreensis 521_CE did not exert any cytotoxic effect in 3T3-L1 cells. However, treatment with W. koreensis 521_CE significantly inhibited adipocyte differentiation, as assessed by morphological analysis and Oil Red O staining of fat. W. koreensis 521_CE treatment (0.2 mg/ml) also reduced lipid accumulation by 24% in fully differentiated 3T3-L1 adipocytes. These findings collectively indicate that Weissella koreensis 521 may help prevent obesity.

Keywords: Weissella koreensis 521, 3T3-L1 cells, adipocyte differentiation, obesity

Procedia PDF Downloads 252
5267 [Keynote Speech]: Guiding Teachers to Make Lessons Relevant, Appealing, and Personal (RAP) for Academically-Low-Achieving Students in STEM Subjects

Authors: Nazir Amir

Abstract:

Teaching approaches to present science and mathematics content amongst academically-low-achieving students may need to be different than approaches that are adopted for the more academically-inclined students, primarily due to the different learning needs and learning styles of these students. In crafting out lessons to motivate and engage these students, teachers need to consider the backgrounds of these students and have a good understanding of their interests so that lessons can be presented in ways that appeal to them, and made relevant not just to the world around them, but also to their personal experiences. This presentation highlights how the author worked with a Professional Learning Community (PLC) of teachers in crafting out fun and feasible classroom teaching approaches to present science and mathematics content in ways that are made Relevant, Appealing, and Personal (RAP) to groups of academically-low-achieving students in Singapore. Feedback from the students and observations from their work suggest that they were engaged through the RAP-modes of instruction, and were able to appreciate the role of science and mathematics through a variety of low-cost design-based STEM (Science, Technology, Engineering, and Mathematics) activities. Such results imply that teachers teaching academically-low-achieving students, and those in under-resourced communities, could consider infusing RAP-infused instructions into their lessons in getting students develop positive attitudes towards STEM subjects.

Keywords: STEM Education, STEAM Education, Curriculum Instruction, Academically At-Risk Students, Singapore

Procedia PDF Downloads 304
5266 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 436
5265 Antibacterial Activity and Cytotoxicity of Silver Nanoparticles Synthesized by Moringa oleifera Extract as Reducing Agent

Authors: Temsiri Suwan, Penpicha Wanachantararak, Sakornrat Khongkhunthian, Siriporn Okonogi

Abstract:

In the present study, silver nanoparticles (AgNPs) were synthesized by green synthesis approach using Moringa oleifera aqueous extract (ME) as a reducing agent and silver nitrate as a precursor. The obtained AgNPs were characterized using UV-Vis spectroscopy (UV-Vis), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD). The results from UV-Vis revealed that the maximum absorption of AgNPs was at 430 nm and the EDX spectrum confirmed Ag element. The results from DLS indicated that the amount of ME played an important role in particle size, size distribution, and zeta potential of the obtained AgNPs. The smallest size (62.4 ± 1.8 nm) with narrow distribution (0.18 ± 0.02) of AgNPs was obtained after using 1% w/v of ME. This system gave high negative zeta potential of -36.5 ± 2.8 mV. SEM results indicated that the obtained AgNPs were spherical in shape. Antibacterial activity using dilution method revealed that the minimum inhibitory and minimum bactericidal concentrations of the obtained AgNPs against Streptococcus mutans were 0.025 and 0.1 mg/mL, respectively. Cytotoxicity test of AgNPs on adenocarcinomic human alveolar basal epithelial cells (A549) indicated that the particles impacted against A549 cells. The percentage of cell growth inhibition was 87.5 ± 3.6 % when only 0.1 mg/mL AgNPs was used. These results suggest that ME is the potential reducing agent for green synthesis of AgNPs.

Keywords: antibacterial activity, Moringa oleifera extract, reducing agent, silver nanoparticles

Procedia PDF Downloads 108
5264 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA

Procedia PDF Downloads 304
5263 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence

Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi

Abstract:

In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.

Keywords: germination, priming, seedling growth, wheat

Procedia PDF Downloads 179
5262 Biological Activity of Mesenchymal Stem Cells in the Surface of Implants

Authors: Saimir Heta, Ilma Robo, Dhimiter Papakozma, Eduart Kapaj, Vera Ostreni

Abstract:

Introduction: The biocompatible materials applied to the implant surfaces are the target of recent literature studies. Methodologies: Modification of implant surfaces in different ways such as application of additional ions, surface microstructure change, surface or laser ultrasound alteration, or application of various substances such as recombinant proteins are among the most affected by articles published in the literature. The study is of review type with the main aim of finding the different ways that the mesenchymal cell reaction to these materials is, according to the literature, in the same percentage positive to the osteointegration process. Results: It is emphasized in the literature that implant success as a key evaluation key has more to implement implant treatment protocol ranging from dental health amenity and subsequent of the choice of implant type depending on the alveolar shape of the ridge level. Conclusions: Osteointegration is a procedure that should initially be physiologically independent of the type of implant pile material. With this physiological process, it can not "boast" for implant success or implantation depending on the brand of the selected implant, as the breadth of synthetic or natural materials that promote osteointegration is relatively large.

Keywords: mesenchymal cells, implants, review, biocompatible materials

Procedia PDF Downloads 86
5261 Hydrogel Hybridizing Temperature-Cured Dissolvable Gelatin Microspheres as Non-Anchorage Dependent Cell Carriers for Tissue Engineering Applications

Authors: Dong-An Wang

Abstract:

All kinds of microspheres have been extensively employed as carriers for drug, gene and therapeutic cell delivery. Most therapeutic cell delivery microspheres rely on a two-step methodology: fabrication of microspheres and subsequent seeding of cells onto them. In this study, we have developed a novel one-step cell encapsulation technique using a convenient and instant water-in-oil single emulsion approach to form cell-encapsulated gelatin microspheres. This technology is adopted for hyaline cartilage tissue engineering, in which autologous chondrocytes are used as therapeutic cells. Cell viability was maintained throughout and after the microsphere formation (75-100 µm diameters) process that avoids involvement of any covalent bonding reactions or exposure to any further chemicals. Further encapsulation of cell-laden microspheres in alginate gels were performed under 4°C via a prompt process. Upon the formation of alginate constructs, they were immediately relocated into CO2 incubator where the temperature was maintained at 37°C; under this temperature, the cell-laden gelatin microspheres dissolved within hours to yield similarly sized cavities and the chondrocytes were therefore suspended within the cavities inside the alginate gel bulk. Hence, the gelatin cell-laden microspheres served two roles: as cell delivery vehicles which can be removable through temperature curing, and as porogens within an alginate hydrogel construct to provide living space for cell growth and tissue development as well as better permeability for mutual diffusions. These cell-laden microspheres, namely “temperature-cured dissolvable gelatin microsphere based cell carriers” (tDGMCs), were further encapsulated in a chondrocyte-laden alginate scaffold system and analyzed by WST-1, gene expression analyses, biochemical assays, histology and immunochemistry stains. The positive results consistently demonstrated the promise of tDGMC technology in delivering these non-anchorage dependent cells (chondrocytes). It can be further conveniently translated into delivery of other non-anchorage dependent cell species, including stem cells, progenitors or iPS cells, for regeneration of tissues in internal organs, such as engineered hepatogenesis or pancreatic regeneration.

Keywords: biomaterials, tissue engineering, microsphere, hydrogel, porogen, anchorage dependence

Procedia PDF Downloads 396
5260 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab

Procedia PDF Downloads 90
5259 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 501
5258 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 613
5257 Quantitative Analysis of (+)-Catechin and (-)-Epicatechin in Pentace burmanica Stem Bark by HPLC

Authors: Thidarat Duangyod, Chanida Palanuvej, Nijsiri Ruangrungsi

Abstract:

Pentace burmanica Kurz., belonging to the Malvaceae family, is commonly used for anti-diarrhea in Thai traditional medicine. A method for quantification of (+)-catechin and (-)-epicatechin in P. burmanica stem bark from 12 different Thailand markets by reverse-phase high performance liquid chromatography (HPLC) was investigated and validated. The analysis was performed by a Shimadzu DGU-20A3 HPLC equipped with a Shimadzu SPD-M20A photo diode array detector. The separation was accomplished with an Inersil ODS-3 column (5 µm x 4.6 x 250 mm) using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phase at the flow rate of 1 ml/min. The isocratic was set at 20% B for 15 min and the column temperature was maintained at 40 ºC. The detection was at the wavelength of 280 nm. Both (+)-catechin and (-)-epicatechin existed in the ethanolic extract of P. burmanica stem bark. The content of (-)-epicatechin was found as 59.74 ± 1.69 µg/mg of crude extract. In contrast, the quantitation of (+)-catechin content was omitted because of its small amount. The method was linear over a range of 5-200 µg/ml with good coefficients (r2 > 0.99) for (+)-catechin and (-)-epicatechin. Limit of detection values were found to be 4.80 µg/ml for (+)-catechin and 5.14 µg/ml for (-)-epicatechin. Limit of quantitation of (+)-catechin and (-)-epicatechin were of 14.54 µg/ml and 15.57 µg/ml respectively. Good repeatability and intermediate precision (%RSD < 3) were found in this study. The average recoveries of both (+)-catechin and (-)-epicatechin were obtained with good recovery in the range of 91.11 – 97.02% and 88.53 – 93.78%, respectively, with the %RSD less than 2. The peak purity indices of catechins were more than 0.99. The results suggested that HPLC method proved to be precise and accurate and the method can be conveniently used for (+)-catechin and (-)-epicatechin determination in ethanolic extract of P. burmanica stem bark. Moreover, the stem bark of P. burmanica was found to be a rich source of (-)-epicatechin.

Keywords: pentace burmanica, (+)-catechin, (-)-epicatechin, high performance liquid chromatography

Procedia PDF Downloads 454
5256 Intelligent System for Diagnosis Heart Attack Using Neural Network

Authors: Oluwaponmile David Alao

Abstract:

Misdiagnosis has been the major problem in health sector. Heart attack has been one of diseases that have high level of misdiagnosis recorded on the part of physicians. In this paper, an intelligent system has been developed for diagnosis of heart attack in the health sector. Dataset of heart attack obtained from UCI repository has been used. This dataset is made up of thirteen attributes which are very vital in diagnosis of heart disease. The system is developed on the multilayer perceptron trained with back propagation neural network then simulated with feed forward neural network and a recognition rate of 87% was obtained which is a good result for diagnosis of heart attack in medical field.

Keywords: heart attack, artificial neural network, diagnosis, intelligent system

Procedia PDF Downloads 655
5255 STEAM and Project-Based Learning: Equipping Young Women with 21st Century Skills

Authors: Sonia Saddiqui, Maya Marcus

Abstract:

UTS STEAMpunk Girls is an educational program for young women (aged 12-16), to empower them to be more informed and active members of the 21st century workforce. With the number of STEM graduates on the decline, especially among young women, an additional aim of the program is to trial a STEAM (Science, Technology, Engineering, Arts/Humanities/Social Sciences, Mathematics), inter-disciplinary approach to improving STEM engagement. In-line with UNESCO’s recent focus on promoting ‘transversal competencies’ in future graduates, the program utilised co-design, project-based learning, entrepreneurial processes, and inter-disciplinary learning. The program consists of two phases. Taking a participatory design approach, the first phase (co-design workshops) provided valuable insight into student perspectives around engaging young women in STEM and inter-disciplinary thinking. The workshops positioned 26 young women from three schools as subject matter experts (SMEs), providing a platform for them to share their opinions, experiences and findings around the STEAM disciplines. The second (pilot) phase put the co-design phase findings into practice, with 64 students from four schools working in groups to articulate problems with real-world implications, and utilising design-thinking to solve them. The pilot phase utilised project-based learning to engage young women in entrepreneurial and STEAM frameworks and processes. Scalable program design and educational resources were trialed to determine appropriate mechanisms for engaging young women in STEM and in STEAM thinking. Across both phases, data was collected via longitudinal surveys to obtain pre-program, baseline attitudinal information, and compare that against post-program responses. Preliminary findings revealed students’ improved understanding of the STEM disciplines, industries and professions, improved awareness of STEAM as a concept, and improved understanding regarding inter-disciplinary and design thinking. Program outcomes will be of interest to high-school educators in both STEM and the Arts, Humanities and Social Sciences fields, and will hopefully inform future programmatic approaches to introducing inter-disciplinary STEAM learning in STEM curriculum.

Keywords: co-design, STEM, STEAM, project-based learning, inter-disciplinary

Procedia PDF Downloads 198
5254 Exploring Deep Neural Network Compression: An Overview

Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart

Abstract:

The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.

Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition

Procedia PDF Downloads 43
5253 Tumor Detection Using Convolutional Neural Networks (CNN) Based Neural Network

Authors: Vinai K. Singh

Abstract:

In Neural Network-based Learning techniques, there are several models of Convolutional Networks. Whenever the methods are deployed with large datasets, only then can their applicability and appropriateness be determined. Clinical and pathological pictures of lobular carcinoma are thought to exhibit a large number of random formations and textures. Working with such pictures is a difficult problem in machine learning. Focusing on wet laboratories and following the outcomes, numerous studies have been published with fresh commentaries in the investigation. In this research, we provide a framework that can operate effectively on raw photos of various resolutions while easing the issues caused by the existence of patterns and texturing. The suggested approach produces very good findings that may be used to make decisions in the diagnosis of cancer.

Keywords: lobular carcinoma, convolutional neural networks (CNN), deep learning, histopathological imagery scans

Procedia PDF Downloads 136
5252 Anti-Osteoporotic Effect of Deer Antler in Ovariectomized Rats

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

The deer velvet antler is well known for its traditional medicinal value and is widely used in the clinic. It has been considered to possess bone-strengthening activity. The goal of this study was to investigate the anti-osteoporotic effect of deer antler velvet on ovariectomized rats (OVX), and their possible mechanism of the action. In the first step, the in vitro effects of DAE on bone loss were determined. The proliferation, collagen content and alkaline phosphatase (ALP) activity of human osteoblastic MG-63 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of DAE on bone tissue. 3-month old female Sparague-Dawley rats were either sham operated or OVX, and administered DAE (20 and 100 mg/kg) for 4 weeks. DAE increased MG-63 cell proliferation and ALP activity in a dose-dependent manner. Collagen content was also increased by DAE treatment. However, the effect of DAE on bone resorption was not observed. OVX rats supplemented with DAE showed osteoprotective effects as the bone ALP level was increased and c-terminal telopeptide level was decreased by 100 mg/kg DAE treatment compared with OVX controls. Moreover, the tartrate-resistant acid phosphatase-5b level was also decreased by DAE treatment. The present study suggests that DAE is effective in preventing bone loss in OVX rats, and may be potential therapeutic agents for the treatment of postmenopausal osteoporosis.

Keywords: bone ALP, c-terminal telopeptide, deer antler, osteoporosis, ovariectomy, tartrate-resistant acid phosphatase-5b

Procedia PDF Downloads 245
5251 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 176
5250 Profiling, Antibacterial and Antioxidant Activity of Acacia decurrens (Willd) an Invasive South Africa Tree

Authors: Joe Modise, Bamidel Joseph Okoli, Nas Molefe, Imelda Ledwaba

Abstract:

The present study describes the chemical profile and antioxidant potential of the stem bark of Acacia decurrens. The methanol fraction of A. decurrens stem bark gave the highest yield (20 %), while the hexane fraction had the lowest yield (0.2 %). The GC-MS spectra of the hexane, chloroform and ethyl acetate fractions confirm the presence of fifty two major compounds and the ICP-OES analysis of the stem bark was found to contain Co(0.41), Zn(1.75), Mn(3.69), Ca(8.67), Ni(10.54), Mg(12.98), Cr(24.38), K(47.88), Fe(154.62) ppm; which is an indication of hyper-accumulation capacity. The UV-Visible spectra of showed four absorption maxima for hexane fraction at 665 (0.028), 410 (0.116), 335 (0.278) and 250 (0.007) nm, three for chloroform fraction at 665 (0.028), 335 (0.278) and 250 (0.007) nm , three for ethyl acetate fraction at 665 (0.070), 390 (0.648) and 345 (0.663) nm and three for methanol fraction at 385 (0.508), 310 (0.886) and 295 (0.899) nm respectively. Quantitative phytochemical screening indicated that the alkaloid (0.6-3.3) % and saponins (5.1-8.6) % contents of the various fractions were significantly lower than the tannin (30.9-55.8) mg TAE/g, steroid(13.92-41.2) %, phenol (40.6-65.5) mgGAE/g and flavonoids (210.2 -284.9) mg RUE/g contents. The antioxidant activity of the fractions was analysed by different methods and revealed good to moderate antioxidant potential with different IC50 values viz. (42.2-49.6) mg/mL for ABTS and (37.8-75.0) μg/ml for DPPH respectively, compared to standard antioxidants. Based on obtained results, the A.decurrens stem bark fractions can be a source of safe, sustainable natural antioxidant drug and can be exploited as a source of controlled green-heavy metal cleaner.

Keywords: Acacia decurrens, antioxidant, DPPH, ABTS, hyperaccumulation, Menstruum, ICP-OES, GC-MS, UV/visible

Procedia PDF Downloads 324
5249 Max-Entropy Feed-Forward Clustering Neural Network

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.

Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models

Procedia PDF Downloads 435
5248 Comparison of Phenolic and Urushiol Contents of Different Parts of Rhus verniciflua and Their Antimicrobial Activity

Authors: Jae Young Jang, Jong Hoon Ahn, Jae-Woong Lim, So Young Kang, Mi Kyeong Lee

Abstract:

Rhus verniciflua is commonly known as a lacquer tree in Korea. Stem barks of R. verniciflua have been used as an immunostimulator in traditional medicine. It contains phenolic compounds and is known for diverse biological activities such as antioxidant and antimicrobial activity. However, it also causes allergic dermatitis due to urushiols derivatives. For the development of active natural resources with less toxicity, the content of phenolic compounds and urushiols of different parts of R. verniciflua such as stem barks, lignum and leaves were quantitated by colorimetric assay and HPLC analysis. The urushiols content were the highest in stem barks, and followed by leaves. The lignum contained trace amount of urushiols. The phenolic contents, however, were the most abundant in lignum, and followed by leaves and stem barks. These results clear showed that the content of urushiols and phenolic differs depending on the parts of R. verniciflua. Antimicrobial activity of different parts of R. verniciflua against fish pathogenic bacteria was also investigated using Edwardsiella tarda. Lignum of R. verniciflua was the most effective in antimicrobial activity against E. tarda and phenolic constituents are suggested to be active constituents for activity. Taken together, phenolic compounds are responsible for antimicrobial activity of R. verniciflua. The lignum of R. verniciflua contains high content of phenolic compounds with less urushiols, which suggests efficient antimicrobial activity with less toxicity. Therefore, lignum of R. verniciflua are suggested as good sources for antimicrobial activity against fish bacterial diseases.

Keywords: different parts, phenolic compounds, Rhus verniciflua, urushiols

Procedia PDF Downloads 319
5247 Application of Neural Petri Net to Electric Control System Fault Diagnosis

Authors: Sadiq J. Abou-Loukh

Abstract:

The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.

Keywords: petri net, neural petri net, electric control system, fault diagnosis

Procedia PDF Downloads 474
5246 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life

Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr

Abstract:

Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.

Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology

Procedia PDF Downloads 296
5245 Learning Instructional Managements between the Problem-Based Learning and Stem Education Methods for Enhancing Students Learning Achievements and their Science Attitudes toward Physics the 12th Grade Level

Authors: Achirawatt Tungsombatsanti, Toansakul Santiboon, Kamon Ponkham

Abstract:

Strategies of the STEM education was aimed to prepare of an interdisciplinary and applied approach for the instructional of science, technology, engineering, and mathematics in an integrated students for enhancing engagement of their science skills to the Problem-Based Learning (PBL) method in Borabu School with a sample consists of 80 students in 2 classes at the 12th grade level of their learning achievements on electromagnetic issue. Research administrations were to separate on two different instructional model groups, the 40-experimental group was designed with the STEM instructional experimenting preparation and induction in a 40-student class and the controlling group using the PBL was designed to students identify what they already know, what they need to know, and how and where to access new information that may lead to the resolution of the problem in other class. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) The term scaling was applied to the attempts to measure the attitude objectively with the TOPRA was used to assess students’ perceptions of their science attitude toward physics. Comparisons between pretest and posttest techniques were assessed students’ learning achievements on each their outcomes from each instructional model, differently. The results of these findings revealed that the efficiency of the PLB and the STEM based on criteria indicate that are higher than the standard level of the 80/80. Statistically, significant of students’ learning achievements to their later outcomes on the controlling and experimental physics class groups with the PLB and the STEM instructional designs were differentiated between groups at the .05 level, evidently. Comparisons between the averages mean scores of students’ responses to their instructional activities in the STEM education method are higher than the average mean scores of the PLB model. Associations between students’ perceptions of their physics classes to their attitudes toward physics, the predictive efficiency R2 values indicate that 77%, and 83% of the variances in students’ attitudes for the PLEI and the TOPRA in physics environment classes were attributable to their perceptions of their physics PLB and the STEM instructional design classes, consequently. An important of these findings was contributed to student understanding of scientific concepts, attitudes, and skills as evidence with STEM instructional ought to higher responding than PBL educational teaching. Statistically significant between students’ learning achievements were differentiated of pre and post assessments which overall on two instructional models.

Keywords: learning instructional managements, problem-based learning, STEM education, method, enhancement, students learning achievements, science attitude, physics classes

Procedia PDF Downloads 228
5244 Zinc Oxide Thin Films Deposition by Spray Pyrolysis

Authors: Bourfaa Fouzia, Meryem Lamri Zeggar, Adjimi Amel, Mohammed Salah Aida, Nadir Attaf

Abstract:

Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: Acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X-ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV–visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

Keywords: precursor, thins films, spray pyrolysis, zinc oxide

Procedia PDF Downloads 327
5243 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles

Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver

Abstract:

Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.

Keywords: cancer cell, nanoparticles, cell culture, SEM

Procedia PDF Downloads 734
5242 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 464
5241 Natural Honey and Effect on the Activity of the Cells

Authors: Abujnah Dukali

Abstract:

Natural honey was assessed in cell culture system for its anticancer activity. Human leukemic cell line HL 60 was treated with honey and cultured for 5 days and cytotoxicity was calculated by MTT assay. Honey showed cytotoxicity with CC50 value of 174.20 µg/ml. Radical modulation activities was assessed by lipid peroxidation assay using egg lecithin. Honey showed antioxidant activity with EC50 value of 159.73 µg/ml. In addition, treatment with HL60 cells also resulted in nuclear DNA fragmentation, as seen in agarose gel electrophoresis. This is a hallmark of cells undergoing apoptosis. Confirmation of apoptosis was performed by staining the cells with Annexin V and FACS analysis. Apoptosis is an active, genetically regulated disassembly of the cell form within. Disassembly creates changes in the phospholipid content of the cytoplasmic membrane outer leaflet. Phosphatidylserine (PS) is translocated from the inner to the outer surface of the cell for phagocytic cell recognition. The human anticoagulant, annexin V, is a Ca2+-dependent phospholipid protein with a high affinity for PS. Annexin V labeled with fluorescein can identify apoptotic cells in the population It is a confirmatory test for apoptosis. Annexin V-positive cells were defined as apoptotic cells. Since honey shows both antioxidant activity and cytotoxicity at almost the same concentration, it can prevent the free radical induced cancer as prophylactic agent and kill the cancer cells by apoptotic process as a chemotherapeutic agent. Everyday intake of honey can prevent the cancer induction.

Keywords: anticancer, cells, DNA, honey

Procedia PDF Downloads 206
5240 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 85
5239 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 88